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a b s t r a c t

Let D be a subset of the positive integers. The distance graph G(Z,D) has all integers as its
vertices and two vertices x and y are adjacent if and only if |x − y| ∈ D, where the set
D is called distance set. The vertex arboricity va(G) of a graph G is the minimum number
of subsets into which vertex set V(G) can be partitioned so that each subset induces an
acyclic subgraph. In this paper, the vertex arboricity of graphs G(Z,Dm,k) are studied, where
Dm,k = {1, 2, . . . ,m} \ {k}. In particular, va(G(Dm,1)) = d

m+3
4 e for any integer m ≥ 5;

va(G(Dm,2)) = d
m+1
4 e+1 form = 8l+ j ≥ 6 and j 6= 7, and d

m
4 e+1 ≤ va(G(Dm,2)) ≤ d

m
4 e+2

for m = 8l + 7.
© 2008 Published by Elsevier B.V.

1. Introduction 1

In this paper, R and Z denote the sets of all real numbers and all integers, respectively. For x ∈ R, bxc denotes the greatest 2

integer not exceeding x; dxe denotes the least integer not less than x; we use [m, n] for the set of the integers from m to n 3

(m ≤ n) and [m, n] = ∅ if m > n. |S| denotes the cardinality of a set S (|S| = +∞ means that S is an infinite set). 4

Coloring in graphs has been one of the most fascinating and well-studied
∧
topics in graph theory. Its root goes back to 5

the Four Color Conjecture and more recently, it was motivated by such application problems as the frequency assignment 6

problem (i.e., L(2, 1)-labeling), the control of traffic signals (i.e., circular coloring) and other problems from wide range of 7

industrial areas. A vertex-coloring (or edge-coloring) can be viewed as a function from V (or E) to Z. More precisely, a k- 8

coloring of a graph G is a mapping f from V(G) to [1, k]. Given a k-coloring, let Vi denote the set of all vertices of G colored 9

with i, and 〈Vi〉 denote the subgraph induced by Vi in G. If Vi is an independent set for every 1 ≤ i ≤ k, then f is called a 10

proper k-coloring. The chromatic number χ(G) of a graph G is the minimum integer k for which G has a proper k-coloring. If Vi 11

induces a subgraph whose connected components are trees, then f is called a tree k-coloring. The vertex arboricity of a graph 12

G, denoted by va(G), is the minimum integer k for which G has a tree k-coloring. In other words, the vertex arboricity va(G) of 13

a graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces 14

an acyclic subgraph. If Vi induces a subgraph whose connected components are paths, then f is called a path k-coloring. The 15

vertex linear arboricity of a graph G, denoted by vla(G), is the minimum number k for which G has a path k-coloring. Clearly, 16

χ(G) ≥ vla(G) ≥ va(G) for any graph G. 17

Since the introduction of vertex arboricity, it has been investigatedwidely bymany researchers for various properties and 18

its links to other graphic parameters. For instance, Kronk et al. [7] proved that va(G) ≤ d
∆(G)+1

2 e for any graph G. Catlin and 19

Lai [2] showed that when G is a graph that is neither a cycle nor a clique, va(G) ≤ d
∆(G)
2 e. Škrekovski [9] proved that locally 20
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planar graphs have the vertex arboricity at most 3 and that triangle-free locally planar graphs have the vertex arboricity at1

most 2. Jørgensen [4] studied K4,4-minor free graphs and showed that the vertex arboricity is at most 4. In this paper, we2

study the vertex arboricity of a family of infinite graphs, integer distance graphs, and determine the exact value va(G) of such3

graphs.4

Let S be a subset of all real numbers and D a set of positive real numbers. Then distance graph G(S,D) has the vertex set S5

and two real numbers x and y are adjacent if and only if |x − y| ∈ D, where the set D is called distance set. In particular, if all6

elements of D are positive integers and S = Z, the graph G(Z,D), or G(D) in short, is called integer distance graph. The distance7

graphs were introduced by Eggleton et al. [3] in 1985 to study the chromatic number. They proved that χ(G(R,D)) = n + 2,8

where D is an interval between 1 and δ, and n satisfies 1 ≤ n < δ ≤ n + 1. They also partially determined the values of9

χ(G(Dm,k)), where Dm,k = [1,m] \ {k}. The complete solution to χ(G(Dm,k)) is provided by Chang, Liu and Zhu in [1]. In [11,12],10

Zuo et al. examined the vertex linear arboricity of the distance graph G(R,D)with an intervalD and the integer distance graph11

G(Dm,k), respectively. In [13], Zuo, Yu andWu studied that the vertex arboricity of the distance graph G(R,D)with an interval12

D. The interested reader is referred to [3,5,6,8,10–13] for more details. More recently, integer distance graphs have found13

applications in gene
∧
sequencing, sequential series, on-line computing, etc. and gained more attention for its properties.14

In this paper, we study the vertex arboricity of G(Dm,k) for Dm,k = [1,m] \ {k} and determine the exact values for k = 1, 2
∧
,15

and also provide upper and lower bounds for general k.16

2. Vertex arboricity of G(Dm,1)17

Clearly, va(G(D)) = 1 if |D| = 1. If |D| ≥ 2, then va(G(D)) ≥ 2 since G(D) contains a cycle with vertices a, 2a, . . . , ba, b(a −18

1), . . . , b, 0 for a, b ∈ D and a 6= b. It is obvious that va(G(D2)) ≤ va(G(D1)) if D2 ⊆ D1.19

Lemma 2.1. (1) For any finite distance set D, va(G(D)) ≤ d
|D|+1

2 e and the bound is sharp;20

(2) For any positive integer k, va(G(D)) ≤ k if there is at most one multiple of k in D.21

Proof. (1) Let k = d
|D|+1

2 e. We color the vertices of G(D) recursively with colors [1, k] as follows. First, let f (0) = 1.22

Assume that all f (j) are colored for some i and −i ≤ j ≤ i. Let A be the set of colors appearing twice in vertices of23

{j | −i ≤ j ≤ i and i + 1 − j ∈ D}. Then |A| ≤

⌊
|D|

2

⌋
and we assign f (i + 1) to any value of [1, k] \ A (in fact, we24

may choose f (i + 1) = min{t | t ∈ [1, k] \ A}). Similarly, let B be the set of colors appearing twice in vertices of25

{j | −i ≤ j ≤ i + 1 and j + i + 1 ∈ D}. Then |B| ≤

⌊
|D|

2

⌋
. So we assign f (−i − 1) to any value of [1, k] \ B (we may26

choose f (−i − 1) = min{t | t ∈ [1, k] \ B}).27

Now we see f is a tree
⌈

|D|+1
2

⌉
-coloring. Otherwise, if there is a cycle induced by the vertices receiving the same color α,28

then there exists an integer i such that f (i + 1) ∈ A or f (−i − 1) ∈ B, a contradiction. Hence, va (G(D)) ≤

