On the Determination Problem for P_4 -Transformation of Graphs *

Xueliang Li and Yan Liu

Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China lxl@nankai.edu.cn

Abstract

We prove that the P_4 -transformation is one-to-one on the set of graphs with minimum degree at least 3, and if graphs G and G' have minimum degree at least 3 then any isomorphism from the P_4 -graph $P_4(G)$ to the P_4 -graph $P_4(G')$ is induced by a vertex-isomorphism from G to G' unless G and G' both belong to a special family of graphs.

1 Introduction

Broersma and Hoede [3] generalized the concept of line graphs and introduced the concept of path graphs. We follow their terminology and give the following definition. Let P_k and C_k denote a path and a cycle with kvertices, respectively. Denote by $\Pi_k(G)$ the set of all P_k 's in G ($k \ge 1$). The path graph $P_k(G)$ of a graph G has vertex set $\Pi_k(G)$ and edges joining pairs of vertices that represent two paths P_k , the union of which forms either a path P_{k+1} or a cycle C_k in G. A graph is called a P_k -graph if it is isomorphic to $P_k(H)$ for some graph H. If k = 2, then the P_2 -graph is exactly

^{*}Supported by NSFC, PCSIRT and the "973" program.

the line graph. The way of describing a line graph stresses the adjacency concept, whereas the way of describing a path graph stresses the concept of path generation by consecutive paths.

For a graph transformation, there are two general problems, which are formulated by Grünbaum [4]. We state them here for the P_4 -transformation.

Characterization Problem: Characterize those graphs that are the P_4 -graph of some graph.

Determination Problem: Determine which graphs have a given graph as their P_4 -graphs.

For line graphs, there is a well known result concerning the determination problem: If G and G' are connected and have isomorphic line graphs, then G and G' are isomorphic unless one is $K_{1,3}$ and the other is K_3 . This result is due to Whitney [19]. For the P_3 -transformation, Broersma and Hoede [3] found two pairs and two classes of nonisomorphic connected graphs with isomorphic connected P_3 -graphs. These examples show that Whitney's result on line graphs has no similar counterpart with respect to P_3 -graphs. In [8], Li proved that the P_3 -transformation is one-to-one on all graphs with minimum degree $\delta \geq 4$. Later in [9], Li obtained the same result for all graphs with minimum degree $\delta \geq 3$. Then Aldred, Ellingham, Hemminger and Jipsen [1] completely solved the determination problem for k = 3, and proposed a question to investigate the same problem for $k \geq 4$. Li and Zhao [11] proved that for $k \geq 4$ the P_k -transformation is one-to-one on all graphs with minimum degree $\delta \geq k$. In [10] Li and Zhao also showed that the P_4 transformation is one-to-one on all graphs with minimum degree $\delta = 3$ and satisfying one of two other conditions. In this paper, we obtain a stronger result that the P_4 -transformation is one-to-one on all graphs with minimum degree $\delta \geq 3$. For more literature related to the path graphs we refer the reader(s) to [7, 12, 13, 14, 15, 16, 17, 18].

2 Preliminaries

In what follows, all graphs are connected and simple. For any graph Gand any vertex u in G, let N(u) denote the neighborhood of u in G and let deg(u) denote the degree of u. We write $u \sim v$ if u and v are adjacent in G, and $u \not\sim v$ otherwise. For α in $\Pi_4(G)$, define $N(\alpha)$, $deg(\alpha)$, $\alpha \sim \beta$ and $\alpha \not\sim \beta$ in $P_4(G)$ similarly. For a nonnegative integer d, we denote by \mathcal{G}_d the class of all connected graphs with minimum degree at least d.

We will follow the treatment of [8] for P_3 -graphs, which in turn reflects Jung's ideas in [6] and Beineke-Hemminger's treatment in [5]. We introduce the following notation and obtain the corresponding results.

A vertex-isomorphism from G to G' is a bijection $f: V(G) \to V(G')$ such that two vertices are adjacent in G if and only if their images are adjacent in G'. We let $\Gamma(G, G')$ denote the set of all vertex-isomorphisms of G to G'.

