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Abstract

A graph is subcubic if its maximum degree is at most 3. The bipartite density of a graph
G is max{ε(H)/ε(G) : H is a bipartite subgraph of G}, where ε(H) and ε(G) denote the
numbers of edges in H and G, respectively. It is an NP-hard problem to determine the
bipartite density of any given triangle-free cubic graph. Bondy and Locke gave a polynomial
time algorithm which, given a triangle-free subcubic graph G, finds a bipartite subgraph of G
with at least 4

5ε(G) edges; and showed that the Petersen graph and the dodecahedron are the
only triangle-free cubic graphs with bipartite density 4

5 . Bondy and Locke further conjectured
that there are precisely seven triangle-free subcubic graphs with bipartite density 4

5 . We prove
this conjecture of Bondy and Locke. Our result will be used in a forthcoming paper to solve
a problem of Bollobás and Scott related to judicious partitions.
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1 Introduction

The Maximum Bipartite Subgraph Problem on a graph G is that of finding a bipartite subgraph
of G with the maximum number of edges (called maximum bipartite subgraph). This is the
unweighted version of the Max-Cut problem, since the edges in a maximum bipartite subgraph
form an edge cut. The Max-Cut problem is one of the Karp’s original NP-complete problems [11],
and it remains NP-complete for the unweighted version (see also [5, 7]). It is shown in [1] that it
is NP-hard to approximate the max-cut problem on cubic graphs beyond the ratio of 0.997. On
the other hand, the Max-Cut problem is polynomial time solvable for planar graphs, see [9, 13].
Goemans and Williamson [8] used semidefinite programming and hyperplane rounding to give
a randomized algorithm with expected performance guarantee of 0.87856. Feige, Karpinski and
Langberg [6] gave a similar randomized algorithm that improves this bound to .921 for subcubic
graphs. A graph is subcubic if it has maximum degree at most three.

Yannakakis [15] showed that the Maximum Bipartite Subgraph Problem is NP-hard even
when restricted to triangle-free cubic graphs. In this paper, we study the maximum bipartite
subgraph problem for triangle-free subcubic graphs. For convenience, we let

G = {connected, triangle-free, subcubic multigraphs}.
For a graph G, we follow [3] to denote by ε(G) the number of edges of G, and let

B(G) = {maximum bipartite subgraphs of G}.
We define the bipartite density of G as

b(G) = max{ε(B)
ε(G)

: B is a bipartite subgraph of G}.

Erdös [4] proved that if G is 2m-colorable then b(G) ≥ m
2m−1 . As a consequence, if G is a cubic

graph then b(G) ≥ 2
3 . Stanton [14] and Locke [12] further showed that if G is a cubic graph and

G �= K4 then b(G) ≥ 7
9 . Hopkins and Stanton [10] proved b(G) ≥ 4

5 if G is a triangle-free cubic
graph. Bondy and Locke [3] gave a polynomial time algorithm which, given a graph G ∈ G, finds
a bipartite subgraph of G with at least 4

5ε(G) edges; and they further proved that the Petersen
graph and the dodecahedron (shown in Figure 1) are the only cubic graphs with bipartite density
4
5 .
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Figure 1: The Petersen graph and the dodecahedron.

Theorem 1.1 (Bondy and Locke [3]) If G ∈ G then b(G) ≥ 4
5 . Furthermore, if G ∈ G is cubic

and b(G) = 4
5 , then G is either the Petersen graph or the dodecahedron.
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It is not hard to see that the graphs in Figure 2 are in G and have bipartite density 4
5 . Bondy

and Locke [3] conjectured that the graphs in Figures 1 and 2 are precisely those in G with bipartite
density 4

5 .
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Figure 2: Triangle-free subcubic graphs with bipartite density 4
5 .

The main result of this paper is the following theorem, which establishes the conjecture of
Bondy and Locke. For convenience, we use F6 and F7 to denote the Petersen graph and the
dodecahedron, respectively.

Theorem 1.2 If G ∈ G and b(G) = 4
5 , then G ∈ {Fi : 1 ≤ i ≤ 7}.

Note the drawings of F4 and F5 in Figure 2; they are different from those in [3]. This is to
illustrate a common structure of F4 and F5, which will be useful when proving Theorem 1.2.

It is pointed out in [3] that Theorem 1.2 is equivalent to the statement that the graphs in
Figures 1 and 2 are precisely those in G which admit an m-covering by 5-cycles for some positive
integer m. An m-covering of a graph is a collection of subgraphs of G such that every edge
belongs to exactly m of these subgraphs.

For any bipartite graph B, we use V1(B) and V2(B) to denote a partition of V (B) such that
every edge of B has exactly one end in each Vi(B). Bollobás and Scott [2] observed that the
Petersen graph admits a maximum bipartite subgraph B such that V1(B) is an independent set;
and they commented that the partition V1(B), V2(B) of the Petersen graph is some way from
judicious. (For a graph G, a partition V1, V2 of V (G) is judicious if max{ε(G[V1]), ε(G[V2])}
is close to be minimum among all bipartitions of V (G), where for i = 1, 2, G[Vi] denotes the
subgraph of G induced by Vi). Bollobás and Scott [2] asked the following question.

Problem 1.3 What are those cubic graphs G with b(G) = 4
5 such that for some maximum bipar-

tite subgraph B of G, V1(B) is independent.

We observe that the dodecahedron admits a maximum bipartite subgraph B such that V1(B)
is independent. See Figure 3. If we delete the edges joining vertices represented by solid circles,
the result is a maximum bipartite subgraph of the dodecahedron, where V1(B) consists of those
vertices represented by solid squares.
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Figure 3: A maximum bipartite subgraph of the dodecahedron.

Interested readers may verify that each graph in Figure 2 also contains a maximum bipartite
subgraph B with V1(B) independent. Hence, the following is a direct consequence of Theorem 1.2,
which answers Problem 1.3 for triangle-free graphs. (In a forthcoming paper, we shall completely
solve Problem 1.3.)

Corollary 1.4 The graphs Fi, 1 ≤ i ≤ 7, are precisely those in G that have bipartite density 4
5

and contain a maximum bipartite subgraph B with V1(B) independent.

To prove Theorem 1.2, it suffices to show that if G ∈ G and G is not cubic, then G is one of
the graphs in Figure 2. We first prove, in section 2, several simple lemmas about graphs in G
that have bipartite density 4

5 . These lemmas show that certain configurations are forbidden for
graphs in G with bipartite density 4

5 . In section 3, we show that if G ∈ G contains two adjacent
vertices of degree 2, then b(G) = 4

5 implies G ∈ {F1, F2}. In section 4, we show that if G ∈ G has
a vertex of degree 3 which is adjacent to two vertices of degree 2, then b(G) = 4

5 implies G = F3

or G is not a minimum counter example to Theorem 1.2. We show in section 5 that if no two
vertices of degree 2 are adjacent or share a common neighbor, then G ∈ {F4, F5} or G is not a
minimum counter example to Theorem 1.2. The proof of Theorem 1.2 is completed in section 6.

For convenience, we use A := B to rename B to A. Let G be a graph and S ⊆ V (G) ∪E(G).
Then G − S denotes the graph obtained from G by deleting S and edges of G incident with
vertices in S. For any subgraph H of G, we use H + S to denote the subgraph of G with vertex
set V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ {uv ∈ S ∩ E(G) : {u, v} ⊆ V (H) ∪ (S ∩ V (G))}.
When S = {s}, we simply write G− s := G− S and H + s := H + S. In the case of H + S, if G
is not given then we implicitly assume that G is a multigraph containing both H and S.

Let G be a graph, and v1, . . . , vk vertices of G. We use A(v1, . . . , vk) to denote the set
consisting of vi, 1 ≤ i ≤ k, and all edges of G with at least one end in {v1, . . . , vk}. A vertex of
G is said to be a k-vertex if it has degree k in G. For any vertex v of G, we use NG(v) (or N(v)
if there is no ambiguity) to denote the set of neighbors of v in G.

2 Several forbidden configurations

We show in this section that graphs in G with bipartite density 4
5 do not contain certain config-

urations. First, it is easy to see that if G ∈ G then the minimum degree of G must be at least 2.
Indeed, Lemma 3.1 of [3] says a bit more; and we state it and include its proof.