⌈
|D|+1

2

⌉
.29

This bound is sharp. For example, for any positive integer m, let D = [1,m], then va(G(D)) ≤ d
m+1
2 e = d

|D|+1
2 e and thus30

va(G(D)) = d
|D|+1

2 e since vertices 0, 1, 2, . . . ,m induce a complete graph Km+1.31

(2) Let f (n) ≡ n (mod k). Then the subgraph induced by vertices in {v | f (v) = i} is a forest for each i ∈ [0, k − 1], that is, f32

is a tree coloring. Thus va(G(D)) ≤ k. �33

Let Dm,k = [1,m] \ {k} for any positive integers m, k with m > k. Before proceeding to the main results, we present a34

lemma which is handy in the proofs of later theorems.35

Lemma 2.2. For an integer distance graph G(Dm,k) and a fixed integer i, if n0 ≥ m + 2k + 1, then each of the following vertex36

subsets37

Vi = {i + sn0, i + sn0 + k, i + sn0 + 2k, i + sn0 + 3k | s ∈ Z},38

V ′

i = {i + sn0, i + sn0 + 1 | s ∈ Z},39

V ′′

i =

{
i + sn0, i + sn0 +

⌈
k

2

⌉
, i + sn0 + k | s ∈ Z

}
40

induces a forest.41

Proof. We only deal with the first set and other cases can be proved similarly.42

Clearly, the vertices i+ sn0, i+ sn0 + k, i+ sn0 + 2k, i+ sn0 + 3k induce a path for any integer s. Since n0 ≥ m+ 2k+ 1, the43

vertices i+sn0, i+sn0+k and i+sn0+2k are not adjacent to each of the vertices i+(s+1)n0, i+(s+1)n0+k, i+(s+1)n0+2k44

and i + (s + 1)n0 + 3k, and the vertex i + sn0 + 3k is not adjacent to each of the vertices i + (s + 1)n0 + k, i + (s + 1)n0 + 2k45

and i + (s + 1)n0 + 3k. Hence the lemma holds. �46

Next, we study vertex arboricity of G(Dm,k) for case k = 1.47

Theorem 2.1. For any integer m ≥ 3, va(G(Dm,1)) = d
m+3
4 e.48

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
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Fig. 1. Tree d
m+3
4 e-coloring for m = 4q + 1 ≥ 5.

Fig. 2. a3 − a0 ≤ m.

Proof. For 3 ≤ m ≤ 4, by Lemma 2.1, va(G(Dm,1)) = 2. So we assume m ≥ 5. 1

Firstly, we construct a tree coloring f in G(Dm,1) as follows. Let l = d
m+3
4 e. Define f (4t + i) = t, for 0 ≤ t < l and 0 ≤ i ≤ 3; 2

and other vertices are colored periodically, that is, f (n + 4ls) = f (n) for all n, s ∈ Z. By Lemma 2.2, 3

Vt = ∪k∈Z[4kl + 4t, 4kl + 4t + 3] 4

induces an acyclic subgraph for each 0 ≤ t < l. Thus f is a tree coloring of G(Dm,1) and va(G(Dm,1)) ≤ d
m+3
4 e (see Fig. 1). 5

Secondly, we show that va(G(Dm,1)) ≥ d
m+3
4 e. Assume, to the contrary, G(Dm,1) has a tree d

m−1
4 e-coloring f . Let H be a 6

subgraph of G(Dm,1) induced by vertices [0,m+ 2]. Then f is also a tree d
m−1
4 e-coloring of H. Note that |V(H)| = m+ 3. There 7

are at least five vertices in H, say 0 ≤ a0 < a1 < · · · < a4 ≤ m + 2, receiving the same color α. 8

Claim 1. If a3 − a0 ≤ m, then a3 = a2 + 1 = a1 + 2 = a0 + 3. 9

Clearly, a0a2, a0a3, a1a3 ∈ E(H) in this case. If a1 − a0 > 1, then a0a1 ∈ E(H) and a0, a1, a3 induce a triangle (see Fig. 2), a 10

contradiction. So a1 − a0 = 1. If a2 − a1 > 1, then a1a2 ∈ E(H), so a0, a2, a1, a3 induce a cycle of length 4, a contradiction. 11

Hence a2 − a1 = 1. It is similar to see that a3 − a2 = 1. 12

Claim 2.min{a3 − a0, a4 − a1} > m. 13

If a3 − a0 ≤ m, by Claim 1, then a3 = a2 + 1 = a1 + 2 = a0 + 3, and a0a2, a0a3, a1a3 ∈ E(H). Since a4 ≤ m + 2 and 14

a2 ≥ 2, we have a2a4 ∈ E(H). So a1a4 6∈ E(H) (otherwise, a0, a3, a1, a4, a2 form a cycle of length 5, a contradiction), that is, 15

a4−a1 = m+1, a4 = m+2, a1 = 1, a3 = 3. Thus, a3a4 ∈ E(H) and then a0, a2, a3, a4 induce a cycle of length 4, a contradiction. 16

Therefore a3 − a0 > m. Similarly, a4 − a1 > m. 17

Claim 3. a0 = 0, a1 = 1, a3 = m + 1, a4 = m + 2 and a2 ∈ {2,m}. 18

It is clear that a0 = 0, a1 = 1, a3 = m+1, a4 = m+2 and a1a3 ∈ E(H) by Claim 2. Next, we see that a2 ∈ {2,m}. Otherwise, 19

if 2 < a2 < m, then a1a2, a2a3 ∈ E(H) and thus a1, a2, a3 induce a triangle, a contradiction. 20

Without loss of generality, assume that a2 = 2. 21

Claim 4. m ≡ 2 (mod4). 22

Otherwise, we have m + 3 6≡ 1 (mod4) and then there exists another color β used on five vertices 3 ≤ b0 < b1 < · · · < 23

b4 ≤ m. Thus b0b2, b2b4, b0b4 ∈ E(H), i.e., b0, b2, b4 induce a triangle, a contradiction. 24

The last claim implies that except α, any other color is used on only four vertices in H, and these four vertices must be 25

consecutive. That is, vertices 3, 4, 5 and 6 receive one color, vertices 7, 8, 9 and 10 receive another color and so on. 26

Nowwe analyze the coloring of vertexm+4 of G(Dm,1). Suppose f (m+4) = β 6= α, then there exists l, where 3 ≤ l ≤ m−3, 27

such that f (l) = f (l+ 1) = f (l+ 2) = f (l+ 3) = β. Sincem+ 4 and l are both adjacent to l+ 2, l+ 3, we see that l, l+ 2, l+ 3 28

and m + 4 induce a 4-cycle, a contradiction. So f (m + 4) = α. But, then vertices 2,m + 1,m + 4 and m + 2 induce a cycle of 29

length 4, a contradiction again. 30

Therefore va(G(Dm,1)) ≥ d
m+3
4 e. � 31

Next, we present an algorithm for finding a tree coloring of G(Dm,1). 32

If m = 2, assign 0 to all vertices; if 3 ≤ m ≤ 4, assign 0 to vertices x, where x (mod8) ∈ [0, 3] and assign 1 to vertices y, 33

where y (mod8) ∈ [4, 7]. For m ≥ 5 and l = d
m+3
4 e, we have the following algorithm. 34

