Yet another generalization of Postnikov's hook length formula for binary trees

Guo-Niu HAN
Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China
I.R.M.A. UMR 7501, Université Louis Pasteur et CNRS 7, rue René-Descartes, F-67084 Strasbourg, France
guoniu@math.u-strasbg.fr

Abstract

We discover another one-parameter generalization of Postnikov's hook length formula for binary trees. The particularity of our formula is that the hook length h_{v} appears as an exponent. As an application, another simple hook length formula for binary trees is derived when the underlying parameter takes the value $1 / 2$.

1. Introduction

Consider the set $\mathcal{B}(n)$ of all binary trees with n vertices. For each vertex v of $T \in \mathcal{B}(n)$, the hook length of v, denoted by h_{v}, or just h for short, is the number of descendants of v (including v). The hook length multi-set of T, denoted by $\mathcal{H}(T)$, is the multi-set of all hook lengths of T. The following hook length formula for binary trees

$$
\begin{equation*}
\sum_{T \in \mathcal{B}(n)} \prod_{h \in \mathcal{H}(T)}\left(1+\frac{1}{h}\right)=\frac{2^{n}}{n!}(n+1)^{n-1} \tag{1}
\end{equation*}
$$

was discovered by Postnikov [Po04]. Further combinatorial proofs and extensions have been proposed by several authors [CY08, GS06, MY07, Se08]. In particular, Lascoux conjectured the following one-parameter generalization

$$
\begin{equation*}
\sum_{T \in \mathcal{B}(n)} \prod_{h \in \mathcal{H}(T)}\left(x+\frac{1}{h}\right)=\frac{1}{(n+1)!} \prod_{k=0}^{n-1}((n+1+k) x+n+1-k) \tag{2}
\end{equation*}
$$

which was subsequently proved by Du-Liu [DL08]. The latter generalization appears to be very natural, because the left-hand side of (2) can be obtained from the left-hand side of (1) by replacing 1 by x.

It is also natural to look for an extension of (1) by introducing a new variable z in the right-hand side, namely by replacing $2^{n}(n+1)^{n-1} / n$! by $2^{n} z(n+z)^{n-1} / n$!. It so happens that the corresponding left-hand side is also a sum on binary trees, but this time the hook length h_{v} appears as an exponent. The purpose of this note is to prove the following theorem.

Theorem 1. For each positive integer n we have

$$
\begin{equation*}
\sum_{T \in \mathcal{B}(n)} \prod_{h \in \mathcal{H}(T)} \frac{(z+h)^{h-1}}{h(2 z+h-1)^{h-2}}=\frac{2^{n} z}{n!}(n+z)^{n-1} \tag{3}
\end{equation*}
$$

With $z=1$ in (3) we recover Postnikov's identity (1). The following corollary is derived from our identity (3) by taking $z=1 / 2$.
Corollary 2. For each positive integer n we have

$$
\begin{equation*}
\sum_{T \in \mathcal{B}(n)} \prod_{h \in \mathcal{H}(T)}\left(1+\frac{1}{2 h}\right)^{h-1}=\frac{(2 n+1)^{n-1}}{n!} \tag{4}
\end{equation*}
$$

2. Proof of Theorem 1

Let us take an example before proving Theorem 1. There are five binary trees with $n=3$ vertices, labeled by their hook lengths:

The hook lengths of $T_{1}, T_{2}, T_{3}, T_{4}$ are all the same $1,2,3$; but the hook lengths of T_{5} are $1,1,3$. The left-hand side of (3) is then equal to $4 \times \frac{1}{(2 z)^{-1}} \cdot \frac{(z+2)^{1}}{2} \cdot \frac{(z+3)^{2}}{3(2 z+1)}+\frac{1}{(2 z)^{-1}} \cdot \frac{1}{(2 z)^{-1}} \cdot \frac{(z+3)^{2}}{3(2 z+1)}=\frac{2^{3} z(z+3)^{2}}{3!}$.

Let $y(x)$ be a formal power series in x such that

$$
\begin{equation*}
y(x)=e^{x y(x)} \tag{5}
\end{equation*}
$$

By the Lagrange inversion formula $y(x)^{z}$ has the following explicit expansion:

$$
\begin{equation*}
y(x)^{z}=\sum_{n \geq 0} z(n+z)^{n-1} \frac{x^{n}}{n!} \tag{6}
\end{equation*}
$$

Since $y^{2 z}=\left(y^{z}\right)^{2}$ we have

$$
\begin{equation*}
\sum_{n \geq 0} 2 z(n+2 z)^{n-1} \frac{x^{n}}{n!}=\left(\sum_{n \geq 0} z(n+z)^{n-1} \frac{x^{n}}{n!}\right)^{2} \tag{7}
\end{equation*}
$$

Comparing the coefficients of x^{n} on both sides of (7) yields the following Lemma.

Lemma 3. We have

$$
\begin{equation*}
\frac{2 z(n+2 z)^{n-1}}{n!}=\sum_{k=0}^{n} \frac{z(k+z)^{k-1}}{k!} \times \frac{z(n-k+z)^{n-k-1}}{(n-k)!} . \tag{8}
\end{equation*}
$$

In fact, Lemma 3 can be obtained from Abel's celebrated generalization of the binomial formula by a simple change of variables (See [Mo70, p.12] or [Ri68, p.18]).

