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Abstract. In this paper we study k-noncrossing RNA structures with minimum arc-length 4

and at most k − 1 mutually crossing bonds. Let T
[4]
k (n) denote the number of k-noncrossing

RNA structures with arc-length ≥ 4 over n vertices. We prove (a) a functional equation for the

generating function
P

n≥0 T
[4]
k (n)zn and (b) derive for k ≤ 9 the asymptotic formula T

[4]
k (n) ∼

ck n−((k−1)2+(k−1)/2) γ−n
k . Furthermore we explicitly compute the exponential growth rates

γ−1
k and asymptotic formulas for 4 ≤ k ≤ 9.

1. Introduction

RNA pseudoknot structures [2, 28] are a reality. They occur in functional RNA (RNAseP [19]),
ribosomal RNA [18] and are conserved in the catalytic core of group I introns. Due to the crossings
of arcs their theory differs considerably from RNA secondary structures. In particular the standard
folding routine does not work. Recently the concept of k-noncrossing RNA structures has been
introduced [14]. Here the idea is that the complexity of the structure is tantamount to an inherently
“local” property: the maximal number of mutually crossing bonds. A structure is k-noncrossing,
if there exists no k-set of mutually crossings arcs. The locality is in fact of central importance: at
present time, the generating function of Stadler’s “bisecondary structures” [12], which correspond
to planar 3-noncrossing structures [14], is not known.

A very intuitive approach to the k-noncrossing property of RNA molecules is their diagram repre-
sentation [12]. We draw the nucleotide-labels 1, . . . , n in increasing order in a horizontal line and
draw arc-labels (i, j) in the upper half-plane, if and only if i and j are paired in the structure, see
Figure 1. We call a diagram k-noncrossing, if it does not contain k mutually crossing arcs. The
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length of an arc (i, j) is given by λ = j − i and a stack of length σ is a sequence of “parallel” arcs
of the form ((i, j), (i + 1, j − 1), . . . , (i + (σ − 1), j − (σ − 1))).

1 2 3 4 5 6 7 8 9 10 11 12 13
2-noncrossing

3-noncrossing

4-noncrossing

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1. k-noncrossing structures: 2- 3- and 4-noncrossing structures (top to bottom).
Maximal set of mutually crossing arcs are drawn dashed, respectively.

A k-noncrossing RNA structure is a k-noncrossing diagram over [n] having minimum arc-length
λ > 1. These structures have been studied in [14, 15, 16] via a bijection into vaccillating tableaux
in the context of tangled diagrams [4]. For the enumeration of structures with crossing arcs the
tableaux-interpretation is non-optional. There is, at present time, no way to inductively construct
k-noncrossing structures, despite the fact that they are D-finite.

For RNA secondary structures (2-noncrossing RNA structures), certain combinatorial restrictions,
for instance minimum arc-length or stack-size are relatively straightforward to deal with. The
combinatorics of RNA secondary structures has been pioneered by Waterman et.al. in a series of
excellent papers [21, 26, 25, 27, 10]. He proved for the number of RNA secondary structures of
length n (arc-length ≥ 2), T

[2]
2 (n), the fundamental recursion

(1.1) T
[2]
2 (n) = T

[2]
2 (n− 1) +

n−3∑
s=0

T
[2]
2 (n− 2− s)T[2]

2 (s) ,

where T
[2]
2 (0) = T

[2]
2 (1) = T

[2]
2 (2) = 1. Eq. (1.1) is an immediate consequence considering secondary

structures as peak-free Motzkin-paths, i.e., peak-free paths with up, down and horizontal steps that
stay in the upper halfplane, starting at the origin and end on the x-axis. The recursion is in par-
ticular the key for all asymptotic results since it immediately implies a functional equation for the
corresponding generating function. This allows the application of Darboux-type theorems [11, 24].
For the number of secondary structures with minimum arc-length λ, T

[λ]
2 (n) it is straightforward
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to derive

(1.2) T
[λ]
2 (n) = T

[λ]
2 (n− 1) +

n−(λ+1)∑
s=0

T
[λ]
2 (n− 2− s)T[λ]

2 (s) .

All asymptotic formulae for secondary structures are of the same type: a square root. In other
words, the asymptotic behavior is determined by an algebraic branch singularity with the subex-
ponential factor n−

3
2 .