Algorithm. A(m, 1). For a vertex x, if x = 4t+ r for 0 ≤ t < l and 0 ≤ r < 4, then x is colored with t (i.e., f (x) = t); otherwise, 35

x = 4ls + x′ for some 0 ≤ x′ < 4l and s ∈ Z, then x is colored with f (x′). Continue this process until every vertex receives a 36

color. 37

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
doi:10.1016/j.disc.2008.03.009
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3. Vertex arboricity of G(Dm,2)1

In this section, we study va(G(Dm,k)) for the case k = 2. From Lemma 2.1, we have va(G(D3,2)) = va(G(D4,2)) =2

va(G(D5,2)) = 2. So we assume m ≥ 6.3

We summarize the basic tactics used in the proof of the main result as three lemmas.4

Lemma 3.1. Suppose there are three vertices b1 < b2 < b3 (bi ∈ Z, i = 1, 2, 3) receiving the same color in G(Dm,2).5

(1) if there is a (b1, b2)-path in G(Dm,2), then b3 ∈ {b1 + 2, b2 + 2} or b3 ≥ b1 + (m + 1);6

(2) if there is a (b1, b3)-path in G(Dm,2) and b3 − b1 ≤ m, then b2 ∈ {b1 + 2, b3 − 2};7

(3) if there is a (b2, b3)-path in G(Dm,2), then b1 ∈ {b2 − 2, b3 − 2} or b1 ≤ b3 − (m + 1).8

Proof. (1) Otherwise, if b3 6∈ {b1 + 2, b2 + 2} and b3 − b1 ≤ m, then b1b3, b2b3 ∈ E(H) and thus (b1, b2)-path and two edges9

b1b3, b2b3 form a cycle, a contradiction.10

(2) and (3) can be proved similarly. �11

Lemma 3.2. Let H1 and H2 be subgraphs of G(D) induced by vertices [c, l] (c < l, c, l ∈ Z) and vertices [c+ s, l+ s] (for any s ∈ Z),12

respectively. Then H1 has a tree n-coloring if and only if H2 has a tree n-coloring.13

Proof. Since ij ∈ E(H1) (i, j ∈ [c, l]) if and only if (s + i)(s + j) ∈ E(H2), H1 and H2 are isomorphic and the conclusion follows.14

�15

For the convenience of arguments, we introduce a new term. If four vertices v, v + 2, v + 4, v + 6 receive a color β, then16

such a set {v, v + 2, v + 4, v + 6} is called an F-type set associated with β and v and denoted by Vβv . If there is no confusion17

∧
arising, we often call it F-type set, in short.18

Lemma 3.3. If Vβv is an F-type set associated with β and v, where j0 ≤ v ≤ m − 2 for a fixed positive integer j0, then m + i 6∈ Vβv19

for any i with 5 ≤ i ≤ j0 + 4.20

Proof. Assume, to the contrary, thatm+ i ∈ Vβv for some iwith 5 ≤ i ≤ j0 +4. Since v is adjacent to v+4 and v+6, by taking21

b1 = v+4, b2 = v+6 and b3 = m+i in Lemma3.1 (1), we havem+i = (v+6)+2 orm+i ≥ v+4+(m+1) ≥ m+j0+5. However,22

m+ i ≤ m+ j0 + 4 by hypothesis, thus we havem+ i = (v+ 6)+ 2, i.e.,m+ i− (v+ 4) = 4. So v(m+ i), (v+ 4)(m+ i) ∈ E(H)23

and then vertices v, v + 4 and m + i induce a triangle, a contradiction. �24

Theorem 3.1. Let m = 8l + j ≥ 6, where 0 < j ≤ 8. Then25

va(G(Dm,2)) =

⌈
m + 1

4

⌉
+ 1 for j 6= 726

and27 ⌈
m

4

⌉
+ 1 ≤ va(G(Dm,2)) ≤

⌈
m

4

⌉
+ 2 for j = 7.28

Proof. Firstly, we show the upper bound29

va(G(Dm,2)) ≤


⌈
m + 1

4

⌉
+ 1 for j 6= 7,⌈

m

4

⌉
+ 2 for j = 7.

30

We define a tree coloring of G(Dm,2) periodically.31

For 1 ≤ j ≤ 3, let f1(8t + i) = f1(8t + i + 2) = f1(8t + i + 4) = f1(8t + i + 6) = 2t + i for 0 ≤ t ≤ l and i = 0, 1, and32

f1(n + 8(l + 1)s) = f1(n) for all n, s ∈ Z. Since each V(1)
t,i = {8(l + 1)s + 8t + i + 2r | s ∈ Z, r ∈ [0, 3]} induces a forest by33

Lemma 2.2, f1 is a tree coloring (see Fig. 3) and thus va(G(Dm,2)) ≤ 2d
m
8 e = d

m+1
4 e + 1.34

For 4 ≤ j ≤ 6, let f2(8t + i) = f2(8t + i + 2) = f2(8t + i + 4) = f2(8t + i + 6) = 2t + i for 0 ≤ t ≤ l and 0 ≤ i ≤ 1,35

f2(8(l + 1)) = f2(8(l + 1) + 1) = f2(8(l + 1) + 2) = 2(l + 1) and f2(n + 8(l + 1) + 3) = f2(n) for all n ∈ Z. Since each of36

V(2)
t,i = {(8(l + 1) + 3)s + 8t + i + 2r | s ∈ Z, r ∈ [0, 3]} and V(2)

l+1 = {(8(l + 1) + 3)s + 8(l + 1) + r | s ∈ Z, r ∈ [0, 2]} induces a37

forest by Lemma 2.2, f2 is a tree coloring and thus va(G(Dm,2)) ≤ 2d
m
8 e + 1, or va(G(Dm,2)) ≤ d

m+1
4 e + 1 for m = 8l + j with38

4 ≤ j ≤ 6.39

For 7 ≤ j ≤ 8, let f3(8t + i) = f3(8t + i + 2) = f3(8t + i + 4) = f3(8t + i + 6) = 2t + i for 0 ≤ t ≤ l + 1 and 0 ≤ i ≤ 1, and40

f3(8(l+2)s+n) = f3(n) for all n, s ∈ Z. Since each V(3)
t,i = {8(l+2)s+8t+i+2r | s ∈ Z, r ∈ [0, 3]} induces a forest by Lemma2.2,41

f3 is a tree coloring and thus va(G(Dm,2)) ≤ 2(dm
8 e + 1) = d

m
4 e + 2 for j = 7 and va(G(Dm,2)) ≤ 2(dm

8 e + 1) = d
m+1
4 e + 1 for42

j = 8.43

Hence, the upper bound is confirmed.44
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Fig. 3. Tree (dm+1
4 e + 1)-coloring for m = 8l + j(1 ≤ j ≤ 3).