Proof of Theorem 1. Let

$$
P(n)=\sum_{T \in \mathcal{B}(n)} \prod_{h \in \mathcal{H}(T)} \frac{(z+h)^{h-1}}{h(2 z+h-1)^{h-2}}
$$

We show that $P(n)$ satisfies a weighted Catalan recurrence (see (9)). In fact, each binary tree T with n vertices is obtained by attaching a left tree and a right tree (with k and $n-k-1$ vertices) at the root v, which has hook length $h_{v}=n$. Hence $P(0)=1$ and

$$
\begin{equation*}
P(n)=\sum_{k=0}^{n-1} P(k) P(n-1-k) \times \frac{(z+n)^{n-1}}{n(2 z+n-1)^{n-2}} \quad(n \geq 1) \tag{9}
\end{equation*}
$$

It is routine to verify that $P(n)=2^{n} z(z+n)^{n-1} / n!$ for $n=1,2,3$. Suppose that $P(k)=2^{k} z(z+k)^{k-1} / k$! for $k \leq n-1$. From identity (9) and Lemma 3 we have

$$
\begin{aligned}
P(n)= & \sum_{k=0}^{n-1} \frac{2^{k} z(z+k)^{k-1}}{k!} \times \frac{2^{n-k-1} z(z+n-k-1)^{n-k-2}}{(n-k-1)!} \\
& \times \frac{(z+n)^{n-1}}{n(2 z+n-1)^{n-2}} \\
& =\frac{2^{n} z}{n!}(z+n)^{n-1} .
\end{aligned}
$$

By induction, formula (3) is true for any positive integer n.

3. Conclusion and Remarks

The present hook length formula was originally discovered by using the expansion technique, developed in [Ha08]. A unified formula that includes both the Lascoux-Du-Liu generalization (2) and the present generalization (3) has also been proved in [Ha08, Theorem 6.8]. In [Ya08] Yang has extended formula (3) to binomial families of trees.

The right-hand sides of (3) and (4) have been studied by other authors [GS06, DL08, MY07], but our formula has the following two major differences: (i) the hook length h_{v} appears as an exponent; (ii) the underlying set remains the set of binary trees, whereas in the above mentioned papers the summation has been changed to the set of m-ary trees or plane forests. It is interesting to compare Corollary 2 with the following results obtained by Du and Liu [DL08]. Note that the right-hand sides of formulas (4), (10) and (11) are all identical!
Proposition 4. For each positive integer n we have

$$
\begin{equation*}
\sum_{T \in \mathcal{T}(n)} \prod_{v \in I(T)}\left(\frac{2}{3}+\frac{1}{3 h_{v}}\right)=\frac{(2 n+1)^{n-1}}{n!} \tag{10}
\end{equation*}
$$

where $\mathcal{T}(n)$ is the set of all 3-ary trees with n internal vertices and $I(T)$ is the set of all internal vertices of T.

Proposition 5. For each positive integer n we have

$$
\begin{equation*}
\sum_{T \in \mathcal{F}(n)} \prod_{v \in T}\left(2-\frac{1}{h_{v}}\right)=\frac{(2 n+1)^{n-1}}{n!} \tag{11}
\end{equation*}
$$

where $\mathcal{F}(n)$ is the set of all plane forests with n vertices.
Acknowledgements. The author thanks the referee and Laura Yang who made knowledgeable remarks that have been taken into account in the final version.

References

[CY08] Chen, William Y.C.; Yang, Laura L.M., On Postnikov's hook length formula for binary trees, European Journal of Combinatorics, 29 (2008), pp. 1563-1565.
[DL08] Du, Rosena R. X.; Liu, Fu, (k, m)-Catalan Numbers and Hook Length Polynomials for Plane Trees, European J. Combin, 28 (2007), pp. 1312-1321.
[GS06] Gessel, Ira M.; Seo, Seunghyun, A refinement of Cayley's formula for trees, Electron. J. Combin., 11(2004/06), no. 2, Research Paper 27, 23 pp.
[Ha08] Han, G.-N., Discovering hook length formulas by an expansion technique, arXiv: 0805.2464 [math.CO], 42 pages, 2008.
[Mo70] Moon, J. W., Counting labelled trees, Canadian Mathematical Congress, Montreal, 1970.
[MY07] Moon, J. W.; Yang, Laura L.M., Postnikov identities and Seo's formulas, Bull. Inst. Combin. Appl., 49 (2007), pp. 21-31.
[Po04] Postnikov, Alexander, Permutohedra, associahedra, and beyond, arXiv:math. CO/0507163, 2004.
[Ri68] Riordan, John, Combinatorial identities, John Wiley \& Sons, Inc. 1968.
[Se08] Seo, Seunghyun, A combinatorial proof of Postnikov's identity and a generalized enumeration of labeled trees, Electron. J. Combin., 11(2004/06), no. 2, Note 3, 9 pp.
[Ya08] Yang, Laura L.M., Generalizations of Han's hook length identities, arXiv: 0805. 0109 [math.CO], 2008.