Lemma 2.1 Let G ∈ G and assume b(G) = 4
5 . Then G is 2-connected.

4



Proof. Suppose G is not 2-connected. Then since G is subcubic, G has a cut edge, say uv.
Let Gu, Gv denote the components of G − uv containing u, v, respectively. Clearly, Gu, Gv ∈ G.
By Theorem 1.1, b(Gu) ≥ 4

5 and b(Gv) ≥ 4
5 . Let Bu ∈ B(Gu) and Bv ∈ B(Gv). Then B :=

(Bu ∪ Bv) + uv is a bipartite subgraph of G, and

ε(B) = ε(Bu) + ε(Bv) + 1

≥ 4
5
ε(Gu) +

4
5
ε(Gv) + 1

>
4
5
ε(G).

This implies b(G) > 4
5 , a contradiction.

Lemma 2.1 will be used frequently in later proofs. Suppose G ∈ G, b(G) = 4
5 , and G has

maximum degree 2. Then it follows from Lemma 2.1 that G is a cycle of length 5. Hence, we
have

Lemma 2.2 Let G ∈ G and b(G) = 4
5 , and assume that G has maximum degree 2. Then G = F1.

The next lemma shows that, with the exception of F1, for any graph in G with bipartite
density 4

5 , no 2-vertex is adjacent to two 2-vertices.

Lemma 2.3 Let G ∈ G and b(G) = 4
5 . Then G = F1, or every 2-vertex of G is adjacent to at

least one 3-vertex.

Proof. Suppose the assertion of the lemma is false. Then G �= F1, and G has a 2-vertex x that
is adjacent to two 2-vertices u and v. See Figure 4. Since G is 2-connected (by Lemma 2.1) and
the maximum degree of G is 3 (by Lemma 2.2), we may assume without loss of generality that v
is adjacent to a 3-vertex w in G. Let s and t be the neighbors of w other than v, and let u′ �= x
be the other neighbor of u.
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Figure 4: Vertices x, u, v and their neighbors.

Let A := A(u, v,w, x). Clearly, G−A is subcubic and triangle-free, and ε(G−A) = ε(G)− 6.
Since G is 2-connected, G − A must be connected. So G − A ∈ G. Let B′ ∈ B(G − A). Then by
Theorem 1.1, ε(B′) ≥ 4

5ε(G−A) ≥ 4
5(ε(G) − 6). Without loss of generality, we may assume that

t ∈ V1(B′). Define

B :=

⎧⎨
⎩

B′ + (A − {uu′}), if s ∈ V1(B′);
B′ + (A − {tw}), if s ∈ V2(B′) and u′ ∈ V1(B′);
B′ + (A − {sw}), if s ∈ V2(B′) and u′ ∈ V2(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 5 ≥ 4
5 (ε(G) − 6) + 5 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.

We now show that in a subcubic graph with bipartite density 4
5 , no 3-vertex can have three

2-vertices as neighbors.
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Lemma 2.4 Let G ∈ G and b(G) = 4
5 , and let x be a 3-vertex of G. Then, x is adjacent to at

most two 2-vertices. Furthermore, if x is adjacent to two 2-vertices, say u and v, then neither u
nor v is adjacent to a 2-vertex.

Proof. By Lemma 2.1, G is 2-connected. First, assume that x is adjacent to three 2-vertices, say
u, v and w. See Figure 5(a). Let u′, v′ and w′ be the neighbors of u, v and w, respectively, which
are all different from x. Let A := A(u, v,w, x). Clearly, G − A is subcubic and triangle-free, and
ε(G − A) = ε(G) − 6. Since G is 2-connected, G − A must be connected. So G − A ∈ G. Let
B′ ∈ B(G − A). By Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 6). Without loss of generality,

we may assume {u′, v′} ⊆ V1(B′). Let B := B′ + (A−{ww′}). Then B is a bipartite subgraph of
G, and ε(B) = ε(B′)+5 ≥ 4

5(ε(G)−6)+5 > 4
5ε(G); contradicting the assumption that b(G) = 4

5 .
This proves the first assertion of the lemma.
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Figure 5: 3-Vertex x and its neighbors.

To prove the second assertion of the lemma, we assume for a contradiction that x is adjacent
to two 2-vertices u and v, and v is adjacent to a 2-vertex w. See Figure 5(b). Let w′ be the
neighbor of w different from v, u′ be the neighbor of u different from x, and x′ be the neighbor
of x not in {u, v}.

Again, let A := A(u, v,w, x). Then, G − A is subcubic and triangle-free, and ε(G − A) =
ε(G)−6. Since G is 2-connected, G−A must be connected. Hence G−A ∈ G. Let B′ ∈ B(G−A).
By Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 6). Without loss of generality, assume that

u′ ∈ V1(B′). Define

B :=

⎧⎨
⎩

B′ + (A − {xx′}), if w′ ∈ V2(B′);
B′ + (A − {ww′}), if w′ ∈ V1(B′) and x′ ∈ V2(B′);
B′ + (A − {uu′}), if w′ ∈ V1(B′) and x′ ∈ V1(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 5 ≥ 4
5 (ε(G) − 6) + 5 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.
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Figure 6: A forbidden configuration.

We now show that if G ∈ G and b(G) = 4
5 , then under some technical condition, G does not

contain the configuration shown in Figure 6, where w, x, y, z are different from all other vertices,
and their degrees in G are exactly those shown in Figure 6.
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Lemma 2.5 Let G ∈ G and b(G) = 4
5 , let y be a 2-vertex of G, and let x, z ∈ N(y) be 3-vertices.

Let N(x) − {y} = {t, w}, and assume that w is a 3-vertex and zw /∈ E(G). Then one of the
following holds:

(i) there exists G′ ∈ G such that b(G′) = 4
5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and |V (G′)| < |V (G)|; or

(ii) N(t) ∩ N(z) �= ∅.

Proof. Since b(G) = 4
5 , G is 2-connected (by Lemma 2.1). Let w′, t′ ∈ N(z) − {y}. See Figure 6.

If tt′ ∈ E(G) or tw′ ∈ E(G), then (ii) holds. So we may assume that

(1) tt′, tw′ /∈ E(G).

Note that we allow t ∈ {t′, w′}. Let A := A(w, x, y), and let G′ := (G − A) + tz. Clearly,
G′ is subcubic and ε(G′) = ε(G) − 5. By (1), G′ is triangle-free. Since G is 2-connected, G′ is
connected. Hence G′ ∈ G, and by Theorem 1.1, b(G′) ≥ 4

5 . Choose an arbitrary B′ from B(G′).
Then ε(B′) ≥ 4

5ε(G′) = 4
5(ε(G) − 5). Note that t ∈ Vi(B′) for some i ∈ {1, 2}. Hence, we have

(2) z ∈ V3−i(B′) if tz ∈ E(B′), and z ∈ Vi(B′) if tz �∈ E(B′) (by maximality of B′).

Let u, v ∈ N(w) − {x}. See Figure 6. Note that {t′, w′} and {u, v} need not be disjoint.
Define

B :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B′ − tz) + (A − {wx}), if tz ∈ E(B′) and {u, v} ⊆ Vi(B′);
(B′ − tz) + A, if tz ∈ E(B′) and {u, v} ⊆ V3−i(B′);
(B′ − tz) + (A − {wu}), if tz ∈ E(B′), u ∈ Vi(B′) and v ∈ V3−i(B′);
(B′ − tz) + (A − {wv}), if tz ∈ E(B′), u ∈ V3−i(B′) and v ∈ Vi(B′);
B′ + (A − {xt}), if tz /∈ E(B′) and {u, v} ⊆ Vi(B′);
B′ + (A − {yz}), if tz /∈ E(B′) and {u, v} ⊆ V3−i(B′);
B′ + (A − {wu, yz}), if tz /∈ E(B′), u ∈ Vi(B′) and v ∈ V3−i(B′);
B′ + (A − {wv, yz}), if tz /∈ E(B′), u ∈ V3−i(B′) and v ∈ Vi(B′).