Fig. 4. A tree coloring for m = 4kl + j ≥ 3k ≥ 9, k ≤ j < 2k and 0 ≤ n < 4k(l + 1) in G(Dm,k)(k ≥ 3).

Next, we show the lower bound 1

va(G(Dm,2)) ≥

⌈
m + 1

4

⌉
+ 1 for m = 4q + j ≥ 6. 2

First, we claim va(G(Dm,2)) ≥ d
m+1
4 e + 1 for m = 4q ≥ 8. 3

Assume, to the contrary, that va(G(Dm,2)) ≤ d
m+1
4 e = d

m
4 e + 1 = q + 1, then G(Dm,2) has a tree (q + 1)−coloring f . Let H 4

be a subgraph induced by vertex subset [0,m + 4]. Then f is also a tree coloring of H. Note that |V(H)| = m + 5. There exist 5

at least five vertices in H, say 0 ≤ a0 < a1 < · · · < a4 ≤ m + 4, receiving the same color α. 6

Claim 1. (1) If a0 + 2 ≤ a1 < a2 ≤ a3 − 2 and a3 − a0 ≤ m + 3, then a1 = a0 + 2 or a2 = a3 − 2; (2) if a3 − a0 ≤ m + 1, 7

then at least two equalities in {ai+1 − ai = 2 | i ∈ [0, 2]} hold; moreover, if a3 − a0 = m + 1, then exactly two equalities in 8

{ai+1 − ai = 2 | i ∈ [0, 2]} hold; (3) if a3 − a0 ≤ m, then ai+1 − ai = 2 for all i ∈ [0, 2]. 9

(1) Otherwise, if a3 −a0 ≤ m+3 but a0 +3 ≤ a1 < a2 ≤ a3 −3, then 3 ≤ a3 −a1 ≤ a3 − (a0 +3) ≤ m and thus a1a3 ∈ E(H). 10

Similarly, a0a1, a0a2, a2a3 ∈ E(H) and thus a0, a1, a2, a3 induce a 4-cycle, a contradiction. 11

(2) If ai+1 − ai 6= 2 for each i ∈ [0, 2], then a0a1, a1a2, a2a3 ∈ E(H). Thus a0a2, a1a3 6∈ E(H), i.e., a2 − a0 = a3 − a1 = 2, and 12

it implies that a3 − a0 = 3 and a0a3 ∈ E(H). Hence a0, a1, a2, a3 induce a 4-cycle, a contradiction. 13

Suppose that only one equality in {ai+1 − ai = 2 | i ∈ [0, 2]} holds. If a1 − a0 = 2, then a2 − a1 6= 2, a3 − a2 6= 2 and 14

a1a2, a2a3 ∈ E(H). Moreover, a3 − a1 = (a3 − a0) − (a1 − a0) ≤ m − 1 and then a1a3 ∈ E(H), thus a1, a2, a3 induce a triangle; 15

similarly, if a3 − a2 = 2, then a0, a1, a2 induce a triangle; if a2 − a1 = 2, then a0, a1, a3, a2 induce a 4-cycle. Hence at least two 16

equalities hold. 17

Moreover, suppose a3 − a0 = m+ 1. If all three equalities hold, then a3 − a0 = 6 = m+ 1 which contradictsm ≥ 8. Hence 18

exactly two equalities in {ai+1 − ai = 2 | i ∈ [0, 2]} hold. 19

(3) From (2), at least two equalities in {ai+1 −ai = 2 | i ∈ [0, 2]} hold. Without loss of generality, say a3 −a2 = a1 −a0 = 2, 20

then a0a3, a0a2, a1a3 ∈ E(H), so a1a2 6∈ E(H), that is, a2 − a1 = 2. 21

Claim 2.min{a3 − a0, a4 − a1} > m. 22

We need only to show that a3 − a0 > m and a4 − a1 > m. Assume, to the contrary, that a3 − a0 ≤ m, then 23

a3 = a2 + 2 = a1 + 4 = a0 + 6 by Claim 1(3), and thus there is a (a2, a3)-path in H. By taking bi = ai+1 (i = 1, 2, 3) in 24

Lemma 3.1(1), we have a4 ≥ a2 + (m + 1) = a0 + (m + 5) ≥ m + 5, or a4 = a3 + 2 and thus a0, a2, a4, a1, a3 induce a 5-cycle, 25

a contradiction. Similarly, we can show that a4 − a1 > m. 26

As a consequence of Claim 2, the range of some ai’s location on the integer axis can be determined, e.g., 0 ≤ a0 ≤ 27

a3 − (m + 1) ≤ 2 or a0 ∈ [0, 2], m + 1 ≤ a0 + (m + 1) ≤ a3 ≤ m + 3 or a3 ∈ [m + 1,m + 3] and similarly a1 ∈ [1, 3], 28

a4 ∈ [m + 2,m + 4]. The following claim further restricts the range of their locations. 29

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
doi:10.1016/j.disc.2008.03.009
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Claim 3. (1) a0 ∈ {0, 1}, a4 ∈ {m + 3,m + 4}; (2) a1 − a0, a4 − a3 ∈ {1, 2}; (3) if a4 = m + 3, then a0 = 0.1

(1) Suppose a0 = 2, then a1 = 3, a3 = m + 3 and a4 = m + 4 by Claim 2. Since a1a3 ∈ E(H), a2 = 5 or m + 1 by2

taking bi = ai (i = 1, 2, 3) in Lemma 3.1(2), then a0a2, a2a4 ∈ E(H), and thus a0, a1, a2, a3, a4 form a 5-cycle, a contradiction.3

Similarly, a4 ∈ {m + 3,m + 4}.4

(2) By Claim 2, a1 − a0 ∈ [1, 3]. If a1 − a0 = 3, then a0 = 0, a1 = 3 and thus a4 = m+ 4. Since a3 ∈ [m+ 1,m+ 3], we have5

a1a3 ∈ E(H). Hence a2 = a1 −2 = 5 or a2 = a3 −2 ∈ [m−1,m+1] by Lemma 3.1(2), and a2a4 ∈ E(H). Since either a1a2 ∈ E(H)6

or a2a3 ∈ E(H), there is always a (a3, a4)-path and so we have a3a4 6∈ E(H), i.e., a3 = a4 − 2 = m+ 2. Hence a0, a1, a2 induce a7

triangle when a2 = m and a0, a1, a3, a2 induce a 4-cycle when a2 = 5, a contradiction. Similarly, a4 − a3 ∈ {1, 2}.8