The situation changes for k-noncrossing RNA structures. A different approach has to be made,
since in lack of functional equations Darboux-type theorems [24], cannot be employed. The idea is
to analyze the dominant singularities directly, using Hankel contours. This type of singularity anal-
ysis has been developed by Flajolet [7]. Basically, the “singular-analogue” of a Taylor-expansion
is constructed. It can be shown that, under certain conditions, there exists an approximation,
which is locally of the same order as the original function. The particular, local approximation
allows then to derive the asymptotic form of the coefficients. In contrast to the subtraction of
singularities-principle [20] the only contributions to the contour integral come from segments close
to the singularity. In our situation all conditions for singularity analysis are satisfied since all our
functions are D-finite [22, 30] and D-finite functions have an analytic continuation into any simply-
connected domain containing zero. The above strategy works also for tangled diagrams [5]. The
particular singularity-type of the generating function of k-noncrossing RNA structures depends
solely on the crossing number [15, 17]. Furthermore an interesting feature is the appearance of
logarithms for k ≡ 1 mod 2 in the singular expansion for k-noncrossing RNA structures.

Due to biophysical constraints a minimum arc-length of four can be assumed for minimum free
energy RNA structures. The key objective of this paper is to derive and analyze the generating
function for k-noncrossing RNA structures with minimum arc-length 4, see Table 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T

[4]
k (n) 1 1 1 1 2 5 15 51 179 647 2397 9081 35181 139307 563218

Table 1. The first 15 numbers of 4-noncrossing RNA structures with arc-length ≥ 4

Based on our results the next step is to compute the subset of stable structures, i.e. the subset
of structures with arc-length ≥ 4, having no isolated arcs. While it is straightforward to obtain
eq. (1.2) from eq. (1.1) considerable complication arises, considering k-noncrossing structures with
arc-length > 3. To understand why, one observes that the number of ways to place 3-arcs satisfies
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Figure 2. The ratio r(n) = T
[4]
4 /(n−21/2γ−n

4 ) as a function of n. The curve shows
that the asymptotic approximation is valid as r(n) ∼ c4 ≈ 4.450939000× 107

a new type of recursion, see eq. (3.6). As a result and in contrast to k-noncrossing structures with
minimum arc-length λ ≤ 3 the generating function

∑
n≥0 T

[4]
k (n) zn turns out to be a sum of two

power series (Theorem 2). The exponential growth rate can easily be computed via the formula
given in Theorem 3, see Table 2 and Figure 2.

k 4 5 6 7 8
γ−1

k 6.52900 8.64830 10.71759 12.76349 14.79631
T

[4]
k (n) c4n

− 21
2 (γ−1

4 )n c5n
−18(γ−1

5 )n c6n
− 55

2 (γ−1
6 )n c7n

−39(γ−1
7 )n c8n

− 105
2 (γ−1

8 )n

Table 2. Exponential growth rates and asymptotic formulas for k-noncrossing
RNA structures with minimum arc-length ≥ 4.
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The paper is organized as follows: in Section 2 we provide the background on the methods used in
this paper. In Section 3 we prove a functional equation relating RNA structures to k-noncrossing
matchings. We then study the singularity of the generating function and obtain the asymptotic
formula in Section 4.

2. Preliminaries

In this Section we provide some background on the generating functions of k-noncrossing matchings
[3, 13] and k-noncrossing RNA structures [14, 15, 16]. We denote the numbers of k-noncrossing
matchings and RNA structures with arc-length ≥ λ by fk(2n) and T

[λ]
k (n), respectively. The former

corresponds to k-noncrossing diagrams without isolated points and the latter to k-noncrossing
diagrams with arc-length ≥ λ. Furthermore let T

[λ]
k (n, h) denote the number of k-noncrossing

RNA structures wit arc-length ≥ λ having exactly h arcs and Mk(n) denotes the number of partial
matchings, or equivalently the number of k-noncrossing diagrams over [n] (i.e. with isolated points
and minimum arc-length 1). Pringsheim’s Theorem [23] guarantees the existence of a positive real,
dominant singularity of

∑
n≥0 Mk(n) z2n which we denote by µk. In order to get some intuition

about the various types of diagrams involved, see Figure 3.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b)

(c) (d)

Figure 3. Basic diagram types: (a) 3-noncrossing matching (no isolated points), (b) 4-
noncrossing partial matching (isolated points 4 and 7), (c) 4-noncrossing RNA structure
with arc-length ≥ 3, (d) 3-noncrossing RNA structure with arc-length ≥ 4.
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2.1. k-noncrossing matchings. Our main objective is to discuss some basic properties of fk(2n)
and to give an asymptotic formula. Let us recall that a power series u(x) is called D-finite if
dimK(x){u, u′, . . . } < ∞ [22]. The generating function of k-noncrossing matchings satisfies the
following identity due to Grabiner et.al. [9]