It is straightforward to verify that B is a bipartite subgraph of G. Moreover, ε(B) = ε(B′) + 4,
or ε(B) = ε(B′) + 5. We claim that

(3) for any B′ ∈ B(G′), ε(B) = ε(B′) + 4; and b(G′) = 4
5 .

For otherwise, ε(B) = ε(B′) + 5, or b(G′) > 4
5 . If the former occurs, then ε(B) = ε(B′) + 5 ≥

4
5 (ε(G) − 5) + 5 > 4

5ε(G), contradicting the assumption that b(G) = 4
5 . Now assume b(G′) > 4

5 .
Then ε(B) ≥ ε(B′) + 4 > 4

5(ε(G) − 5) + 4 = 4
5ε(G), which implies b(G) > 4

5 , a contradiction.

By (3) and by the definition of B above,

(4) for any B′ ∈ B(G′) and for any i ∈ {1, 2}, {u, v, z} �⊆ Vi(B′), and {u, v} �⊆ V3−i(B′) or
{t, z} �⊆ Vi(B′).

Since b(G′) = 4
5 and G′ is connected, it follows from Lemma 2.1 that G′ is 2-connected. So u

and v must be 2-vertices in G′. Since G is triangle-free, uv /∈ E(G′). Because z is a 3-vertex in
G and since zw /∈ E(G) and tz ∈ E(G′), z is also a 3-vertex in G′. To summarize, we have

(5) u and v are 2-vertices in G′, uv /∈ E(G′), tz ∈ E(G′), and z is a 3-vertex in G′.
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x7

x6 x8

x5

x1
x2

x3 x4

Figure 7: G′ = F2.

Since G′ has a 2-vertex, G′ /∈ {F6, F7}. Note that G′ �= F1 since z is a 3-vertex of G′. So
if G′ /∈ {F2, F3, F4, F5}, then (i) holds. Therefore, we may assume G′ ∈ {F2, F3, F4, F5}; and we
have four cases to consider.

Case 1. G′ = F2.
See Figure 7, where the vertices of G′ are labeled as x1, . . . , x8. By (5) and by symmetry, we

may assume that u = x1 and v = x3. Again by (5), z ∈ {x5, x6, x7, x8}. Define bipartite subgraph
B′ of G′ as follows.

B′ :=

⎧⎨
⎩

G′ − {x6x7, x5x8}, if z ∈ {x5, x8};
G′ − {x6x3, x5x2}, if z = x6;
G′ − {x7x1, x4x8}, if z = x7.

Then B′ ∈ B(G′) and {u, v, z} ⊆ Vi(B′) for some i ∈ {1, 2}, contradicting (4).
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Figure 8: G′ = F3

Case 2. G′ = F3.
See Figure 8, where the vertices of G′ are labeled as x1, . . . , x8. Suppose t is a 3-vertex in

G. Then t is a 3-vertex in G′. Let B′ := G′ − {x5x7, x6x8}. Now B′ ∈ B(G′) with V1(B′) =
{x1, x2, x3, x4} and V2(B′) = {x5, x6, x7, x8}. It follows from (5) that {u, v} ⊆ V1(B′) and {t, z} ⊆
V2(B′), contradicting (4). So we assume t is a 2-vertex in G. Then t is also a 2-vertex in G′.

By (5) and symmetry we may assume that {u, v} = {x1, x2} or {u, v} = {x1, x3}.
Suppose {u, v} = {x1, x2}. Then z �= x6, since t is a 2-vertex in G′ and tz ∈ E(G′). De-

fine B′ := G′ − {x1x7, x3x5}. Then B′ ∈ B(G′), with V1(B′) = {x1, x2, x7, x8} and V2(B′) =
{x3, x4, x5, x6}. So {u, v, z} ⊆ V1(B′) when z ∈ {x7, x8}, and {u, v} ⊆ V1(B′) and {t, z} ⊆ V2(B′)
when z = x5 (in which case, t = x3). This contradicts (4).

So {u, v} = {x1, x3}. Define

B′ :=
{

G′ − {x1x7, x3x8}, if z ∈ {x7, x8};
G′ − {x1x6, x3x5}, if z ∈ {x5, x6}.

8



Then B′ ∈ B(G′) and {u, v, z} ⊆ Vi(B′) for some i ∈ {1, 2}, contradicting (4).
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Figure 9: G′ = F4

Case 3. G′ = F4.
See Figure 9, where the vertices of G′ are labeled as x1, . . . , x11. By (5) and by symmetry, we

may assume u = x1 and v = x10. Also by (5), z /∈ {x1, x8, x10}. We define a bipartite subgraph
B′ of G′ as follows.

B′ :=

⎧⎨
⎩

G′ − {x3x9, x4x5, x6x7}, if z ∈ {x3, x6, x7, x9};
G′ − {x1x5, x7x8, x10x11}, if z ∈ {x5, x11};
G′ − {x1x2, x4x10, x7x8}, if z ∈ {x2, x4}.

Then, B′ ∈ B(G′), and {u, v, z} ⊆ Vi(B′) for some i ∈ {1, 2}, contradicting (4).
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Figure 10: G′ = F5

Case 4. G′ = F5.
See Figure 10, where the vertices of G′ are labeled as x1, . . . , x14. By (5), {u, v} = {x1, x14},

and z /∈ {x1, x14}. Define a bipartite subgraph B′ of G′ as follows.

B′ :=

⎧⎪⎪⎨
⎪⎪⎩

G′ − {x2x7, x3x4, x6x12, x10x14}, if z ∈ {x3, x4, x6, x8, x10, x12};
G′ − {x2x3, x4x11, x6x7, x13x14}, if z ∈ {x7, x9, x11, x13};
G′ − {x1x2, x3x9, x6x12, x10x14}, if z = x2;
G′ − {x1x5, x3x9, x6x12, x13x14}, if z = x5.

Then B′ ∈ B(G′), and {u, v, z} ⊆ Vi(B′) for some i ∈ {1, 2}. This contradicts (4).

3 The graph F2

We show in this section that F1 and F2 are the only graphs in G that have bipartite density 4
5

and contain two adjacent 2-vertices.
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Suppose that G ∈ G and b(G) = 4
5 , and assume that G �= F1. By Lemma 2.1, G is 2-connected.

Let u, v be two adjacent 2-vertices in G, x ∈ N(u) − {v}, and y ∈ N(v) − {u}. By Lemma 2.3,
both x and y are 3-vertices. Let N(x)−{u} = {x1, x2} and N(y)−{v} = {y1, y2}. See Figure 11.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

u v yx

y1

y2

x1

x2

Figure 11: Adjacent 2-vertices and their neighbors.

Lemma 3.1 xy /∈ E(G).

Proof. Otherwise, we may assume by symmetry that y = x2 and x = y2. Let A := A(u, v, x, y).
Then G − A is subcubic and triangle-free, and ε(G − A) = ε(G) − 6. Since G is 2-connected,
G − A must be connected. So G − A ∈ G. Let B′ ∈ B(G − A). Then by Theorem 1.1,
ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 6). Clearly, B := B′ + (A − {yy1}) is a bipartite subgraph of G,

and ε(B) = ε(B′) + 5 ≥ 4
5(ε(G) − 6) + 5 > 4

5ε(G). This implies b(G) > 4
5 , a contradiction.

Lemma 3.2 {x1, x2} ∩ {y1, y2} �= ∅.
Proof. Suppose {x1, x2} ∩ {y1, y2} = ∅. Let A := A(u, v). Then G′ := (G − A) + xy is subcubic
and triangle-free. Since G is 2-connected, G′ must be connected. So G′ ∈ G′. Note that ε(G′) =
ε(G) − 2. Let B′ ∈ B(G′). Then by Theorem 1.1, ε(B′) ≥ 4

5ε(G′) = 4
5 (ε(G) − 2). Define

B =
{

(B′ − xy) + A, if xy ∈ E(B′);
B′ + (A − {uv}), if xy /∈ E(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 2 ≥ 4
5 (ε(G) − 2) + 2 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.

By symmetry, we may assume that x1 = y1, which must be a 3-vertex in G (by Lemma 2.4).
So let t be the neighbor of x1 other than x and y. Since G is triangle-free, t �= x2 and t �= y2.

Lemma 3.3 If x2 = y2 then G = F2.