(3) If a4 = m + 3, then a1 ≤ 2 by Claim 2. If a0 = 1, then a1 = 2 and a3 = m + 2. Since a0a1 ∈ E(H), a2 = 3 or 4 by taking9

bi = ai−1 (i = 1, 2, 3) in Lemma 3.1(3) and so a2, a3, a4 induce a triangle, a contradiction. We conclude a0 = 0.10

Claim 4. There are at most five vertices receiving the color α in H.11

Suppose, to the contrary, that the color α is used on six vertices 0 ≤ a0 < a1 < · · · < a5 ≤ m+4 in H. By Claim 2, it yields12

a5−a2 > m, a4−a1 > m and a3−a0 > m, and so a3 ∈ {m+1,m+2}, a4 ∈ {m+2,m+3}, a5 ∈ {m+3,m+4}, a0 ∈ {0, 1}, a1 ∈13

{1, 2} and a2 ∈ {2, 3}. Moreover, a2a3 ∈ E(H) since 6 ≤ a3 − a2 ≤ m. By Lemma 3.1(3), then a1 = 1 (otherwise, if a1 = 2, then14

a1a2, a1a3 ∈ E(H) and a1, a2, a3 induce a triangle) and a3 = m + 2 (otherwise, if a3 = m + 1, then a1a3 ∈ E(H) and a2 = 3, so15

a0, a1, a3, a2 induce a 4-cycle). Hence, a0 = 0, a4 = m+3, a5 = m+4 and a0a1, a4a5, a3a4 ∈ E(H). We also see a2 = 2 by taking16

bi = ai+1 (i = 1, 2, 3) in Lemma 3.1(3). For the remaining m − 1 vertices 3, 4, . . . ,m + 1 in H, there are q − 1 colors in which17

each color β induces an F-type set Vβv (v ≥ 3) plus one more color γ is used on three vertices 3 ≤ h1 < h2 < h3 ≤ m + 1.18

Since m + 5,m + 6,m + 7 6∈ Vα ∪ Vβv(v ≥ 3), we have m + 5,m + 6,m + 7 ∈ Vγ , then h3 ≤ (m + 6) − (m + 1) = 5 by19

taking b1 = h3, b2 = m + 5, b3 = m + 6 in Lemma 3.1(3). Thus 3 ≤ h1 ≤ h3 − 2 ≤ 3, that is, h1 = 3. As a result, each color20

β induces an F-type set Vβv with v ≥ 4, and then m + 8 6∈ Vα ∪ Vβv . So m + 8 ∈ Vγ , but m + 8 induces a 4-cycle along with21

m + 5,m + 6,m + 7, a contradiction.22

Claim 5. Except α, any other color is used on exactly four vertices in H.23

By Claim 4, each color is used on at most five vertices. To see this claim, we only need to show that there exists no other24

color, except α, used on five vertices in H.25

Assume, to the contrary, that there exists a color α′(6= α) used on five vertices 0 ≤ c0 < c1 < · · · < c4 ≤ m + 4. By Claim26

3, a0, c0 ∈ {0, 1}, a1, c1 ∈ {2, 3}, a3, c3 ∈ {m + 1,m + 2} and a4, c4 ∈ {m + 3,m + 4}. Without loss of generality, assume that27

a0 = 0, then c0 = 1, a1 = 2, c1 = 3, a3 = m + 1, c3 = m + 2, a4 = m + 3 and c4 = m + 4 by Claim 3. Since a1a3, c1c3 ∈ E(H),28

we have a2 ∈ {4,m − 1} and c2 ∈ {5,m} by Lemma 3.1(2). Hence R = [0,m + 4] \ {ai, ci | 0 ≤ i ≤ 4} = [4,m] \ {a2, c2}. By29

Claim 2, there is no other color used on five vertices in R. Thus there are q − 1 colors in which each is used on a F-type set30

Vβv(v ≥ 4) except a color γ is used on three vertices 4 ≤ h1 < h2 < h3 ≤ m in R. Since there always exists an (a2, a3)-path31

and a (c2, c3)-path, we seem+6,m+7,m+8 6∈ Vα,m+5,m+7,m+8 6∈ Vα′ , andm+5,m+6,m+7,m+8 6∈ Vβv(v ≥ 4) by32

Lemma 3.1(1) and Lemma 3.3. Hencem+7,m+8 ∈ Vγ and h3 ≤ 7 by taking b1 = h3, b2 = m+7, b3 = m+8 in Lemma 3.1(3).33

It follows that {4, 5} ∩ {h1, h2, h3} 6= ∅, i.e., a2 6= 4 or c2 6= 5. Since a2 6= 4 implies m + 5 6∈ Vα (otherwise, if m + 5 ∈ Vα, then34

a1, a3,m + 5, a2 induce a 4-cycle), and c2 6= 5 and a2 = 4 implies m + 6 6∈ Vα′ (otherwise, c1, c3,m + 6, c2 induce a 4-cycle),35

we have {m + 5,m + 6} ∩ Vγ 6= ∅. So there exists either an (m + 5,m + 7)-path or an (m + 6,m + 7)-path in 〈Vγ〉. Hence36

h3 ≤ m+7− (m+1) = 6 by Lemma 3.1(3), and then h1 = 4, h2 = 5,m+5,m+6 ∈ Vγ and verticesm+5,m+6,m+7,m+837

induce a 4-cycle in 〈Vγ〉, a contradiction.38

By Claim 3, if a4 = m + 3, we have a0 = 0. Then, by Lemma 3.2, the subgraph H′ induced by vertices [−m − 4, 0] also39

has a tree (q + 1)-coloring. That is, Claims 1–2 and Claims 4–5 still hold in H′. Thus, if we can get a contradiction in H for40

a4 = m+4, then there is a contradiction in H′ for a0 = 0 similarly. Therefore, we only need to consider the case of a4 = m+4.41

Let aij = A \ {ai, aj}, where {ai, aj} ⊂ A, ai 6= aj and |A| = 3. We can define ai and aijk similarly.42

In the following, we denote [0,m + 4] \ {ai, 0 ≤ i ≤ 4} by R, and will derive a contradiction to a4 = m + 4. By Claim 3,43

a3 ∈ {m + 3,m + 2}, thus there are only two cases to consider.44

Case 1. a3 = m + 3.45

Then a3a4 ∈ E(H) and a2 ∈ {2, 3,m + 1,m + 2} by Lemma 3.1(3).46

If a2 ∈ {m + 1,m + 2}, then either a2a3 ∈ E(H) or a2a4 ∈ E(H). So there exists an (a2, a3)-path in 〈Vα〉 and then a1 ≤ 247

by Lemma 3.1(3). Hence R = {ā01} ∪ [3,m] ∪ {ā2}, where ā01 = {0, 1, 2} \ {a0, a1} and ā2 = {m + 1,m + 2} \ {a2}. Let γ48

color ā01 = h1 < h2 < h3 < h4 ≤ ā2, then any other color must induce an F-type set Vβv(v ≥ 3) in R. By Lemma 3.3,49

m + 5,m + 6 6∈ Vα ∪ Vβv(v ≥ 3) (since m + 5 induces a cycle along with a4 and an (a2, a3)-path, and m + 6 induces another50

cycle along with an (a2, a3)-path), m + 5,m + 6 ∈ Vγ . Thus h4 ≤ 5 by Lemma 3.1(3), but we always have h4 ≥ ā01 + 6 ≥ 6 by51