∑

n≥0

fk(2n) · z2n

(2n)!
= det[Ii−j(2z)− Ii+j(2z)]|k−1

i,j=1(2.1)

where

(2.2) Ir(2z) =
∑

j≥0

z2j+r

j!(r + j)!

denotes the hyperbolic Bessel function of the first kind of order r. Eq. (2.1) allows to conclude
that

(2.3) Fk(z) =
∑

n≥0

fk(2n)z2n

is D-finite. Indeed, the hyperbolic Bessel function[9] itself is D-finite and D-finite functions form
an algebra closed under taking Hadamard products [22]. Therefore D-finiteness of Fk(z) follows
from eq. (2.1). However, beyond the cases k = 2 and k = 3, eq. (2.1) does not give directly explicit
formulas for fk(2n) or Fk(z). For small k-values asymptotic formulas can be obtained using the
approximation of the Bessel function

(2.4) Im(z) =
ez

√
2πz

(
H−1∑

h=0

(−1)h

h!8h

h∏
t=1

(4m2 − (2t− 1)2)z−h + O(|z|−H)

)

which holds for −π
2 < arg(z) < π

2 [1]. For arbitrary k, systematic analysis of the determinant
det[Ii−j(2x)− Ii+j(2x)]|k−1

i,j=1 [13] shows for arbitrary k

(2.5) fk(n) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))n, ck > 0 .

In the following we shall denote the dominant singularity of Fk(z) by ρk = 1
2(k−1) .

2.2. k-noncrossing RNA structures. k-noncrossing RNA structures are k-noncrossing dia-
grams satisfying specific arc-length conditions. The latter induce asymmetries which prohibit
enumeration using the reflection-principle [8] directly (the reflection, for instance, implies eq (2.1)).
For any k ≥ 2 the numbers of k-noncrossing RNA structures with minimum arc-length ≥ 2 are
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given by [14]

T
[2]
k (n) =

bn/2c∑

b=0

(−1)b

(
n− b

b

)
Mk(n− 2b) .(2.6)

and we have [15]

T
[2]
k (n) ∼ c

[2]
k n−((k−1)2+(k−1)/2) (γ[2]

k )−n, c
[2]
k > 0 ,(2.7)

where γ
[2]
k is the unique, solution of minimal modulus of z

z2−z+1 = ρk. For k-noncrossing RNA
structures with arc-length ≥ 3 we have according to [14]

∀ k > 2; T
[3]
k (n) =

∑

b≤bn
2 c

(−1)bλ(n, b) Mk(n− 2b) ,(2.8)

where λ(n, b) denotes the number of way selecting b arcs of length ≤ 2 over n vertices. Fortunately,
the nonexplicit terms λ(n, b) vanish in the functional equation [16]

∑

n≥0

T
[3]
k (n) zn =

1
1− z + z2 + z3 − z4

∑

n≥0

fk(2n)
(

z − z3

1− z + z2 + z3 − z4

)2n

.(2.9)

Singularity analysis based on eq. (2.9) eventually allows to derive the asymptotic formula

T
[3]
k (n) ∼ c

[3]
k n−((k−1)2+(k−1)/2) (γ[3]

k )−n, c
[3]
k > 0 ,(2.10)

where γ
[3]
k denotes the unique, minimal positive real solution of z−z3

1−z+z2+z3−z4 = ρk.

2.3. Singularity Analysis. Pringsheim’s Theorem [23] guarantees that each power series with
positive coefficients has a positive real dominant singularity. This singularity plays a key role for
the asymptotics of the coefficients. In the proof of Theorem 3 it will be important to deduce
relations between the coefficients from functional equations of generating functions. The class of
theorems that deal with such deductions are called transfer-theorems [7]. One key ingredient in this
framework is a specific domain in which the functions in question are analytic, which is “slightly”
bigger than their respective radius of convergence. It is tailored for extracting the coefficients via
Cauchy’s integral formula. Details on the method can be found in [22, 7]. In case of D-finite
functions we have analytic continuation in any simply connected domain containing zero [29] and
all prerequisits of singularity analysis are met. We use the notation

(2.11) {f(z) = O (g(z)) as z → ρ} ⇐⇒
{

f(z)
g(z)

is bounded as z → ρ

}

The key result used in Theorem 3 is
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Theorem 1. [7] Let f(z), g(z) be D-finite functions with unique dominant singularity ρ and suppose

(2.12) f(z) = O(g(z)) as z → ρ .