Proof. Suppose x2 = y2. See Figure 12. Recall that we assume x1 = y1. Since G is 2-connected
and x1 is a 3-vertex, x2 is a 3-vertex. We proceed to prove that G = F2. Since G is triangle-
free, x1x2 �∈ E(G). Let s be the neighbor of x2 other than x and y. If s = t then, since G
is 2-connected, s must be a 2-vertex in G; and in this case G − uv is bipartite, which implies
b(G) > 4

5 , a contradiction. Therefore, s �= t.
First, we assume st /∈ E(G). Let A := A(u, v, x, y, x1, x2), and let G′ := (G−A) + {q, sq, qt},

where q is a new vertex (not in G). Then G′ ∈ G and ε(G′) = ε(G)− 7. Let B′ ∈ B(G′). Then by
Theorem 1.1, ε(B′) ≥ 4

5ε(G′) = 4
5(ε(G)−7). By the maximality of B′, at least one of qs and qt is

in E(B′). So we may assume that qs ∈ E(B′) and s ∈ V1(B′). Note that t ∈ V2(B′) if qt �∈ E(B′)
(by maximality of B′), and t ∈ V1(B′) if qt ∈ E(B′). Define

B :=
{

(B′ − qs) + (A − {uv, tx1}), if qt /∈ E(B′);
(B′ − q) + (A − {uv}), otherwise.

10
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Figure 12: x1 = y1 and x2 = y2.

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 6 ≥ 4
5 (ε(G) − 7) + 6 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.
Therefore, st ∈ E(G). If both s and t are 2-vertices in G, then G = F2. So we may assume

one of {s, t} is a 3-vertex. Then, since G is 2-connected, both s and t are 3-vertices in G. Let
s′, t′ be the neighbors of s, t, respectively, not contained in {x1, x2, s, t}.

Let A′ := A(u, v, x, y, x1, x2, s, t). Then G−A′ is subcubic and triangle-free, and ε(G−A′) =
ε(G)−12. Since G is 2-connected, G−A′ must be connected. So G−A′ ∈ G. Let B′ ∈ B(G−A′).
By Theorem 1.1, ε(B′) ≥ 4

5ε(G − A′) = 4
5 (ε(G) − 12). Define

B :=
{

B′ + (A − {uv, st}), if {s′, t′} ⊆ Vi(B′) for some i ∈ {1, 2};
B′ + (A − {uv, tx1}), otherwise.

Then B is a bipartite subgraph of G, and ε(B) = ε(B′)+10 ≥ 4
5(ε(G)−12)+10 > 4

5ε(G). Hence
b(G) > 4

5 , a contradiction.
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Figure 13: x1 = y1 and x2 �= y2.

Therefore, we may assume x2 �= y2. See Figure 13.

Lemma 3.4 N(x2) ∩ N(y2) �= ∅.
Proof. Suppose N(x2) ∩ N(y2) = ∅. Let A := A(u, v, x, y, x1) and G′ := (G − A) + x2y2. Then
G′ is subcubic and triangle-free, and ε(G′) = ε(G) − 7. Since G is 2-connected, G′ is connected.
So G′ ∈ G. Let B′ ∈ B(G′). Then by Theorem 1.1, ε(B′) ≥ 4

5ε(G′) = 4
5 (ε(G) − 7). Without loss

of generality, we may assume x2 ∈ V1(B′). Then y2 ∈ V2(B′) if x2y2 ∈ E(B′), and y2 ∈ V1(B′) if
x2y2 �∈ E(B′) (by maximality of B′). Define

B :=

⎧⎨
⎩

(B′ − x2y2) + (A − {xx1}), if x2y2 ∈ E(B′) and t ∈ V1(B′);
(B′ − x2y2) + (A − {yx1}), if x2y2 ∈ E(B′) and t ∈ V2(B′);
B′ + (A − {uv, tx1}), otherwise.

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 6 ≥ 4
5(ε(G) − 7) + 6 > 4

5ε(G). This
implies b(G) > 4

5 , a contradiction.

11



Lemma 3.5 N(x2) ∩ N(t) �= ∅ �= N(y2) ∩ N(t).

Proof. Suppose otherwise. By symmetry, we may assume N(x2) ∩ N(t) = ∅. Let A :=
A(u, v, x, y, x1) and G′ := (G − A) + tx2. Then G′ is subcubic and triangle-free, and ε(G′) =
ε(G) − 7. Since G is 2-connected, G′ is connected. So G′ ∈ G. Let B′ ∈ B(G′). By Theorem 1.1,
ε(B′) ≥ 4

5ε(G′) = 4
5 (ε(G) − 7). Without loss of generality, we may assume x2 ∈ V1(B′). Then

t ∈ V2(B′) if tx2 ∈ E(B′), and t ∈ V1(B′) if tx2 �∈ E(B′) (by maximality of B′). Define

B :=

⎧⎨
⎩

(B′ − tx2) + (A − {uv}), if tx2 ∈ E(B′) and y2 ∈ V1(B′);
(B′ − tx2) + (A − {yx1}), if tx2 ∈ E(B′) and y2 ∈ V2(B′);
B′ + (A − {yy2, xx1}), if tx2 /∈ E(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 6 > 4
5ε(G). This implies b(G) > 4

5 , a
contradiction.

Lemma 3.6 No vertex of G is adjacent to all of {x2, y2, t}.
Proof. Otherwise, let w be a vertex of G such that N(w) = {x2, y2, t}. By Lemma 2.4, both x2

and y2 are 3-vertices of G. Let s1 ∈ N(x2) − {w, x} and s2 ∈ N(y2) − {w, y}. See Figure 14.
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Figure 14: N(w) = {x2, y2, t}.

Let A := A(u, v, x, y, x1, x2, y2, t, w). Then G − A is subcubic and triangle-free, ε(G − A) =
ε(G) − 13 when t is a 2-vertex of G, and ε(G − A) = ε(G) − 14 when t is a 3-vertex of G. Since
G is 2-connected, G − A must be connected. So G − A ∈ G. Let B′ ∈ B(G − A). Then by
Theorem 1.1, ε(B′) ≥ 4

5ε(G − A). Without loss of generality, we may assume s1 ∈ V1(B′).
Suppose that t is a 2-vertex of G. Define

B :=
{

B′ + (A − {xx2, x1y}), if s2 ∈ V1(B′);
B′ + (A − {wx2, x1y}), if s2 ∈ V2(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 11 ≥ 4
5(ε(G) − 13) + 11 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.
Hence t is a 3-vertex of G, and let s3 ∈ N(t) − {w, x1}. Define

B :=

⎧⎪⎪⎨
⎪⎪⎩

B′ + (A − {xx1, yy2}), if {s2, s3} ⊆ V1(B′);
B′ + (A − {x1y, x2w}), if {s2, s3} ⊆ V2(B′);
B′ + (A − {wt, uv}), if s2 ∈ V1(B′) and s3 ∈ V2(B′);
B′ + (A − {xx1, wy2}), if s2 ∈ V2(B′) and s3 ∈ V1(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′)+12 ≥ 4
5(ε(G)−14)+12 > 4

5ε(G). Again
b(G) > 4

5 , a contradiction.

12



By Lemmas 3.4 and 3.5, let w1 ∈ N(t)∩N(x2), w2 ∈ N(x2)∩N(y2), and w3 ∈ N(y2)∩N(t).
By Lemma 3.6, w1, w2, w3 are pairwise distinct. This, in particular, implies that x2, y2, t are
3-vertices of G. If none of {w1, w2, w3} is a 3-vertex of G, then ε(G) = 14 and G−{xx1, yy2} is a
bipartite subgraph of G, which implies b(G) > 4

5 , a contradiction. Hence, since G is 2-connected,
at least two of {w1, w2, w3} are 3-vertices of G.

Let A := A(u, v, x, y, x1, x2, y2, t, w1, w2, w3). Then G−A is subcubic and triangle-free, ε(G−
A) = ε(G) − 16 when one of {w1, w2, w3} is a 2-vertex, and ε(G − A) = ε(G) − 17 when all of
{w1, w2, w3} are 3-vertices. Since G is 2-connected, G − A is connected. So G − A ∈ G. Let
B′ ∈ B(G − A). Then by Theorem 1.1, ε(B′) ≥ 4

5ε(G − A). For each i ∈ {1, 2, 3}, if wi is a
3-vertex then let si be the neighbor of wi not contained in A.