Claim 1(3), a contradiction. Therefore a2 ∈ {2, 3} and R = {ā012}∪[4,m+2], where ā012 = {0, 1, 2, 3}\{a0, a1, a2}. Let γ ′ color52

ā012 = u1 < u2 < u3 < u4 ≤ m+2, then any other colormust induce an F-type set in R. Sincem+7,m+8 6∈ Vα∪Vβv(v ≥ 4), we53

havem+7,m+8 ∈ Vγ′ . By Claim 1(3), if ā012 ∈ {0, 1}, then u4 ∈ {m+1,m+2}; and if ā012 ∈ {2, 3}, then u4 = ā012+6 ∈ {8, 9}.54

In either case, u4,m + 7,m + 8 form a triangle, a contradiction.55

Case 2. a3 = m + 2.56

For a1 = 1 (and so a0 = 0), let H′ be the subgraph induced by vertices [−m − 3, 1], then, by Lemma 3.2, we can57

obtain a contradiction in H′ similar to the case a3 = m + 3 and a4 = m + 4 in H. Thus a1 ∈ {2, 3}, a1a3 ∈ E(H), and58

a2 ∈ {a1 + 2,m} by Lemma 3.1(2). Moreover, a0a2 ∈ E(H) and either a1a2 ∈ E(H) or a2a3 ∈ E(H). So there exists an (a0, a1)-59

path and thus a0a1 6∈ E(H), i.e., a1 = a0 + 2 and a2 ∈ {4, 5,m}. Since a2a4 ∈ E(H) and there exists an (a3, a4)-path in 〈Vα〉,60

m + 5,m + 7,m + 8,m + 9 6∈ Vα and R = {ā0, ā0 + 2} ∪ [4,m + 1] ∪ {m + 3} \ {a2}, where ā0 = {0, 1} \ {a0}. Let γ color four61

vertices ā0 = h1 < h2 < h3 < h4 ≤ m + 3 in R.62

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
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Subcase 2.1. h4 − h1 ≤ m. 1

In this case, any color, except α, is used on an F-type set Vβv which satisfies v = ā0 or v ≥ 4. If a2 = m, then 2

m + 5,m + 6,m + 7,m + 8 6∈ Vα ∪ Vβv(v ≥ 4), and thus m + 5,m + 6,m + 7,m + 8 belong to Vγ and induce a 4-cycle, 3

a contradiction. If a2 6= m, then a2 ∈ {4, 5}. Since ā0 + 4 ∈ {4, 5}, we have {4, 5} ⊆ Vα ∪ Vγ . Then any other color β induces an 4

F-type set Vβv with v ≥ 6. Since m + 5,m + 8,m + 9 6∈ Vα ∪ Vβv(v ≥ 6), m + 5,m + 8,m + 9 belong to Vγ and form a triangle, 5

a contradiction. 6

Subcase 2.2. h4 − h1 ≥ m + 1. 7

If h4 = m+1, then ā0 = 0 and thus there exists a color, say γ ′, used on 2 andm+3 (otherwise,m+1 andm+3 receive the 8

same color by Claim 1(3)). Let γ ′ color 2 = g1 < g2 < g3 < g4 = m + 3. By Claim 1(2), h2 = m − 3, h3 = m − 1, g2 = 4 and 9

g3 = 6. Sincem+5,m+8,m+9 6∈ Vα ∪Vβv(v ≥ 5) andm+5 6∈ Vγ , we havem+5 ∈ Vγ′ ,m+8 ∈ Vγ , and thenm+9 ∈ Vγ ∪Vγ′ 10

but it induces a triangle along with vertices h4,m + 8, or a 4-cycle along with vertices g4, g3,m + 5, a contradiction. 11

Thus h4 = m + 3, and h2 = h1 + 2 = ā0 + 2 or h3 = m + 1 by Claim 1(1). If h1 = ā0 + 2, then, for any other color β, the 12

F-type set Vβv satisfies v ≥ 4. Sincem+ 7,m+ 8 6∈ Vα ∪ Vβv(v ≥ 4),m+ 7,m+ 8 belong to Vγ and form a triangle withm+ 3, 13

a contradiction. If h3 = m + 1 and h2 > ā0 + 2, then, for any other color β, the F-type set Vβv has v = ā0 + 2 or v ≥ 4. Let γ ′
14

color ā0 + 2. As there exists an (h3, h4)-path when h2 6= m − 1 and an (h2, h4)-path when h2 = m − 1, we have m + 7 6∈ Vγ . 15

Note thatm+ 5,m+ 7,m+ 8 6∈ Vα ∪ Vβv(v ≥ 4) andm+ 5 6∈ Vγ′ , we havem+ 5 ∈ Vγ andm+ 7 ∈ Vγ′ , and then eitherm+ 8 16

belongs to Vγ and induces a triangle along with vertices h3 = m+ 1 andm+ 5, orm+ 8 belongs to V ′

γ and induces a triangle 17

along with vertices m + 7 and ā0 + 8, a contradiction again. 18

After all, we have shown that va(G(Dm,2)) ≥ d
m+1
4 e + 1 for m = 4q ≥ 8. 19

Next, for m = 4q + j > 8 with 0 < j ≤ 3, we see va(G(Dm,2)) ≥ va(G(D4q,2)) ≥ d
4q+1
4 e + 1 = d

m+1
4 e + 1. 20

For m = 6, let G1 be the subgraph induced by vertices [0, 8]. If va(G(D6,2)) = 2, then G(D6,2) has a tree 2-coloring f1 21

which is also a tree coloring of G1. Note that |V(G1)| = 9. There are at least five vertices, say 0 ≤ a0 < a1 < · · · < a4 ≤ 8, 22

receiving the same color α. Then Claims 1–2 hold. So a0 = 0, a1 = 1, a3 = 7 and a4 = 8. If a2 > 2, then a0a1, a0a2 ∈ E(G1), so 23

a1a2 6∈ E(G1), i.e., a2 = 3. Hence, a2, a3, a4 induce a triangle, a contradiction. If a2 = 2, then a2, a3, a4 induce a triangle, too. 24

Therefore, va(G(D6,2)) ≥ 3, and then va(G(D7,2)) ≥ va(G(D6,2)) ≥ 3 = d
7+1
4 e + 1. 25

Therefore, the lower bound is confirmed. � 26

Now we present an algorithm for finding a tree coloring of the integer distance graph G(Dm,2). 27