Then we have

(2.13) [zn]f(z) = C

(
1−O(

1
n

)
)

[zn]g(z)

where C is a constant and [zn]h(z) denotes the n-th coefficient of the power series h(z) at z = 0.

3. The functional equation

In this Section we prove a functional relation for the generating function of T
[4]
k (n), the number of

k-noncrossing RNA structures with arc-length ≥ 4. Our first result is a technical lemma which is
instrumental in the proof of Theorem 2 below. The proof of the lemma given below is new and uses
integral representations[6] instead of dealing with the combinatorial coefficients directly. Contour
integration is a powerful method to prove combinatorial identities straightforwardly.

Lemma 1. [16] Let z be an indeterminate over C. Then we have the identity of power series

(3.1) ∀ |z| < µk;
∑

n≥0

Mk(n) zn =
(

1
1− z

) ∑

n≥0

fk(2n)
(

z

1− z

)2n

.

Proof. Expressing the combinatorial terms by contour integrals [6] we obtain

(3.2)
(

n

2m

)
=

1
2πi

∮

|u|=α

(1 + u)nu−2m−1du fk(2m) =
1

2πi

∮

|v|=β

Fk(v)v−2m−1dv

where α, β are arbitrary small positive numbers. We derive

Mk(n) =
1

(2πi)2
∑
m

∮

|u|=α,|v|=β

(1 + u)nu−2m−1Fk(v)v−2m−1dudv

=
1

(2πi)2

∮

|u|=α,|v|=β

(1 + u)n uv

(uv)2 − 1
Fk(v)dudv

=
1

(2πi)2

∮

|v|=β

Fk(v)v−1

[∮

|u|=α

(1 + u)nu

(u + 1
v )(u− 1

v )
du

]
dv
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Since u = 1
v and u = − 1

v are the only singularities (poles) enclosed by the particular contour,
eq. (3.1) implies

∮

|u|=α

(1 + u)nu

(u + 1
v )(u− 1

v )
du = 2πi

[
(1 + u)nu

u− 1
v

|u=− 1
v

+
(1 + u)nu

u + 1
v

|u= 1
v

]

= πi

([
1− 1

v

]n

+
[
1 +

1
v

]n)
,

Therefore, for |z| < µk

∑

n≥0

Mk(n)zn =
1

4πi

∑

n≥0

∮

|v|=β

Fk(v)v−1

([
1− 1

v

]n

+
[
1 +

1
v

]n)
zndv

=
1

4πi

∮

|v|=β

Fk(v)
1

v − (v − 1)z
dv +

1
4πi

∮

|v|=β

Fk(v)
1

v − (v + 1)z
dv .

The first integrand has its unique pole at v = − z
1−z and the second at v = z

1−z , respectively:

1
v − (v − 1)z

=
1

v + z
1−z

1
1− z

and
1

v − (v + 1)z
=

1
v − z

1−z

1
1− z

.

In view of Fk(z) = Fk(−z) we derive
∑

n≥0

Mk(n)zn =
1

1− z

[
1
2
Fk

(
− z

1− z

)
+

1
2
Fk

(
z

1− z

)]
=

1
1− z

Fk

(
z

1− z

)

whence the lemma. ¤

Before we state the main result of this section, let us introduce some notation. We set

u(z) =
√

1 + 4z − 4z2 − 6z3 + 4z4 + z6(3.3)

fj(z) = −−2z2 + z3 − 1 + (−1)j u(z)
2(1− 2z − z2 + z4)

.(3.4)

Note that fj(z) is an algebraic function over the function field K(z), i.e. there exists a polynomial
with coefficients being polynomials in z for which f(z) is a root.

Theorem 2. Let k be a positive integer, k > 3 and f1(z) and f2(z) be given by eq.(3.4). Then we
have the functional equation

∑

n≥0

T
[4]
k (n) zn =

F1(−z2)
1− zf1(−z2)

∑

n≥0

fk(2n)
(

z f1(−z2)
1− zf1(−z2)

)2n

+

F2(−z2)
1− zf2(−z2)

∑

n≥0

fk(2n)
(

z f2(−z2)
1− zf2(−z2)

)2n

.
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Proof. Let λ(n, b) denote the number of ways to place b arcs of length ≤ 4 over [n]. Then we have
Claim 1.