Suppose exactly one of {w1, w2, w3} is a 2-vertex. Then ε(G′) = ε(G) − 16. Define

B :=
{

B′ + (A − {xx1, yy2, w2s2}), if w1 or w3 is a 2-vertex;
B′ + (A − {xx1, yy2, w3s3}), if w2 is a 2-vertex.

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 13 ≥ 4
5(ε(G) − 16) + 13 > 4

5ε(G).
However, this implies b(G) > 4

5 , a contradiction.
Therefore, w1, w2, w3 are all 3-vertices in G. Then, ε(G′) = ε(G) − 17. Without loss of

generality, we may assume that s1 ∈ V1(B′). Define

B :=

⎧⎨
⎩

B′ + (A − {xx1, yy2, w3s3}), if s2 ∈ V1(B′);
B′ + (A − {xx1, yy2, w2s2}), if s3 ∈ V1(B′);
B′ + (A − {xx1, yy2, w1s1}), if {s2, s3} ⊆ V2(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′)+14 ≥ 4
5 (ε(G)−17)+14 > 4

5ε(G). Again,
b(G) > 4

5 , a contradiction.

Summarizing the above lemmas, we have

Lemma 3.7 If G contains two adjacent 2-vertices, then G ∈ {F1, F2}.

4 The graph F3

In this section, we show that if G ∈ G, b(G) = 4
5 , and some 3-vertex of G is adjacent to two

2-vertices, then G = F3, or there exists G′ ∈ G such that b(G′) = 4
5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and

|V (G′)| < |V (G)|.
Let G ∈ G and b(G) = 4

5 . Then G is 2-connected (by Lemma 2.1). Let x be a 3-vertex of
G with N(x) = {u, v, y}, and assume that both u and v are 2-vertices in G. Let u1, v1 be the
neighbors of u, v, respectively, other than x. Since G is triangle-free, y /∈ {u1, v1}. See Figure 15.
By Lemma 2.4, u1, v1 and y are all 3-vertices in G.

Lemma 4.1 u1 �= v1.

Proof. Otherwise, u1 = v1. Let w ∈ N(u1) − {u, v}, and let A := A(u, v, x, u1). Then G − A is
subcubic and triangle-free, and ε(G−A) = ε(G)−6. Since G is 2-connected, G−A is connected.
So G − A ∈ G. Let B′ ∈ B(G − A). Then by Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 6).

Define

B :=
{

B′ + A, if {w, y} ⊆ Vi(B′) for some i ∈ {1, 2};
B′ + (A − {xy}), otherwise.
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Then B is a bipartite subgraph of G, and ε(B) ≥ ε(B′) + 5 ≥ 4
5(ε(G) − 6) + 5 > 4

5ε(G). Hence
b(G) > 4

5 , a contradiction.
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Figure 15: u1 �= v1.

Let N(u1) − {u} = {r1, r2}, and N(v1) − {v} = {s1, s2}. See Figure 15.

Lemma 4.2 y /∈ {r1, r2} and y ∈ N(r1) ∪ N(r2), and y /∈ {s1, s2} and y ∈ N(s1) ∪ N(s2).

Proof. Suppose the assertion of the lemma is false. By symmetry, we may assume that y ∈ {r1, r2}
or y �∈ N(r1) ∪ N(r2).

Let A := A(u, v, x, v1) and G′ = (G − A) + u1y. Then, G′ is subcubic and ε(G′) = ε(G) − 6.
Since y ∈ {r1, r2} or y �∈ N(r1) ∪ N(r2), G′ is triangle-free. Since G is 2-connected, G′ must be
connected. So G′ ∈ G. Let B′ ∈ B(G′). By Theorem 1.1, ε(B′) ≥ 4

5ε(G′) = 4
5 (ε(G)−6). Without

loss of generality, we may assume u1 ∈ V1(B′). Then y ∈ V2(B′) if u1y ∈ E(B′), and y ∈ V1(B′)
if u1y �∈ E(B′) (by maximality of B′). Define

B :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B′ − u1y) + (A − {vx}), if u1y ∈ E(B′) and {s1, s2} ⊆ Vi(B′) for some i ∈ {1, 2};
(B′ − u1y) + (A − {v1s1}), if u1y ∈ E(B′), s1 ∈ V1(B′) and s2 ∈ V2(B′);
(B′ − u1y) + (A − {v1s2}), if u1y ∈ E(B′), s1 ∈ V2(B′) and s2 ∈ V1(B′);
B′ + (A − {ux, vx}), if u1y /∈ E(B′) and {s1, s2} ⊆ Vi(B′) for some i ∈ {1, 2};
B′ + (A − {ux, v1s2}), if u1y /∈ E(B′), s1 ∈ V1(B′) and s2 ∈ V2(B′);
B′ + (A − {ux, v1s1}), if u1y �∈ E(B′), s1 ∈ V2(B′) and s2 ∈ V1(B′).

Now B is a bipartite subgraph of G, and ε(B) = ε(B′) + 5 ≥ 4
5(ε(G) − 6) + 5 > 4

5ε(G). Hence,
b(G) > 4

5 , a contradiction.

Therefore, y /∈ {r1, r2, s1, s2}, and we may assume by symmetry that y ∈ N(r1) ∩ N(s1).

Lemma 4.3 r1 �= s1.

Proof. Suppose r1 = s1. Then N(r1) = {u1, v1, y}. Since G is 2-connected and because y is a
3-vertex in G (by Lemma 2.4), u1v1 �∈ E(G). See Figure 16. Let y′ ∈ N(y) − {r1, x}.
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Figure 16: r1 = s1.

Let A := A(u, v, x, y, r1, u1, v1). Then, G − A is subcubic and triangle-free, and ε(G − A) =
ε(G) − 11. Since G is 2-connected, G − A is connected. So G − A ∈ G. Let B′ ∈ B(G − A). By
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Theorem 1.1, ε(B′) ≥ 4
5ε(G−A) = 4

5 (ε(G)−11). Without loss of generality, we may assume that
r2 ∈ V1(B′). Define

B :=
{

B′ + (A − {xy, v1s2}), if y′ ∈ V1(B′);
B′ + (A − {r1y, v1s2}), if y′ ∈ V2(B′).

Clearly, B is a bipartite subgraph of G, and ε(B) = ε(B′)+9 ≥ 4
5 (ε(G)−11)+9 > 4

5ε(G). Hence,
b(G) > 4

5 , a contradiction.

Lemma 4.4 If u1v1 ∈ E(G) then G = F3.

Proof. Suppose u1v1 ∈ E(G). See Figure 17. If both r1 and s1 are 2-vertices in G, then G = F3.
So we may assume that at least one of {r1, s1} is a 3-vertex in G. Then since G is 2-connected,
both r1 and s1 are 3-vertices in G. Let r′1 ∈ N(r1) − {u1, y} and s′1 ∈ N(s1) − {v1, y}.

�� ���� �� �� ��

���� �������� ����
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Figure 17: u1v1 ∈ E(G).

Let A := A(u, v, x, y, u1, v1, r1, s1). Then G−A is subcubic and triangle-free, and ε(G−A) =
ε(G) − 12. Since G is 2-connected, G − A is connected. So G − A ∈ G. Let B′ ∈ B(G′). By
Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 12). Without loss of generality, we may assume

r′1 ∈ V1(B′). Define

B :=
{

B′ + (A − {xy, u1v1}), if s′1 ∈ V1(B′);
B′ + (A − {r1y, xv}), if s′1 ∈ V2(B′).

Then B is a bipartite subgraph of G, and ε(B) = ε(B′) + 10 ≥ 4
5 (ε(G) − 12) + 10 > 4

5ε(G).
So b(G) > 4

5 , a contradiction.

Therefore, we may assume u1v1 �∈ E(G).

Lemma 4.5 r1 �= s2 and r2 �= s1.