An edge-isomorphism from G to G' is a bijection $f : E(G) \to E(G')$ such that two edges are adjacent in G if and only if their images are adjacent in G'. Obviously, an edge-isomorphism of two graphs is exactly a vertexisomorphism of their line graphs. Let $\Gamma_e(G, G')$ denote the set of all edgeisomorphisms of G to G'. We shorten $\Gamma(P_4(G), P_4(G'))$ to $\Gamma_4(G, G')$ and call the members P_4 -isomorphisms from G to G'.

Let $f \in \Gamma(G, G')$ and $x_1 x_2 \cdots x_k$ be a P_k -path in G, then $f(x_1)f(x_2)\cdots f(x_k)$ is a P_k -path in G'. Define a mapping $f' : \Pi_k(G) \to \Pi_k(G')$ by $f'(x_1 x_2 \cdots x_k) = f(x_1)f(x_2)\cdots f(x_k)$ and call f' the mapping induced by a vertex-isomorphism f. Let $\Gamma'_k(G, G') = \{f' | f \in \Gamma(G, G')\}$. Note that f' is not defined for a connected graph in general unless it has at least one P_k -path.

For $f \in \Gamma_e(G, G')$, define a mapping $f^* : \Pi_4(G) \to \Pi_4(G')$ by $f^*(tuvw) = f(tu)f(uv)f(vw)$ for a P_4 -path tuvw in G, and call f^* the mapping induced by an edge-isomorphism f. We let $\Gamma^*(G, G') = \{f^* \mid f \in \Gamma_e(G, G')\}$. Note that f^* is not defined for a connected graph in general unless it has at least one P_4 -path.

If $P_4 = tuvw$, then the edge uv is called *middle edge* of the P_4 and tuvw = wvut. We let S(uv) denote the set of all P_4 -paths with a common middle

edge uv. Any subset of S(uv) is called a *double star* at the edge uv. A mapping $f: \Pi_4(G) \to \Pi_4(G')$ is called *double star-preserving at the edge uv* if the set f(S(uv)) is a double star in G', and if the set f(S(uv)) is a double star in G', then f is called *double star-preserving*.

Theorem 2.1 ([5]) If G and H are connected graphs, then (1) $\Gamma'_2(G, H) \subseteq \Gamma_e(G, H);$ (2) the mapping $T : \Gamma(G, H) \to \Gamma'_2(G, H)$ given by T(f) = f' is one-to-one.

Theorem 2.2 ([5]) If G and H are connected graphs, then, except for the four cases shown in Figure 1, each edge-isomorphism of G onto H is induced by an isomorphism of G onto H.

From [10], we have the following two results.

Theorem 2.3 ([10]) If $G, G' \in \mathcal{G}_3$, then (1) $\Gamma^*(G, G') \subseteq \Gamma_4(G, G')$. (2) the mapping $T : \Gamma_e(G, G') \to \Gamma^*(G, G')$ given by $T(f) = f^*$ is one-to-one. **Theorem 2.4 ([10])** Let $G, G' \in \mathcal{G}_3$ and let $f : \Pi_4(G) \to \Pi_4(G')$ be a bijective mapping. Then f is induced by an edge-isomorphism from G to G'if and only if f and f^{-1} are double star-preserving P_4 -isomorphisms. We let $E_1(G) = \{uv \in E(G) \mid uv \text{ is a common edge of two triangles} with <math>deg(u) = deg(v) = 3$ in $G\}$, and denote by $E_2(G) = E(G) \setminus E_1(G)$. For $\alpha \in \Pi_4(G)$ and $f \in \Gamma_4(G, G')$, we let α' denote $f(\alpha)$.

Lemma 2.5 Let $G, G' \in \mathcal{G}_3$ and let f be a P_4 -isomorphism from G to G'. Then f is double star-preserving at every edge of $E_2(G)$ if and only if for every P_3 -path tuv of G, $f(x_1tuv), \dots, f(x_rtuv)$ have a common middle edge and $f(tuvy_1), \dots, f(tuvy_s)$ have a common middle edge, where $N(t) \setminus \{u, v\} =$ $\{x_1, \dots, x_r\}, N(v) \setminus \{t, u\} = \{y_1, \dots, y_s\}, and r \ge 1, s \ge 1.$