If m ≤ 5, then assign r = x (mod2) ∈ [0, 1] to each vertex x and obtain a tree coloring of G(Dm,2). For m ≥ 6, let 28

m = 8l + j ≥ 6 with 0 < j ≤ 8. 29

Algorithm. A(m, 2). If 0 < j ≤ 3, then go to A1; if 4 ≤ j ≤ 6, then go to A2; if 7 ≤ j ≤ 8, then go to A3. Repeat the process 30

until each vertex is colored. 31

A1: For any vertex x, if x can bewritten as x = 8t+2s+ r for 0 ≤ t ≤ l, s ∈ [0, 3] and r ∈ [0, 1], thenwe define f (x) = 2t+ r; 32

otherwise, x can be written as x = 8(l + 1)n + x′ for some 0 ≤ x′ < 8(l + 1) and n ∈ Z, and then we define f (x) = f (x′). 33

A2: Let u = 8(l + 1) + 3. For any vertex x, if x can be written as x = 8t + 2s + r for 0 ≤ t ≤ l, s ∈ [0, 3] and r ∈ [0, 1], 34

then we define f (x) = 2t + r; if x ∈ [u − 3, u − 1], then we define f (x) = 2(l + 1); if x 6∈ [0, u − 1], then x can be written as 35

x = un + x′ for some 0 ≤ x′
≤ u − 1 and n ∈ Z, and we define f (x) = f (x′). 36

A3: For any vertex x, if x can be written as x = 8t + 2s + r for 0 ≤ t ≤ l + 1, s ∈ [0, 3] and r ∈ [0, 1], then we define 37

f (x) = 2t + r. Otherwise, then x can be expressed as x = 8(l + 2)n + x′ for some 0 ≤ x′ < 8(l + 2) and n ∈ Z, and we define 38

f (x) = f (x′). 39

4. Vertex arboricity of G(Dm,k) 40

In the last section, we investigate vertex arboricity of G(Dm,k) for k ≥ 3. 41

Suppose m ≤ k + b
k
2 c − 1. Since vertices [0, k − 1] induce a complete subgraph of order k, va(G(Dm,k)) ≥ d

k
2 e. We 42

define a tree coloring f : f (kl + i) ≡ i (mod d
k
2 e) for l ∈ Z and 0 ≤ i < k, that is, for every 0 ≤ i ≤ b

k
2 c − 1, the vertices in 43

Vi = {. . . , i, d
k
2 e+i, k+i, k+d

k
2 e+i, 2k+i, · · ·} receive a color i. Obviously Vi induces a forest, as 2k+i−(d k

2 e+i) = k+b
k
2 c > m. 44

If k is odd, then V(k−1)/2 = {. . . , (k−1)/2, k+ (k−1)/2, 2k+ (k−1)/2, · · ·} is an independent set. So f is a tree d
k
2 e-coloring, 45

i.e., va(G(Dm,k)) ≤ d
k
2 e. Therefore, va(G(Dm,k)) = d

k
2 e. 46

Suppose k + b
k
2 c ≤ m ≤ 2k − 1. By Lemma 2.1, va(G(Dm,k)) ≤ d

m
2 e. Let H be a subgraph of G(Dm,k) induced by vertices 47

[0,m], then H is a complete k-partite graph K(2, . . . , 2, 1, . . . , 1} with k-partite X0 = {0, k}, X1 = {1, k+1}, . . . , Xm−k = {m− 48

k,m}, Xm−k+1 = {m−k+1}, . . . , Xk−1 = {k−1}. It is obvious that any four vertices of H induce a cycle, and any three vertices, 49

which are contained in three partite respectively, induce a triangle. So va(H) = 2k−m−1+d2m−k+1−(2k−1−m)
3 e = d

m+1
3 e since 50

0 ≤ 2k−m−1 = (k−1)−(m−k) ≤ d
k
2 e ≤ (m−k)+1 ≤ k. Therefore, va(G(Dm,k)) ≥ va(H) = d

m+1
3 e for 2k−1 ≥ m ≥ k+b

k
2 c. 51

If 2k ≤ m < 3k, then va(G(Dm,k)) ≤ k by Lemma 2.1. Let X′

0 = {0, k, 2k}, X′

1 = {1, k + 1, 2k + 1}, . . . , X′

m−2k = 52

{m − 2k,m − k,m}, X′

m−2k+1 = {m − 2k + 1,m − k + 1}, . . . , X′

k−1 = {k − 1, 2k − 1}, then X′

0 ∪ X′

1 ∪ · · · ∪ X′

k−1 = [0,m] 53

induces a supergraph H′ of a complete k-partite graph K(3, 3, . . . , 3, 2, . . . , 2). It is clear that any four vertices of H′ induce 54

a cycle and each X′

i (0 ≤ i ≤ m − 2k) requires a color. Hence, va(H′) = (m − 2k) + 1 + d2 k−1−(m−2k)
3 e = d

m+1
3 e and then 55

va(G(Dm,k)) ≥ d
m+1
3 e. That is, dm+1

3 e ≤ va(G(Dm,k)) ≤ k or va(G(Dm,k)) = k for 3k − 3 ≤ m < 3k. 56

∧
To summarize the above discussion, we have the following theorem: 57

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
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Theorem 4.1. For k ≤ m < 3k, the vertex arboricity of G(Dm,k) is1

(1) va(G(Dm,k)) = d
k
2 e for m ≤ k + b

k
2 c − 1;2

(2) d
m+1
3 e ≤ va(G(Dm,k)) ≤ d

m
2 e for k + b

k
2 c ≤ m ≤ 2k − 1;3

(3) d
m+1
3 e ≤ va(G(Dm,k)) ≤ k for 2k ≤ m < 3k. In particular, va(G(Dm,k)) = k for 3k − 3 ≤ m < 3k.4

Next, we consider m ≥ 3k and will need the following from [1] as a lemma.5

Lemma 4.1. Suppose m ≥ 2k. Write m + k + 1 = 2rm′ and k = 2sk′, where r and s are non-negative integers and m′ and k′ are6

odd integers. Then7

χ(G(Dm,k)) =


m + k + 1

2
if r > s;⌈

m + k + 2
2

⌉
otherwise.

8

Theorem 4.2. Let m = 4kl + j ≥ 3k ≥ 9 with 0 ≤ j < 4k, then d
m+k+1

4 e ≤ va(G(Dm,k)) ≤ kdm+2k+1
4k e. Moreover,9

va(G(Dm,k)) ≤



k
(⌊

m

4k

⌋
+ 1

)
, for 0 ≤ j < 2k,⌈

m

4k

⌉
k +

⌈
j − 2k + 1

2

⌉
, for 2k ≤ j < 3k,⌈

m

4k

⌉
k +

⌈
k

2

⌉
, for 3k ≤ j < 3k +

⌊
k

2

⌋
− 1,(⌈

m

4k

⌉
+ 1

)
k, for 3k +

⌊
k

2

⌋
− 1 ≤ j < 4k.