Proof. Otherwise, we may assume by symmetry that r2 = s1, which must be a 3-vertex in G. See
Figure 18. Then, since G is 2-connected, r1 is a 3-vertex in G. If r1 = s2 then G−xy is a bipartite
subgraph of G, which implies b(G) > 4

5 , a contradiction. So r1 �= s2. Let r′1 ∈ N(r1) − {u1, y}.
Let A := A(u, v, x, y, u1, v1, r1, s1). Then G−A is subcubic and triangle-free, and ε(G−A) =

ε(G) − 12. Since G is 2-connected, G − A is connected. So G − A ∈ G.
Let B′ ∈ B(G − A). By Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) = 4
5(ε(G) − 12). Define

B :=
{

B′ + (A − {xy, v1s2}), if {r′1, s2} ⊆ Vi(B′) for some i ∈ {1, 2};
B′ + (A − {xy}), otherwise.

Clearly, B is a bipartite subgraph of G, and ε(B) ≥ ε(B′) + 10 ≥ 4
5(ε(G) − 12) + 10 > 4

5ε(G).
Hence b(G) > 4

5 , a contradiction.
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Figure 18: r2 = s1

Lemma 4.6 At least one of {r1, s1} is a 3-vertex in G.

Proof. Suppose both r1 and s1 are 2-vertices of G. Let A := A(u, v, x, y, u1, v1, r1, s1). Note that
G − A is subcubic and triangle-free, and ε(G′) = ε(G) − 11. Since G is 2-connected, G − A is
connected. Hence G − A ∈ G. Let B′ ∈ B(G − A). By Theorem 1.1, ε(B′) ≥ 4

5ε(G − A) =
4
5 (ε(G) − 11). Define B := B′ + (A − {xy, v1s2}). Then B is a bipartite subgraph of G, and
ε(B) ≥ ε(B′) + 9 ≥ 4

5(ε(G) − 11) + 9 > 4
5ε(G). So b(G) > 4

5 , a contradiction.

By symmetry, we may assume that r1 is a 3-vertex of G. Since r2 is adjacent to neither y
nor v, N(r2) ∩ N(x) = ∅. So we derive from Lemma 2.5 (with u, u1, x, r1, r2 playing the roles of
y, x, z, w, t, respectively) that there exists G′ ∈ G such that b(G′) = 4

5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and
|V (G′)| < |V (G)|. Summarizing the lemmas above, we have the following.

Lemma 4.7 Let G ∈ G and b(G) = 4
5 , and assume that there is a 3-vertex in G that is adjacent

to two 2-vertices of G. Then one of the following holds:

(i) there exists G′ ∈ G such that b(G′) = 4
5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and |V (G′)| < |V (G)|; or

(ii) G = F3.

5 The graphs F4 and F5

In this section we show that if G ∈ G, b(G) = 4
5 , G contains a 2-vertex, and no two 2-vertices of

G are adjacent or share a common neighbor, then G ∈ {F4, F5}, or there exists G′ ∈ G such that
b(G′) = 4

5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and |V (G′)| < |V (G)|.
Let G ∈ G and b(G) = 4

5 . By Lemma 2.1, G is 2-connected. Let x ∈ V (G) be a 2-vertex and
let N(x) = {u, v}. Assume that both u and v are 3-vertices in G. Let N(u) = {x, u1, u2} and
N(v) = {x, v1, v2}. Moreover, assume u1, u2, v1, v2 are all 3-vetices in G. Then G /∈ {F1, F2, F3}.

We further assume that

(∗) there is no G′ ∈ G such that b(G′) = 4
5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and |V (G′)| < |V (G)|.

Lemma 5.1 {u1, u2} ∩ {v1, v2} = ∅, and {u1v1, u2v2} ⊆ E(G) or {u1v2, u2v1} ⊆ E(G).

Proof. Suppose {u1, u2} ∩ {v1, v2} �= ∅. By symmetry we may assume that u1 = v1. See
Figure 19(a). Since no two 2-vertices of G share a common neighbor, u1 is a 3-vertex. Let
s ∈ N(u1) − {u, v}, and let A := A(u, v, x, u1). Then G − A is subcubic and triangle-free, and
ε(G−A) = ε(G)−7. Since G is 2-connected, G−A is connected. So G−A ∈ G. Let B′ ∈ B(G−A).
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By Theorem 1.1, ε(B′) ≥ 4
5ε(G − A) = 4

5(ε(G) − 7). Without loss of generality, we may assume
s ∈ V1(B′). Define

B :=

⎧⎨
⎩

B′ + (A − {su1}), if {u2, v2} ⊆ Vi(B′) for some i ∈ {1, 2};
B′ + (A − {uu2}), if u2 ∈ V1(B′) and v2 ∈ V2(B′);
B′ + (A − {vv2}), if u2 ∈ V2(B′) and v2 ∈ V1(B′).

Then B is a bipartite subgraph of G, and ε(B) ≥ ε(B′) + 6 ≥ 4
5(ε(G) − 7) + 6 > 4

5ε(G). This
shows b(G) > 4

5 , a contradiction.
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Figure 19: x and its neighbors.

So {u1, u2} ∩ {v1, v2} = ∅. See Figure 19(b). Then u2v /∈ E(G). Suppose u1v1, u1v2 /∈ E(G).
Then N(u1) ∩ N(v) = ∅. Hence by Lemma 2.5 (with u1, u2, u, x, v as t, w, x, y, z, respectively),
we derive a contradiction to (∗). So u1v1 ∈ E(G) or u1v2 ∈ E(G). Similarly, we can show
u2v1 ∈ E(G) or u2v2 ∈ E(G); v1u1 ∈ E(G) or v1u2 ∈ E(G); and v2u1 ∈ E(G) or v2u2 ∈ E(G).
Therefore, u1v1, u2v2 ∈ E(G), or u1v2, u2v1 ∈ E(G).
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Figure 20: A 2-vertex in two 5-cycles.

We now assume that {u1v1, u2v2} ⊆ E(G); for when {u1v2, u2v1} ⊆ E(G), we simply exchange
the notation of v1 and v2. Let u′

1 ∈ N(u1) − {u, v1}, v′1 ∈ N(v1) − {v, u1}, u′
2 ∈ N(u2) − {u, v2},

and v′2 ∈ N(v2) − {v, u2}. See Figure 20.

Lemma 5.2 u1v2, u2v1 /∈ E(G).

Proof. If {u1v2, u2v1} ⊆ E(G), then ε(G) = 10 and G − ux is a bipartite subgraph of G with 9
edges, which implies b(G) > 4

5 , a contradiction. So u1v2 /∈ E(G) or v1u2 /∈ E(G). By symmetry,
we may assume u2v1 /∈ E(G). If u1v2 /∈ E(G), then the assertion of the lemma holds. So we may
assume u1v2 ∈ E(G).

Let A := A(u, u1, u2, v, v1, v2, x}. Then G − A is subcubic and triangle-free, and ε(G − A) =
ε(G)− 11. Since G is 2-connected, G−A is connected. So G−A ∈ G. Let B′ ∈ B(G−A). Then
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by Theorem 1.1, ε(B′) ≥ 4
5ε(G − A) = 4

5(ε(G) − 11). Let B := B′ + (A − {xv, v1v
′
1}). Then B

is a bipartite subgraph of G and ε(B) = ε(B′) + 9 ≥ 4
5 (ε(G) − 11) + 9 > 4

5ε(G). This, however,
implies b(G) > 4

5 , a contradiction.

Lemma 5.3 u′
1 �= u′

2 and u′
1u

′
2 ∈ E(G), and v′1 �= v′2 and v′1v

′
2 ∈ E(G).

Proof. Otherwise, we may assume by symmetry that u′
1 = u′

2 or u′
1u

′
2 �∈ E(G). Let A :=

A(u, v, u2, v2, v1, x), and let G′ := (G − A) + u1u
′
2. Then G′ is subcubic and ε(G′) = ε(G) − 10.