Proof. Let tuv be a P_3 -path of G, and $N(t) \setminus \{u, v\} = \{x_1, \dots, x_r\}$ and $N(v) \setminus \{t, u\} = \{y_1, \dots, y_s\}$. If both tu and uv are in $E_1(G)$, then u is a common vertex of at least three triangles. Thus, G must be the graph with a K_4 on t, u, v, w, where w is the only vertex joined to the remainder of the graph G. In this case there is only one P_4 of the form $x_i tuv$ $(x_1 = w)$ and only one P_4 of the form $tuvy_j$ $(y_1 = w)$, and then the conclusion of the lemma obviously holds. Next we suppose that there is at least one of tu and uv in $E_2(G)$, without loss of generality, let $tu \in E_2(G)$. So we know that $f(x_1tuv), \dots, f(x_rtuv)$ have a common middle edge. If $uv \in E_2(G)$, then $f(tuvy_1), \dots, f(tuvy_s)$ also have a common middle edge. If $uv \in E_1(G)$, then we have that s = 1, $N(u) = \{t, v, y_1\}$ and $N(v) = \{t, u, y_1\}$, which is a trivial case. This proves the necessity.

For the sufficiency, let uv be any edge of $E_2(G)$ and let tuvw, t'uvw' be two P_4 -paths in S(uv). We will distinguish the following four possible cases:

Case 1. The four vertices t, t', w and w' are pairwise distinct.

From the condition we know that f(tuvw) and f(tuvw') have a common middle edge, and f(tuvw') and f(t'uvw') have a common middle edge. Thus f(tuvw) and f(t'uvw') have a common middle edge.

Case 2. t = t' or w = w'.

From the condition, we know that f(tuvw) and f(t'uvw') have a common middle edge.

Case 3. t = w' but $t' \neq w$, or t' = w but $t \neq w'$.

By a proof similar to that of Case 1, we can show that f(tuvw) and f(t'uvw') have a common middle edge.

Case 4. t = w' and t' = w.

In this case, we see that uv is a common edge of two triangles C = tuvtand C' = t'uvt'. Since $uv \in E_2(G)$, we have $\max\{deg(u), deg(v)\} \ge 4$. Without loss of generality, we let $deg(u) \ge 4$. Then there exists a vertex $x \in N(u) \setminus \{t, v, t'\}$. From the condition, we know that f(tuvw) and f(xuvw) have a common middle edge, f(xuvw) and f(xuvw') have a common middle edge, and f(xuvw') and f(t'uvw') have a common middle edge. Thus f(tuvw) and f(t'uvw') have a common middle edge.

To sum up the above cases, we know that f(S(uv)) is a double star of G'. The proof is complete.

Lemma 2.6 ([11]) Let $f \in \Gamma_4(G, G')$ and let $x_1tuv, x_2tuv, tuvy_1$ and $tuvy_2$ be four P_4 -paths of G. Then $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge if and only if $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Lemma 2.7 ([11]) Let $f \in \Gamma_4(G, G')$ and let $x_1tuv, x_2tuv, tuvy_1$ and $tuvy_2$ be four P_4 -paths of G. If $f(x_1tuv)$ and $f(x_2tuv)$ have no common middle edge, then $f(x_1tuv), f(x_2tuv), f(tuvy_1)$ and $f(tuvy_2)$ form a C_4 in G'.

Lemma 2.8 Let $G, G' \in \mathcal{G}_3$ and $f \in \Gamma_4(G, G')$. If $x_1tuv, x_2tuv, tuvy_1$ and $tuvy_2$ are four P_4 -paths of G, then $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge, and $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge, respectively.

Proof. Assume, to the contrary, that $f(x_1tuv)$ and $f(x_2tuv)$ have no common middle edge. By Lemma 2.7, we have that $f(x_1tuv)$, $f(x_2tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$ form a C_4 in G' (denoted by C' = abcda), say $f(x_1tuv) = abcd$, $f(x_2tuv) = badc$, $f(tuvy_1) = bcda$ and $f(tuvy_2) = dabc$.

We claim that $N(t) \setminus \{u, v, x_1, x_2\} = \emptyset$ and $N(v) \setminus \{t, u, y_1, y_2\} = \emptyset$. Otherwise, there is another member α of $\Pi_4(G)$ with the P_3 -path tuv. Without loss of generality, let $\alpha = tuvy_3$ and $y_3 \notin \{t, u, y_1, y_2\}$, then we would have that α' is adjacent to both $f(x_1tuv)$ and $f(x_2tuv)$, which is impossible. Now x_1tuv , x_2tuv , $tuvy_1$ and $tuvy_2$ are all P_4 -paths of G with common P_3 -path tuv. We will distinguish the following two possible cases:

Case 1. Not all x_1u , x_2u , uy_1 and uy_2 are in E(G).