10

Proof. To show the upper bound, we construct a tree coloring of G(Dm,k) periodically as follows.11

For 0 ≤ j < 2k and 0 ≤ n < 4k(l + 1), let f1(x) = i + kt for x − (i + 4kt) ∈ {0, k, 2k, 3k}, 0 ≤ i < k and 0 ≤ t ≤ l; and12

f1(x + 4ks(l + 1)) = f1(x) for any s ∈ Z. By Lemma 2.2, each of Vt,i = {4k(l + 1)s + 4kt + i + kr | s ∈ Z, r ∈ [0, 3]} induces a13

forest and thus f1 is a tree coloring. So va(G(Dm,k)) ≤ (l + 1)k = (b m
4k c + 1)k = kdm+2k+1

4k e.14

If 2k ≤ j < 3k, let15

f2(x) =


i + kt for x − (4kt + i) ∈ {0, k, 2k, 3k}, 0 ≤ i < k, 0 ≤ t ≤ l,

k(l + 1) +

⌊
n − 4k(l + 1)

2

⌋
for 4k(l + 1) ≤ x ≤ m + 2k,

16

and other vertices be colored periodically. By Lemma 2.2, all vertex subsets V ′

t,i = {(m+2k+1)s+4kt+i+kr | s ∈ Z, r ∈ [0, 3]}17

and V ′

k(l+1)+u = {(m + 2k + 1)s + 4k(l + 1) + 2u + r | s ∈ Z, r ∈ [0, 1]} (where 0 ≤ u ≤ d
j−2k+1

2 e − 1) induce forests and then18

f2 is a tree coloring. So va(G(Dm,k)) ≤ d
m
4k ek + d

m+2k−4k(l+1)+1
2 e = d

m
4k ek + d

j−2k+1
2 e ≤ kdm+2k+1

4k e.19

If 3k ≤ j < 3k + b
k
2 c, for 0 ≤ x ≤ m + 2k, let20

f3(x) =


i + kt for x − (4kt + i) ∈ {0, k, 2k, 3k}, 0 ≤ i < k, 0 ≤ t ≤ l,

k(l + 1) + i for x − i − 4k(l + 1) = 0,
⌈
k

2

⌉
, k, 0 ≤ i <

⌈
k

2

⌉
,

21

and other vertices be colored periodically. By Lemma 2.2, all vertex subsets V t,i = {(4k(l + 1) + k + d
k
2 e)s + 4kt + i + kr | s ∈22

Z, r ∈ [0, 3]} and Vk(l+1)+u = {(4k(l + 1) + k + d
k
2 e)s + 4k(l + 1) + u + r | s ∈ Z, r ∈ {0, d

k
2 e, k}} (where 0 ≤ u < d

k
2 e) induce23

forests and thus f3 is a tree coloring. So va(G(Dm,k)) ≤ d
m
4k ek + d

k
2 e ≤ kdm+2k+1

4k e.24

If 3k+b
k
2 c ≤ j < 4k, for 0 ≤ x < 4k(l+2), let f4(x) = i+kt for x−(i+4kt) ∈ {0, k, 2k, 3k}, 0 ≤ i < k and 0 ≤ t ≤ l+1; and25

f4(x + 4ks(l + 2)) = f4(x) for each s ∈ Z. By Lemma 2.2, each vertex subset V̂t,i = {4k(l + 2)s + 4kt + i + kr | s ∈ Z, r ∈ [0, 3]}26

induces a forest and then f4 is a tree coloring. So va(G(Dm,k)) ≤ (l + 2)k = (d m
4k e + 1)k = kdm+2k+1

4k e.27

Next, we consider the lower bound. Let n = d
m+k+1

4 e − 1 = d
m+k−3

4 e. Assume, to the contrary, that va(G(Dm,k)) ≤ n. Then28

χ(G(Dm,k)) ≤ 2n < d
m+k+1

2 e, a contradiction to Lemma 4.1.29

Therefore, va(G(Dm,k)) ≥ d
m+k+1

4 e. �30

We present the following remarks as a conclusion of this paper.31

Remarks. 1. In Theorem 3.1, the only undetermined value is va(G(D8q+7,2)). Between the two possible values, we believe that32

the correct value should be d
m
4 e + 2.33
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2. Let Dm,k,s = [1,m] \ {k, 2k, . . . , sk}. Some
∧
evidence suggests: 1

va(G(Dm,1,s)) =

⌈
m + s + 2

s + 3

⌉
2

for any positive integer s. 3

Uncited references 4

Fig. 4. Q1 5

Acknowledgments 6

The authors are indebted to Juan Liu for her assistance in the preparation of current version and improvement of the 7

readability of the paper. We also thank the anonymous referees for their constructive comments. 8

References 9

[1] G.J. Chang, D.D.-F. Liu, X.D. Zhu, Distance graphs and T-coloring, J. Combin. Theory Ser. B 75 (1999) 259–269. 10

[2] P.A. Catlin, Hong-Jian Lai, Vertex arboricity and maximum degree, Discrete Math. 141 (1995) 37–46. 11

[3] R.B. Eggleton, P. Erdös, D.K. Skilton, Colouring the real line, J. Combin. Theory Ser. B 39( (1985) 86–100. 12

[4] L.K. Jørgensen, Vertex partitions of K4,4-minor free graphs, Graphs Combin. 17 (2001) 265–274. 13

[5] A. Kemnitz, H. Kolbery, Coloring of integer distance graphs, Discrete Math. 191 (1998) 113–123. 14

[6] A. Kemnitz, M. Marangio, Chromatic numbers of integer distance graphs, Discrete Math. 233 (2001) 239–246. 15

[7] H.V. Kronk, J. Mitchem, Critical point-arboritic graphs, J. Lond. Math. Soc. 9 (1975) 459–466. 16

[8] D.D.-F. Liu, X.D. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory 30 (1999) 245–259. 17

[9] R. Škrekovski, On the critical point-arboricity graphs, J. Graph Theory 39 (2002) 50–61. 18

[10] M. Voigt, H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math. 51 (1994) 197–209. 19

[11] L.C. Zuo, J.L. Wu, J.Z. Liu, The vertex linear arboricity of an integer distance graph with a special distance set, Ars Combin. 79 (2006) 65–76. 20

[12] L.C. Zuo, J.L. Wu, J.Z. Liu, The vertex linear arboricity of distance graphs, Discrete Math. 306 (2006) 284–289. 21

[13] L.C. Zuo, Q. Yu, J.L. Wu, Tree coloring of distance graphs with a real interval set, Appl. Math. Lett. 19 (2006) 1341–1344. 22

Please cite this article in press as: Lian-Cui Zuo, et al., Vertex arboricity of integer distance graph G(Dm,k), Discrete Mathematics (2008),
doi:10.1016/j.disc.2008.03.009


	title.0
	section.1
	section.2
	section.3
	section.4
	section.5
	section.6


	ikona: 
	1: 
	2: 
	4: 
	7: 
	9: 

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 

	TooltipField: 