Since u′
1 = u′

2 or u′
1u

′
2 /∈ E(G), G′ is triangle-free. Note that G′ need not be connected; but each

component of G′ is in G.
Choose an arbitrary B′ from B(G′). By applying Theorem 1.1 to each component of G′,

ε(B′) ≥ 4
5ε(G′) = 4

5(ε(G) − 10). Note that u1 ∈ Vi(B′) for some i ∈ {1, 2}. Then u′
2 ∈ V3−i(B′)

if u1u
′
2 ∈ E(B′), and u′

2 ∈ Vi(B′) if u1u
′
2 /∈ E(B′) (by maximality of B′). Define

B :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B′ − u1u
′
2) + (A − {ux}), if u1u

′
2 ∈ E(B′) and {v′1, v′2} ⊆ Vi(B′);

(B′ − u1u
′
2) + (A − {u1v1, u2v2}), if u1u

′
2 ∈ E(B′) and {v′1, v′2} ⊆ V3−i(B′);

(B′ − u1u
′
2) + (A − {u1v1, vv2}), if u1u

′
2 ∈ E(B′), v′1 ∈ V3−i(B′) and v′2 ∈ Vi(B′);

(B′ − u1u
′
2) + (A − {u2v2, vv1}), if u1u

′
2 ∈ E(B′), v′1 ∈ Vi(B′) and v′2 ∈ V3−i(B′);

B′ + (A − {u2u
′
2, ux}), if u1u

′
2 �∈ E(B′) and {v′1, v′2} ⊆ Vi(B′);

B′ + (A − {u2u
′
2, u1v1, u2v2}), if u1u

′
2 �∈ E(B′) and {v′1, v′2} ⊆ V3−i(B′);

B′ + (A − {u2u
′
2, u1v1, vv2}), if u1u

′
2 �∈ E(B′), v′1 ∈ V3−i(B′) and v′2 ∈ Vi(B′);

B′ + (A − {u2u
′
2, u2v2, vv1}), if u1u

′
2 �∈ E(B′), v′1 ∈ Vi(B′) and v′2 ∈ V3−i(B′).

Then, B is a bipartite subgraph of G. Moreover, ε(B) = ε(B′) + 9 when {u1, v
′
1, v

′
2} ⊆ Vi(B′),

and ε(B) = ε(B′) + 8 otherwise.
We claim that b(G′) = 4

5 and, for each B′ ∈ B(G′) and for any i ∈ {1, 2}, {u1, v
′
1, v

′
2} �⊆ Vi(B′).

Suppose b(G′) > 4
5 . Then ε(B′) > 4

5ε(G′) = 4
5(ε(G) − 10). Hence ε(B) ≥ ε(B′) + 8 > 4

5(ε(G) −
10) + 8 = 4

5ε(G), which implies b(G) > 4
5 , a contradiction. Now suppose {u1, v

′
1, v

′
2} ⊆ Vi(B′) for

some i ∈ {1, 2}. Then ε(B) = ε(B′)+9. So ε(B) = ε(B′)+9 ≥ 4
5 (ε(G)−10)+9 > 4

5ε(G). Again,
b(G) > 4

5 , a contradiction.
We further claim that G′ is connected. For otherwise, since G is 2-connected, {u1, u

′
2} is

in a component of G′, say G1; and {v′1, v′2} is contained in the other component of G′, say G2.
Note that G1, G2 ∈ G. So b(Gi) = 4

5 for i = 1, 2 (by Theorem 1.1 and since b(G′) = 4
5 ). Let

B1 ∈ B(G1), and assume u1 ∈ V1(B1). Since v′1 and v′2 are not 3-vertices in G2, G2 is not cubic,
and hence G2 /∈ {F6, F7}. So by (∗), G2 ∈ {F1, F2, F3, F4, F5}. Then, since v′1, v′2 are not 3-vertices
in G2, it is easy to check that there exists B2 ∈ B(G2) such that {v′1, v′2} ⊆ V1(B2). Therefore,
B′ := B1 ∪ B2 ∈ B(G′) such that {u1, v

′
1, v

′
2} ⊆ V1(B′). But this contradicts the previous claim.

Therefore, G′ ∈ G. Since b(G′) = 4
5 , G′ must be 2-connected (by Lemma 2.1). Hence v′1 �= v′2.

Since u1 �= v′2 (by Lemma 5.2), u1, v
′
1 and v′2 are pairwise distinct, and so, are all 2-vertices in G′.

Therefore, G′ �= F5 (which has only two 2-vertices) and G′ /∈ {F6, F7} (which are cubic). Again by
(∗), G′ ∈ {F1, F2, F3, F4}. Note that since G is triangle-free, u1v

′
1 /∈ E(G). Hence, u1v

′
1 /∈ E(G′).

Case 1. G′ = F1.
Then we may label the vertices of G′ so that G′ = x1x2x3x4x5x1. Without loss of generality,

we may assume u1 = x1 and u′
2 ∈ x2. Note that u1u

′
2 /∈ E(G); otherwise, G′ would have multiple

edges.
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Suppose {v′1, v′2} = {x4, x5}. Then x3 is a 2-vertex in G (by definition of G′). Since u1u
′
2 /∈

E(G), x2 = u′
2 is a 2-vertex in G. Hence, x2, x3 are two adjacent 2-vertices in G. By Lemma 3.7,

G ∈ {F1, F2}, a contradiction (since G /∈ {F1, F2, F3}).
So {v′1, v′2} �= {x4, x5}. Then {v′1, v′2} = {x3, x5} or {v′1, v′2} = {x3, x4}. Define

B′ :=
{

G′ − x3x4, if {v′1, v′2} = {x3, x4};
G′ − x1x5, if {v′1, v′2} = {x3, x5}.

Then B′ ∈ B(G′), and {u1, v
′
1, v

′
2} ⊆ Vi(B′) for some i ∈ {1, 2}, a contradiction.

Case 2. G′ = F2.
See Figure 7, where the vertices of G′ are labeled as x1, . . . , x8. By symmetry, let v′1 = x1.
First, suppose v′1v

′
2 ∈ E(G′). Then v′2 = x2, and u1 ∈ {x3, x4}. By symmetry, we may assume

u1 = x3. Define B′ := G′ − {x1x2, x3x6}. Then B′ ∈ B(G′), and {u1, v
′
1, v

′
2} ⊆ Vi(B′) for some

i ∈ {1, 2}, a contradiction.
Now assume v′1v

′
2 /∈ E(G′). Then we may assume by symmetry that v′2 = x3. Since u1v

′
1 /∈

E(G′), u1 = x4. In this case, B′ := G′ −{x1x7, x3x4} ∈ B(G′), and {u1, v
′
1, v

′
2} ⊆ Vi(B′) for some

i ∈ {1, 2}, a contradiction.

Case 3. G′ = F3.
See Figure 8, where the vertices of G′ are labeled as x1, . . . , x8. By symmetry, we may assume

{u1, v
′
1, v

′
2} = {x1, x2, x3}. Then B′ := G′ − {x5x7, x6x8} ∈ B(G′), and {u1, v

′
1, v

′
2} ⊆ Vi(B′) for

some i ∈ {1, 2}, a contradiction.

Case 4. G′ = F4.
See Figure 9, where the vertices of G′ are labeled as x1, . . . , x11. Clearly, {u1, v

′
1, v

′
2} =

{x1, x8, x10}. Then B′ := G′ − {x1x5, x7x8, x10x11} ∈ B(G′), and {u1, v
′
1, v

′
2} ⊆ Vi(B′) for some

i ∈ {1, 2}, a contradiction.
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Figure 21: A common subgraph of F4 and F5.

Therefore, G must contain the configuration shown in Figure 21, where all vertices are distinct.

Lemma 5.4 N(u′
1) ∩ N(v′1) �= ∅ and N(u′

2) ∩ N(v′2) �= ∅.