Without loss of generality, we let $x_1u \notin E(G)$. Since $G \in \mathcal{G}_3$, there are two vertices $p, q \in N(x_1)$ and a vertex $z \in N(u) \setminus \{v\}$ such that px_1tu, qx_1tu and x_1tuz are P_4 -paths in G. If $f(x_1tuv)$ and $f(x_1tuz)$ have a common middle edge, then, as both $f(x_1tuv)$ and $f(x_1tuz)$ are adjacent to $f(px_1tu)$, we know that $f(x_1tuv)$ and $f(x_1tuz)$ have a common P_3 -path, say *abc*. Now, let $f(x_1tuz) = abcd'$, so $f(x_1tuz)$ is adjacent to $f(tuvy_2)$, but x_1tuz is not adjacent to $tuvy_2$ in $P_4(G)$, a contradiction to the fact that $f \in \Gamma_4(G, G')$. If $f(x_1tuv)$ and $f(x_1tuz)$ have no common middle edge, then by Lemma 2.7 $f(px_1tu), f(qx_1tu), f(x_1tuv)$ and $f(x_1tuz)$ form a C_4 in G' (denoted by C''). Obviously, C' = C'', and so we have $f(x_2tuv) = f(x_1tuz)$, a contradiction to the fact that $f : \Pi_4(G) \to \Pi_4(G')$ is a bijective mapping. Thus $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge.

Case 2. All x_1u , x_2u , uy_1 and uy_2 are in E(G).

Subcase 2.1 max{ $deg(x_1), deg(x_2), deg(y_1), deg(y_2)$ } ≥ 4 .

Without loss of generality, we let $deg(x_1) \ge 4$. Then there are two vertices $p, q \in N(x_1)$ such that px_1tu and qx_1tu are P_4 -paths in G. Now we consider $f(x_1tuv)$ and $f(x_1tux_2)$ with the following two possible cases: One is that $f(x_1tuv)$ and $f(x_1tux_2)$ have a common middle edge, the other is that $f(x_1tuv)$ and $f(x_1tux_2)$ have no common middle edge. By a proof similar to that of Case 1, it is easy to see that $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge. By Lemma 2.6, $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Subcase 2.2 $deg(x_1) = deg(x_2) = deg(y_1) = deg(y_2) = 3.$

Let $\alpha_i = x_i tuv$ and $\beta_i = tuvy_i$ for i = 1, 2. Then, as $x_1 tuv$, $x_2 tuv$, $tuvy_1$ and $tuvy_2$ are all P_4 -paths of G with common P_3 -path tuv, we have that $deg(\alpha_i) = deg(\alpha'_i) = deg(\beta_i) = deg(\beta'_i) = 3$ for i = 1, 2. We can assume that there exist a vertex $p \in N(x_1)$ and a vertex $q \in N(x_2)$ such that px_1tu and qx_2tu are P_4 -paths in G. Let $\beta_3 = px_1tu$ and $\beta_4 = qx_2tu$. Since $\beta_3 \sim \alpha_1$, without loss of generality, we have $\beta'_3 = gabc$ and $g \notin \{a, b, c, d\}$. Suppose that $\alpha_3 \in \Pi_4(G)$ with $\alpha'_3 = gadc$. Now $\alpha'_3 \sim \beta'_1$, so α_3 has a common P_3 -path uvy_1 with β_1 by $N(t) \setminus \{u, v, x_1, x_2\} = \emptyset$, and then let $\alpha_3 = uvy_1r$. Next we note that $N(b) = \{a, c, d\}$ and $N(d) = \{a, b, c\}$. Otherwise, we would have a fourth P_4 in $\Pi_4(G')$ which is adjacent to α'_1 or β'_1 , a contradiction to $deg(\alpha'_1) = deg(\beta'_1) = 3$. Since $\beta_4 \sim \alpha_2$, then we know that β'_4 has a common P_3 -path adc with α'_2 . So let $\beta'_4 = adch$. If $\alpha_4 \in \Pi_4(G)$ with $\alpha'_4 = abch$, then $\alpha_4' \sim \beta'_2$. By a similar argument as α'_3 , we can let $\alpha_4 = uvy_2s$. Now $\alpha'_3 \sim \beta'_4$ and $\alpha'_4 \sim \beta'_3$, then we conclude that $x_1 = y_2, x_2 = y_1, p = q = v$ and r = s = t in G.