T
[4]
k (n) =

∑

b≤bn
2 c

(−1)bλ(n, b)Mk(n− 2b)(3.5)

and λ(n, b) satisfies the recursion

λ(n + 2b, b) =

λ(n + 2b− 1, b) + λ(n + 2b− 4, b− 2) + λ(n + 2b− 5, b− 2) + λ(n + 2b− 6, b− 3)

+
b∑

i=1

[λ(n + 2b− 2i, b− i) + 2λ(n + 2b− 2i− 1, b− i) + λ(n + 2b− 2i− 2, b− i)]

− λ(n + 2b− 3, b− 1)

(3.6)

where λ(n, 0) = 1, λ(n, 1) = 3n− 6 and n ≥ 2b.
The proof of eq. (3.5) and eq. (3.6) are analogous to the proof of Theorem 5 in [14]. In order to
keep the paper selfcontained we present it in Section 5. The idea is now to relate

∑
n≥0 T

[4]
k (n) zn

to the power series
∑

n≥0 Mk(n) zn. For this purpose we compute

∑

n≥0

T
[4]
k (n)zn =

∑

n≥0

∑

2b≤n

(−1)bλ(n, b)
n∑

m=2b

(
n− 2b

m− 2b

)
fk(m− 2b, 0) zn

=
∑

b≥0

(−1)bz2b
∑

n≥2b

λ(n, b)Mk(n− 2b)zn−2b

=
∑

b≥0

(−1)bz2b
∑

n≥0

λ(n + 2b, b)Mk(n) zn .

Interchanging the summations w.r.t. b and n we arrive at

(3.7)
∑

n≥0

T
[4]
k (n)zn =

∑

n≥0


∑

b≥0

(−1)bx2bλ(n + 2b, b)


Mk(n) zn .

Now we use the recursion formula for λ(n, b). Let

(3.8) ϕn(z) =
∑

b≥0

λ(n + 2b, b)zb .

Multiplying with zb and taking the summation over all b ranging from 0 to bn/2c implies for ϕn(z),
n = 1, 2 . . .

(3.9)
(

1− z2 − z3 − z

1− z

)
ϕn(z) =

(
z2 +

z2 + 1
1− z

)
ϕn−1(z) +

(
z

1− z

)
ϕn−2(z) .
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We now make the Ansatz

(3.10) f(x, y) =
∑

n≥0

∑

j≤n
2

λ(n, j)xj yn

n!
=

∑

n≥0

ϕn(x)
yn

n!
.

Multiplying with yn

n! and taking the summation over all n ≥ 0 leads to the partial differential
equation

(3.11)
(

1− x2 − x3 − x

1− x

)
∂2f(x, y)

∂y2
=

(
x2 +

x2 + 1
1− x

)
∂f(x, y)

∂y
+

(
x

1− x

)
f(x, y) .

The general solution of eq. (3.11) can be computed by MAPLE and is given by

f(x, y) = F1(x) exp(f1(x) · y) + F2(x) exp(f2(x) · y)

=
∑

n≥0

[F1(x) f1(x)n + F2(x) f2(x)n]
yn

n!
,

where F1(x), F2(x) are arbitrary functions and

(3.12) f1(x) =
2x2 − x3 + 1 + u(x)
2(1− 2x− x2 + x4)

, f2(x) =
2x2 − x3 + 1− u(x)
2(1− 2x− x2 + x4)

.

By definition we have f(x, y) =
∑

n≥0 ϕn(x) · yn

n! and

(3.13) ϕn(x) = F1(x)(f1(x))n + F2(x)(f2(x))n .

In order to solve eq. (3.13) it remains to compute F1(x) and F2(x). The key information lies in the
initial conditions for f(x, y) and ϕn(x). Explicitly we have f(x, 0) = 1 and ϕ1(x) = λ(1, 0)x0 = 1,
which implies

F1(x) + F2(x) = 1

F1(x)f1(x) + F2(x)f2(x) = 1 .

Accordingly we obtain

(3.14) F1(x) =
f2(x)− 1

f2(x)− f1(x)
and F2(x) =

f1(x)− 1
f1(x)− f2(x)

.