Proof. Suppose the assertion of the lemma is false. Let us assume by symmetry that N(u′
1) ∩

N(v′1) = ∅. Let A := A(u, v, u1, v1, u2, v2, x) and G′ := (G − A) + u′
1v

′
1. Then G′ is subcubic

and ε(G′) = ε(G) − 11. Since N(u′
1) ∩ N(v′1) = ∅, G′ is triangle-free. Since G is 2-connected,

G′ is connected. So G′ ∈ G. Let B′ ∈ B(G′). By Theorem 1.1, ε(B′) ≥ 4
5ε(G′) = 4

5(ε(G) − 11).
Without loss of generality, we may assume that u′

1 ∈ V1(B′). Then v′1 ∈ V2(B′) if u′
1v

′
1 ∈ E(B′),
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and v′1 ∈ V1(B′) if u′
1v

′
1 �∈ E(B′) (by maximality of B′). Define

B :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B′ − u′
1v

′
1) + (A − {u2v2, vv1}), if u′

1v
′
1 ∈ E(B′) and {u′

2, v
′
2} ⊆ V1(B′);

(B′ − u′
1v

′
1) + (A − {u2v2, uu1}), if u′

1v
′
1 ∈ E(B′) and {u′

2, v
′
2} ⊆ V2(B′);

(B′ − u′
1v

′
1) + (A − {ux}), if u′

1v
′
1 ∈ E(B′), u′

2 ∈ V1(B′) and v′2 ∈ V2(B′);
(B′ − u′

1v
′
1) + (A − {uu1, vv2}), if u′

1v
′
1 ∈ E(B′), u′

2 ∈ V2(B′) and v′2 ∈ V1(B′);
B′ + (A − {u2v2, u1v1}), if u′

1v
′
1 �∈ E(B′) and {u′

2, v
′
2} ⊆ V1(B′);

B′ + (A − {uu1, u2v2, v1v
′
1}), if u′

1v
′
1 �∈ E(B′) and {u′

2, v
′
2} ⊆ V2(B′);

B′ + (A − {ux, v1v
′
1}), if u′

1v
′
1 �∈ E(B′), u′

2 ∈ V1(B′) and v′2 ∈ V2(B′);
B′ + (A − {ux, u1u

′
1}), if u′

1v
′
1 �∈ E(B′), u′

2 ∈ V2(B′) and v′2 ∈ V1(B′).

Then, B is a bipartite subgraph of G, and ε(B) ≥ ε(B′) + 9 ≥ 4
5(ε(G) − 11) + 9 > 4

5ε(G). So
b(G) > 4

5 , a contradiction.

Therefore, let w1 ∈ N(u′
1) ∩ N(v′1) and w2 ∈ N(u′

2) ∩ N(v′2).

Lemma 5.5 If w1 ∈ {u′
2, v

′
2}, then G = F4.

Proof. Suppose w1 ∈ {u′
2, v

′
2}. By symmetry, we assume that w1 = u′

2. In this case, u′
2v

′
1 ∈ E(G),

and so, u′
1v

′
2 /∈ E(G); for otherwise, ε(G) = 16 and G−{u1u

′
1, xv, v2v

′
2} is bipartite, which implies

b(G) > 4
5 , a contradiction. Hence w2 = v′1.

If u′
1, v

′
2 are 2-vertices in G, then G = F4. So we may assume that at least one of u′

1, v
′
2 is a 3-

vertex in G. Since G is 2-connected, both u′
1 and v′2 are 3-vertices in G. Let u′′

1 ∈ N(u′
1)−{u1, u

′
2},

and v′′2 ∈ N(v′2) − {v2, v
′
1}.

Let A := A(u, u1, u2, u
′
1, u

′
2, v, v1, v2, v

′
1, v

′
2, x). Then G − A is subcubic and triangle-free, and

ε(G − A) = ε(G) − 17. Since G is 2-connected, G − A is connected. So G − A ∈ G. Let
B′ ∈ B(G−A). By Theorem 1.1, ε(B′) ≥ 4

5ε(G−A) = 4
5(ε(G) − 17). Without loss of generality,

we assume that u′′
1 ∈ V1(B′). Define

B :=
{

B′ + (A − {uu2, vv1, u
′
2v

′
1}), if v′′2 ∈ V1(B′);

B′ + (A − {u1u
′
1, u2v2, vv1}), if v′′2 ∈ V2(B′).

Then, B is a bipartite subgraph of G, and ε(B) = ε(B′) + 14 ≥ 4
5(ε(G) − 17) + 14 > 4

5ε(G).
However, this implies b(G) > 4

5 , a contradiction.

Lemma 5.6 If w1 /∈ {u′
2, v

′
2}, G = F5.

Proof. Suppose w1 /∈ {u′
2, v

′
2}. Then w2 /∈ {u′

1, v
′
1}. If both w1 and w2 are 2-vertices in G, then

ε(G) = 18 and G − {u1u
′
1, xv, v2v

′
2} is bipartite, which shows b(G) > 4

5 , a contradiction. So
at least one of {w1, w2} is a 3-vertex in G. Then, since G is 2-connected, both w1 and w2 are
3-vertices in G. Let w′

1 ∈ N(w1)− {u′
1, v

′
1} and w′

2 ∈ N(w2) − {u′
2, v

′
2}. If w′

1 = w′
2, then G = F5

(since G is 2-connected). So we may assume w′
1 �= w′

2.
Let A := A(u, v, u1, u2, v1, v2, u

′
1, v

′
1, u

′
2, v

′
2, w1, w2, x). Then, G − A is subcubic and triangle-

free, and ε(G− A) = ε(G) − 20. Since G is 2-connected, G−A is connected. So G−A ∈ G. Let
B′ ∈ B(G−A). By Theorem 1.1, ε(B′) ≥ 4

5ε(G−A) = 4
5(ε(G) − 20). Without loss of generality,

we assume that that w′
1 ∈ V1(B′).

Suppose ε(B′) > 4
5ε(G − A). Then B := B′ + (A − {u1u

′
1, xv, v2v

′
2, w2w

′
2}) is a bipartite

subgraph of G, and ε(B) = ε(B′) + 16 > 4
5(ε(G) − 20) + 16 = 4

5ε(G). This implies b(G) > 4
5 , a

contradiction.

20



So ε(B′) = 4
5ε(G − A). Since w′

1, w
′
2 cannot be 3-vertices in G − A, it follows from (∗) that

G − A ∈ {Fi : 1 ≤ i ≤ 5}. This implies that w′
1, w

′
2 are 2-vertices in G − A. Therefore, it is

easy to check that there exists B′′ ∈ B(G − A) such that {w′
1, w

′
2} �⊆ Vi(B′′) for any i ∈ {1, 2}.

Then, B := B′′ + (A − {u1u
′
1, xv, v2v

′
2}) is a bipartite subgraph of G, and ε(B) = ε(B′′) + 17 ≥

4
5 (ε(G) − 20) + 17 > 4

5ε(G). This shows b(G) > 4
5 , a contradiction.

Summarizing the above lemmas, we have

Lemma 5.7 Let G ∈ G with b(G) = 4
5 . Suppose G contains a 2-vertex, but no two 2-vertices of

G are adjacent or share a common neighbor. Then one of the following holds:

(i) there exists G′ ∈ G such that b(G′) = 4
5 , G′ /∈ {Fi : 1 ≤ i ≤ 7}, and |V (G′)| < |V (G)|; or

(ii) G ∈ {F4, F5}.

6 Completing the proof of Theorem 1.2

We complete the proof of Theorem 1.2. Suppose the assertion of Theorem 1.2 is false. Let G ∈ G
and b(G) = 4

5 such that

(1) G /∈ {Fi : 1 ≤ i ≤ 7}, and

(2) subject to (1), |V (G)| is minimum.

If G contains no 2-vertex, then by Theorem 1.1, G ∈ {F6, F7}, contradicting (1). So G contains
a 2-vertex.

Suppose the maximum degree of G is 2. Then by Lemma 2.2, G = F1, contradicting (1). So
G must also have a 3-vertex.

If G contains a 2-vertex whose neighbors are all 2-vertices, then by Lemma 2.3, G = F1,
contradicting (1). If G contains two adjacent 2-vertices, then by Lemma 3.7, G ∈ {F1, F2},
contradicting (1) again. If G contains two 2-vertices which share a common neighbor, then by
Lemma 4.7, we derive a contradiction to (1) or (2). Therefore, no two 2-vertices of G are adjacent
or share a common neighbor. Now by Lemma 5.7, we derive a contradiction to (1) or (2).

We conclude this paper with the following problem suggested by an anonymous referee: For
any fixed integer k > 0, is there an integer f(k) such that there are at most f(k) triangle-free
subcubic (or cubic) graphs G containing a bipartite subgraph with exactly 4

5ε(G) + k edges? If
the answer is affirmative, what is the smallest f(k)?
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