Let $\alpha_5 = tx_1vx_2$ and $\beta_5 = x_2tx_1v$. Now α_4 and α_5 have a common P_3 -path tx_1v with β_3 and β_5 in G, then we will show that α'_4 , α'_5 , β'_3 and β'_5 form a C_4 in G'. If α'_4 and α'_5 have a common middle edge in G', then, as both α'_4 and α'_5 are adjacent to β'_3 , we know that α'_4 and α'_5 have a P_3 -path *abc* in common. So let $\alpha'_5 = abch'$, now $\alpha'_5 \sim \beta'_2$, but $\alpha_5 \not\sim \beta_2$, a contradiction. Thus α'_4 and α'_5 have no common middle edge. By Lemma 2.7, we have that α'_4 , α'_5 , β'_3 and β'_5 form a C_4 in G', and then g = h. Since $\alpha_5 \sim \beta_3$ and $\beta_5 \sim \alpha_4$, we conclude that $\alpha'_5 = cgab$ and $\beta'_5 = bcga$. Let $\alpha_6 = tx_2vx_1$ and $\beta_6 = x_1tx_2v$. Now α_3 and α_6 have a common P_3 -path tx_2v with β_4 and β_6 . Then, by a similar argument as above, we can get that α'_3 , α'_6 , β'_4 and β'_6 form a $C_4 = gadcg$ in G' with $\alpha'_6 = dcga$ and $\beta'_6 = cgad$.

Now, let $\alpha_7 = ux_1tx_2$ and $\beta_7 = x_1tx_2u$. Since $N(v) \setminus \{t, u, x_1, x_2\} = \emptyset$ and $deg(x_2) = 3$, we know that $deg(\beta_5) = 4$ and $N(\beta_5) = \{\alpha_4, \alpha_5, \beta_6, \beta_7\}$. So, $deg(\beta'_5) = 4$, and then $\alpha'_4, \alpha'_5, \beta'_6$, and dbcg are exactly the four neighbors of β'_5 . Since f is a P_4 -isomorphism from G to G', we have $\beta'_7 = dbcg$. By the same argument, we can have $deg(\beta'_6) = deg(\beta_6) = 4$, and then $\alpha'_7 = gadb$. Now $\alpha_7 \sim \beta_7$, but $\alpha'_7 \not\sim \beta'_7$, a contradiction. Then $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge. By Lemma 2.6, $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Remark. Let $G, G' \in \mathcal{G}_3$ and $f \in \Gamma_4(G, G')$. If $x_1 tuv, x_2 tuv, tuvy_1$ and $tuvy_2$ are four P_4 -paths of G, then, without loss of generality, we can let $f(x_1 tuv) = x'_1 t'u'v', f(x_2 tuv) = x'_2 t'u'v', f(tuvy_1) = t'u'v'y'_1$, and $f(tuvy_2) = t'u'v'y'_2$.

By Lemma 2.8, we have $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge. Then, as both $f(x_1tuv)$ and $f(x_2tuv)$ are adjacent to $f(tuvy_1)$, we have that $f(x_1tuv)$ and $f(x_2tuv)$ have a common P_3 -path with $f(tuvy_1)$, say t'u'v'. So we can let $f(x_1tuv) = x'_1t'u'v'$, $f(x_2tuv) = x'_2t'u'v'$, and $f(tuvy_1) =$ $t'u'v'y'_1$. Since $f(tuvy_2)$ is adjacent to both $f(x_1tuv)$ and $f(x_2tuv)$, then $f(tuvy_2)$ has a common P_3 -path t'u'v' with $f(x_1tuv)$ and $f(x_2tuv)$. So let $f(tuvy_2) = t'u'v'y'_2$ and $y'_2 \notin \{t', u', v', y'_1\}$ but possibly $y'_2 = x'_1$ or $y'_2 = x'_2$.