In view of ϕn(−z2) =
∑

b≥0 λ(n + 2b, b)(−1)bz2b we can express
∑

n≥0 T
[4]
k (n)zn as follows:

∑

n≥0

T
[4]
k (n)zn =

∑

n≥0

ϕn(−z2) Mk(n) zn

= F1(−z2)
∑

n≥0

Mk(n)
(
f1(−z2)z

)n
+ F1(−z2)

∑

n≥0

Mk(n)
(
f2(−z2)z

)n
.
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Now we use Lemma 1:
∑

n≥0

Mk(n) zn =
(

1
1− z

) ∑

n≥0

fk(2n)
(

z

1− z

)2n

,

which allows to express
∑

n≥0 T
[4]
k (n)zn via

∑
n≥0 fk(2n) z2n

∑

n≥0

T
[4]
k (n) zn =

F1(−z2)
1− zf1(−z2)

∑

n≥0

fk(2n)
(

zf1(−z2)
1− zf1(−z2)

)2n

+

F2(−z2)
1− zf2(−z2)

∑

n≥0

fk(2n)
(

zf2(−z2)
1− zf2(−z2)

)2n

.

¤

4. Asymptotics of RNA pseudoknot structures with arc-length ≥ 4

We set

ϑ1(z) =
z f1(−z2)

1− zf1(−z2)
(4.1)

ϑ2(z) =
z f2(−z2)

1− zf2(−z2)
.(4.2)

Note that ϑ1(z) and ϑ2(z) are algebraic functions over the function field K(z).

Theorem 3. Let k > 3 be a positive integer and ρk, γk denote the positive real singularities of
Fk(z) =

∑
n≥0 fk(2n)z2n and

∑
n≥0 T

[4]
k (n) zn, respectively. Then the number of k-noncrossing

RNA structures with arc-length ≥ 4 is for k ≤ 9 asymptotically given by

(4.3) T
[4]
k (n) ∼ ck n−((k−1)2+(k−1)/2)

(
γ−1

k

)n
,

where γk is the unique positive, real solution of ϑ1(γk) = ρk.

Proof. Setting

Fk(ϑ1(z)) =
∑

n≥0

fk(2n)
(

z f1(−z2)
1− zf1(−z2)

)2n

and Fk(ϑ2(z)) =
∑

n≥0

fk(2n)
(

z f2(−z2)
1− zf2(−z2)

)2n
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According to Theorem 2 we have the functional equation
∑

n≥0

T
[4]
k (n) zn =

F1(−z2)
1− zf1(−z2)

Fk(ϑ1(z)) +
F2(−z2)

1− zf2(−z2)
Fk(ϑ2(z)) .

We consider the functions ϑ1(z), ϑ2(z) given by eq. (4.1) and eq. (4.2). The mappings x 7→ ϑ1(x)
and x 7→ ϑ2(x) are strictly monotone and ϑ1(x) > ϑ2(x) for ϑ1(x) ∈]0, 1

5 ]. Furthermore we have
ρk < ρ4 = 1

6 , for k > 4. We can conclude from this that the real, positive dominant singularity,
γk, of

∑
n≥0 T

[4]
k (n) zn, whose existence is guaranteed by Pringsheim’s Theorem [23], satisfies

(4.4) ϑ1(γk) = ρk .

Being a determinant of Bessel functions [9], Fk(z) is D-finite and ϑ1(z) and ϑ2(z) are algebraic
over K(z) and satisfy ϑ1(0) = 0 = ϑ2(z). Therefore the composition Fk(ϑi(z)), i = 1, 2, is D-finite
[22] and Fk(ϑ1(z)) and Fk(ϑ2(z)) have singular expansions, respectively. We further observe that
neither F1(−z2)

1−zf1(−z2) nor F2(−z2)
1−zf2(−z2) have a singularity ζ with |ζ| ≤ γk. Hence if ζ is a dominant

singularity of
∑

n T
[4]
k (n) zn then it is necessarily a singularity of Fk(ϑ1(z)) or Fk(ϑ2(z)). As for

singularities of Fk(ϑ1(z)) and Fk(ϑ2(z)), we consider for k ≤ 9 the ODE satisfied by Fk(z):

(4.5) q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + qe,k(z)Fk(z) = 0 ,

where qj,k(z) are polynomials. The key point is now that any dominant singularity of Fk(z) is
contained in the set of roots of q0,k(z) [22]. Computing the ODEs for 4 ≤ k ≤ 9 we can therefore
conclude that Fk(z) has only the two dominant singularities ρk and −ρk. Let S = {ζ | ϑ1(ζ) =
ρk or ϑ2(ζ) = −ρk}. Then γk is the unique S-element of minimal modulus. We can draw two
conclusions: first