Lemma 2.9 Let $G, G' \in \mathcal{G}_3$ and $f \in \Gamma_4(G, G')$. If there is a $C_4 = xtuvx$ in G, then f(xtuv), f(tuvx), f(uvxt) and f(vxtu) form a C_4 in G'.

Proof. Since f(xtuv) is adjacent to f(tuvx), let f(xtuv) = habc and f(tuvx) = abcd. If f(uvxt) and f(xtuv) have a common middle edge, then, as f(uvxt) is adjacent to f(tuvx), we have that f(uvxt) has a common P_3 -path abc with f(tuvx), say f(uvxt) = h'abc. Since f(vxtu) is adjacent to both f(xtuv) and f(uvxt), we know that f(vxtu) has a common P_3 -path abc with f(xtuv) and f(uvxt), we know that f(vxtu) has a common P_3 -path abc with f(xtuv) and f(uvxt), and then let f(vxtu) = abcd'. Apply Lemma 2.8 for f^{-1} and the four P_4 -paths habc, h'abc, abcd, and abcd' of G', we have that xtuv and uvxt have a common middle edge in G, a contradiction. Thus f(uvxt) and f(xtuv) have no common middle edge. Then, as f(uvxt) is adjacent to both f(xtuv) and f(uvxt), the middle edge of f(vxtu) must be a common edge of f(xtuv) and f(uvxt). However, the edge bc is not the middle edge of f(vxtu), so ha = dg is the middle edge of f(vxtu), i.e., g = a, h = d. Thus, f(xtuv), f(tuvx), f(uvxt) and f(vxtu) form a C_4 in G' with f(vxtu) = cdab.

3 Main result

Denote by \mathcal{H} the set of all graphs obtained by taking one or more copies of the complete graph K_4 , choosing one edge in each copy, and identifying together all chosen edges into a single edge, or \mathcal{H} is the class of graphs $K_2 + (mK_2)$, where '+' denotes *join* and *mG* means the union of *m* disjoint copies of *G*.

Lemma 3.1 Let $G, G' \in \mathcal{G}_3$, and let f be a P_4 -isomorphism from G to G'. Then f is double star-preserving at every edge of $E_2(G)$, or both G and G' belong to \mathcal{H} .

Proof. We only need to show that f satisfies the condition of Lemma 2.5. Let tuv be a P_3 -path in G, where $N(t) \setminus \{u, v\} = \{x_1, \dots, x_m\}, N(v) \setminus \{t, u\} = \{y_1, \dots, y_n\}$, and $m \ge 1$, $n \ge 1$. Then we will distinguish the following three cases:

Case 1. $m \ge 2$ and $n \ge 2$.

The lemma is obvious by Lemma 2.8.

Case 2. m = 1 and $n \ge 2$, or $m \ge 2$ and n = 1.

If m = 1, then the edge tv must belong to E(G), i.e., $N(t) = \{x_1, u, v\}$. So we only need to show that $f(tuvy_1), \dots, f(tuvy_n)$ have a common middle edge.

Subcase 2.1 $x_1u \notin E(G)$.

Since $G \in \mathcal{G}_3$, there are two vertices $p, q \in N(x_1)$ and a vertex $z \in N(u) \setminus \{v\}$ such that px_1tu , qx_1tu and x_1tuz are P_4 -paths in G. Then, from the above Remark, we can let $f(x_1tuv) = x'_1t'u'v'$ and $f(x_1tuz) = x'_1t'u'z'$. Since $f(tuvy_1), \cdots, f(tuvy_n)$ are adjacent to $f(x_1tuv)$, but none of $tuvy_1, \cdots, tuvy_n$ is adjacent to x_1tuz , we have that $f(tuvy_1), \cdots, f(tuvy_n)$ have a common P_3 -path t'u'v' with $f(x_1tuv)$. Thus, $f(tuvy_1), \cdots, f(tuvy_n)$ have a common middle edge.

Subcase 2.2 $x_1 u \in E(G)$.

(1) There is a vertex $p \in N(x_1) \setminus \{t, u, v\}$.

Since $G \in \mathcal{G}_3$, there are two vertices $r, s \in N(p)$ such that rpx_1t and spx_1t are P_4 -paths in G. From the Remark, we can let $f(rpx_1t) = r'p'x'_1t'$, $f(spx_1t) = s'p'x'_1t'$, $f(px_1tu) = p'x'_1t'u'$ and $f(px_1tv) = p'x'_1t'v'$. Since $f(x_1tuv)$ is adjacent to $f(px_1tu)$, but x_1tuv is not adjacent to px_1tv , then $f(x_1tuv)$ has a common P_3 -path $x'_1t'u'$ with $f(px_1tu)$. So let $f(x_1tuv) = x'_1t'u'v_1$.

 $(1.1) \ deg(u) \ge 4.$

Then there exists a vertex $z \in N(u) \setminus \{v\}$ such that $x_1 t u z$ is a P_4 -path in G. Since $f(x_1 t u z)$ is adjacent to $f(px_1 t u)$, but $x_1 t u z$ is not adjacent to $px_1 t v$, we have that $f(x_1 t u z)$ has a common P_3 -path $x'_1 t' u'$ with $f(px_1 t u)$, say $f(x_1 t u z) = x'_1 t' u' z'$. Similarly, since $f(t u v y_1), \dots, f(t u v y_n)$ are adjacent to $f(x_1 t u v)$, then $f(t u v y_1), \dots, f(t u v y_n)$ must have a common P_3 -path $t' u' v_1$ with $f(x_1 t u v)$. Otherwise, $t u v y_1, \dots, t u v y_n$ are adjacent to $x_1 t u z$, a contradiction. Hence $f(t u v y_1), \dots, f(t u v y_n)$ have a common middle edge.

(1.2) deg(u) = 3, i.e., $N(u) = \{x_1, t, v\}$.

Let $\alpha_1 = rpx_1t$, $\alpha_2 = spx_1t$, $\beta_1 = px_1tu$, $\beta_2 = px_1tv$ and $\gamma = x_1tuv$. Since $n \geq 2$, there must exist some *i* such that $y_i \neq x_1$. Without loss of generality, say $y_1 \neq x_1$. Let $\alpha_3 = x_1tvy_1$, $\alpha_4 = x_1tvu$ and $\beta_3 = ux_1tv$. Now β_2 and β_3 have a common P_3 -path x_1tv with α_3 and α_4 . Since $\alpha_3, \alpha_4 \sim \beta_2$, but $\alpha_3, \alpha_4 \not\sim \beta_1$, we know that α'_3 and α'_4 have a common P_3 -path x'_1tv' with β'_2 . Then, from the Remark, we can let $\alpha'_3 = x'_1t'v'y''_1$, $\alpha'_4 = x'_1t'v'u_1$, and $\beta'_3 = u_2x'_1t'v'$. Now, let $\alpha_5 = vux_1t$ and $\beta_4 = tvux_1$. By Lemma 2.9, we get that β'_3 , α'_4 , β'_4 and α'_5 form a C_4 in G', and then $u_1 = u_2$. Since $\beta_4 \sim \alpha_4$ and $\alpha_5 \sim \beta_3$, we have that $\beta'_4 = t'v'u_1x'_1$ and $\alpha'_5 = v'u_1x'_1t'$. Next we note that $u_1 = u'$ and $v_1 = v'$. If $u_1 \neq u'$, then let $\theta_1 \in \Pi_4(G)$ with $\theta'_1 = u_1x'_1t'u'$. Now, $\theta'_1 \sim \alpha'_5, \gamma'$, but there is no P_4 of $\Pi_4(G)$ which is adjacent to both α_5 and γ , a contradiction. Thus, $u_1 = u'$. Similarly, if $v_1 \neq v'$, let $\theta_2 \in \Pi_4(G)$ with $\theta'_2 = x'_1t'u'v'$. Now $\theta'_2 \sim \beta'_1$, and so px_1t is the common P_3 -path of θ_2 and β_1 , otherwise $\theta_2 = \gamma$, a contradiction.

Next we will show that $f(tuvy_1), \dots, f(tuvy_n)$ have a common P_3 -path t'u'v' with $f(x_1tuv)$, unless $G, G' \in \mathcal{H}$. Let $\gamma_i = tuvy_i$ for $1 \le i \le n$.