(4.6) [zn]T[4]
k (z) ∼ ck [zn]Fk(ϑ1(z)) for some ck > 0

and secondly, γk is the unique dominant singularity of
∑

n T
[4]
k (n) zn. In view of eq. (4.6) it thus

remains to analyze the subexponential factors of the singular expansion of Fk(ϑ1(z)) at z = γk.
Since ϑ1(z) is regular at γk we are given the supercritical case of singularity analysis [7]. In the
supercritical case the subexponential factors of the compositum, Fk(ϑ1(z)) coincide with those of
the outer function, Fk(z). According to [13] we have for arbitrary k

(4.7) fk(2n)(n) ∼ n−((k−1)2+ k−1
2 )

(
ρk
−1

)n

and therefore

(4.8) T
[4]
k (n) ∼ ck n−((k−1)2+ k−1

2 )
(
γk
−1

)n
.

proving the theorem. ¤
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5. Proof of Claim 1

We recall that the numbers of k-noncrossing matchings and RNA structures with arc-length ≥ λ

are denoted by fk(2n) and T
[λ]
k (n), respectively. Furthermore, let T

[λ]
k (n, `) denote the number of

k-noncrossing RNA structures with arc-length ≥ λ having exactly ` arcs, and let fk(m, `) denote
the number of k-noncrossing diagrams with ` isolated points over m vertices. Let Gn,k(`, j1, j2, j3)
be the set of all k-noncrossing diagrams having exactly ` isolated points and exactly j1 1-arc,
j2 2-arcs and j3 3-arcs. We set Gk(n, `, j1, j2, j3) = |Gn,k(`, j1, j2, j3)|. In particular, we have
Gk(n, `, 0, 0, 0) = T

[4]
k (n, `). We observe that eq. (3.5) is implied (taking the sum over all `) by

T
[4]
k (n, `) =

∑

b≤bn
2 c

(−1)bλ(n, b) fk(n− 2b, `) ,(5.1)

where λ(n, b) satisfies the recursion

λ(n, b) = λ(n− 1, b) + λ(n− 4, b− 2) + λ(n− 5, b− 2) + λ(n− 6, b− 3)

+
b∑

i=1

[λ(n− 2i, b− i) + 2λ(n− 2i− 1, b− i) + λ(n− 2i− 2, b− i)]

− λ(n− 3, b− 1)

with the initial conditions λ(n, 0) = 1, λ(n, 1) = 3n− 6 and n ≥ 2b. We shall proceed by proving
eq. (5.1). For this purpose, let λ(n, b1, b2, b3) denote the number of ways to select exactly b1 1-arcs,
b2 2-arcs and b3 3-arcs over 1, . . . , n vertices.
Claim A.

(5.2)
∑

j1≥b1,j2≥b2,j3≥b3

(
j1
b1

)(
j2
b2

)(
j3
b3

)
Gk(n, l, j1, j2, j3) = λ(n, b1, b1, b3)fk(n− (b1 + b2 + b3), l).

The idea is to construct a family F of Gn,k-diagrams, having ` isolated points and at least b1 1-arcs
and b2 2-arcs and b3 3-arcs, respectively. We then express |F| via the numbers Gk(n, `, j1, j2, j3).
We select (a) b1 1-arcs and b2 2-arcs and b3 3-arcs and (b) an arbitrary k-noncrossing diagram
over the remaining n− 2(b1 + b2 + b3) vertices with exactly ` isolated points. Let F be the family
of diagrams obtained in this way. It is straightforward to show that λ(n, b1, b2, b3) satisfies the
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recursion:

λ(n, b1, b2, b3)

= λ(n− 1, b1, b2, b3) + λ(n− 2, b1 − 1, b2, b3) + λ(n− 4, b1 − 1, b2, b3 − 1)

+ λ(n− 5, b1, b2, b3 − 2) + λ(n− 6, b1, b2, b3 − 3)− λ(n− 3, b1, b2 − 1, b3)

+
b∑

i=1

[2λ(n− 2i− 1, b1, b2 − 1, b3 − (i− 1)) + λ(n− 2i− 2, b1, b2, b3 − i)]

b∑

i=2

[λ(n− 2i, b1, b2 − 2, b3 − (i− 2))]

with the initial conditions λ(n, 0, 0, 0) = 1, λ(n, 1, 0, 0) = n− 1, λ(n, 0, 1, 0) = n− 2, λ(n, 0, 0, 1) =
n− 3, n ≥ 2b.
Clearly, each element θ ∈ F is contained in Gn,k(`, j1, j2, j3) for some j1 ≥ b1 and j2 ≥ b2 and
j3 ≥ b3. Indeed, any 1-arc or 2-arc or 3-arc can only cross at most two other arcs. Therefore
1-arcs and 2-arcs and 3-arcs cannot be contained in a set of more than 3-mutually crossing arcs.
As a result, for k > 3 the construction generates k-noncrossing diagrams. Clearly, θ has exactly
` isolated vertices and in step (b) we potentially derive additional 1-arcs and 2-arcs and 3-arcs,
whence j1 ≥ b1 and j2 ≥ b2 and j3 ≥ b3, respectively. Next we observe that we have by construction

|F| = λ(n, b1, b2, b3) fk(n− 2(b1 + b2 + b3), `) .

Since any of the k-noncrossing diagrams over n− 2(b1 + b2 + b3) vertices can generate additional
1-arcs or 2-arcs or 3-arcs, we consider

F(j1, j2, j3) = {θ ∈ F | θ has exactly j1 1-arcs, j2 2-arcs and j3 3-arcs} .

Obviously, we then have the partition F = ∪̇j1≥b1,j2≥b2,j3≥b3F(j1, j2, j3). Suppose θ ∈ F(j1, j2, j3),
then θ ∈ Gn,k(`, j1, j2, j3) and furthermore θ occurs with multiplicity

(
j1
b1

) (
j2
b2

) (
j3
b3

)
in F since by

construction any b1-element subset of the j1 1-arcs and b2-element subset of the j2 2-arcs and
b3-element subset of the j3 3-arcs is counted respectively in F. Therefore we have

(5.3) |F(j1, j2, j3)| =
(

j1
b1

)(
j2
b2

)(
j3
b3

)
Gk(n, `, j1, j2, j3)

and
∑

j1≥b1,j2≥b2,j3≥b3

|F(j1, j2, j3)| = λ(n, b1, b2, b3)fk(n− 2(b1 + b2 + b3), `)
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proving Claim A. We next set

Fk(x, y, z) =
∑

j1≥0

∑

j2≥0

∑

j3≥0

Gk(n, `, j1, j2, j3)xj1yj2zj3 .

Taking derivatives we obtain

1
b1!

1
b2!

1
b3!

F b1,b2,b3
k (1)

=
∑

j1≥b1,j2≥b2,j3≥b3

(
j1
b1

)(
j2
b2

)(
j3
b3

)
Gk(n, `, j1, j2, j3)1j1−b11j2−b21j3−b3

and accordingly
∑

j1≥0,j2≥0,j3≥0

Gk(n, `, j1, j2, j3)xj1yj2zj3

=
∑

b1≥0,b2≥0,b3≥0


 ∑

j1≥b1,j2≥b2,j3≥b3

(
j1
b1

)(
j2
b2

)(
j3
b3

)
Gk(n, `, j1, j2, j3)




(x− 1)b1(y − 1)b2(z − 1)b3

=
∑

b1≥0,b2≥0,b3≥0

λ(n, b1, b2, b3)fk(n− 2(b1 + b2 + b3), `)(x− 1)b1(y − 1)b2(z − 1)b3 .

By construction G(n, `, 0, 0, 0) is the constant term of the Fk(x, y, z). That is, the number of
k-noncrossing RNA structures with ` isolated vertices and no 1-arcs 2-arcs and 3-arcs is given by

(5.4) G(n, `, 0, 0, 0) =
∑

b1≥0,b2≥0,b3≥0

(−1)b1+b2+b3λ(n, b1, b2, b3)fk(n− 2(b1 + b2 + b3), `) .

We take the sum over all ` and derive

T
[4]
k (n) =(5.5)

bn
2 c∑

b1≥0,b2≥0,b3≥0

(−1)b1+b+2+b3λ(n, b1, b2, b3)




n−2(b1+b2+b3)∑

`=0

fk(n− 2(b1 + b2 + b3), `)


 .

Setting
λ(n, b) =

∑

b1+b2+b3=b

λ(n, b1, b2, b3)

we conclude first

T
[4]
k (n) =

∑

b≤bn
2 c

(−1)bλ(n, b)Mk(n− 2b)

and secondly eq. (5.2), completing the proof of Claim 1.
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