First, we consider $x_1 v \notin E(G)$. Assume, to the contrary, that γ'_1 has a common P_3 -path $x'_1 t' u'$ with γ' , say $\gamma'_1 = ax'_1 t' u'$. Since $deg(y_1) \geq 3$, there is a vertex $z_1 \in N(y_1)$ such that uvy_1z_1 is a P_4 -path in G. Let $\eta_1 = uvy_1z_1$, now $\eta_1 \sim \gamma_1$, but $\eta_1 \not\sim \beta_1$, then η'_1 has a common P_3 -path $ax'_1 t'$ with γ'_1 . So let $\eta'_1 = bax'_1 t'$. If $a \neq v'$, let $\theta_3 \in \Pi_4(G)$ with $\theta'_3 = ax'_1 t' v'$. Now, $\theta'_3 \sim \alpha'_4, \eta'_1$, but there is no P_4 of $\Pi_4(G)$ which is adjacent to both α_4 and η_1 , a contradiction. If a = v', then γ'_1 is in a $C_4 = u'v'x'_1t'u'$ of G'. Apply Lemma 2.9 for f^{-1} , we have that γ_1 is in a C_4 of G, which is impossible. Thus γ'_1 has a common P_3 -path t'u'v' with γ' . By the same argument, we would have that $\gamma'_1, \dots, \gamma'_n$ have a common P_3 -path t'u'v' with γ' . Thus $f(tuvy_1), \dots, f(tuvy_n)$ have a common middle edge.

At last, we will consider $x_1v \in E(G)$. Without loss of generality, we let $\gamma_n = tuvx_1$, i.e., $y_n = x_1$. By the above argument we have that $\gamma'_1, \dots, \gamma'_{n-1}$ have a common P_3 -path t'u'v' with γ' , and then let $\gamma'_i = t'u'v'y'_i$ for $1 \leq i \leq n-1$. Now, suppose that γ'_n and γ' have a P_3 -path $x'_1t'u'$ in common. Let $\beta_5 = uvx_1t$ and $\beta_6 = vx_1tu$. By Lemma 2.9, we have that $\gamma', \gamma'_n, \beta'_5$ and β'_6 form a C_4 in G', and then $x'_1 \sim v'$. So $\gamma'_n = v'x'_1t'u'$. Since $\beta_5 \sim \gamma_n$ and $\beta_6 \sim \gamma$, we have $\beta'_5 = u'v'x'_1t'$ and $\beta'_6 = t'u'v'x'_1$. In fact, $deg(\beta_5) = 2$ by $N(t) = \{x_1, u, v\}$ and $N(u) = \{x_1, t, v\}$. So $deg(\beta'_5) = 2$, and then $N(t') = \{x'_1, u', v'\}$ and $N(u') = \{x'_1, t', v'\}$.

Claim 1. $N(v') = \{t', u', y'_1, \dots, y'_{n-1}, x'_1\}$, i.e., deg(v') = deg(v).

Let $S = \{t', u', y'_1, \dots, y'_{n-1}, x'_1\}$. If there exists a vertex $w' \in N(v') \setminus S$, then t'u'v'w' is a P_4 -path in G'. Let $\gamma_0 \in \Pi_4(G)$ with $\gamma'_0 = t'u'v'w'$, now $\gamma'_0 \sim \gamma'$, then γ_0 must have a common P_3 -path x_1tu with γ . Otherwise, $\gamma_0 = \gamma_i$ for some $i \in \{1, \dots, n\}$, a contradiction. So let $\gamma_0 = wx_1tu$, and $w \neq v$. Since $deg(w) \geq 3$, there is a vertex $q \in N(w)$ such that qwx_1t is a P_4 -path in G. Let $\alpha_0 = qwx_1t$, now $\alpha_0 \sim \gamma_0$, so α'_0 has a common P_3 -path u'v'w' with γ'_0 . Otherwise, $\alpha'_0 = \gamma'$, a contradiction. So let $\alpha'_0 = u'v'w'q'$. Let $\beta_0 = wx_1tv$, now $\beta_0 \sim \alpha_0, \alpha_4$. But there is no P_4 of $\Pi_4(G')$ which is adjacent to both α'_0 and α'_4 , a contradiction. Hence, N(v') = S.

Let $\alpha_6 = px_1vu$, now $\alpha_6 \sim \gamma_n$, then α'_6 has a common P_3 -path $t'x'_1v'$ with γ'_n , otherwise, $\alpha'_6 = \gamma'$, a contradiction. By Claim 1, without loss of generality, we have $\alpha'_6 = t'x'_1v'y'_1$. There is at least one of r and s which is not equal to v, say $r \neq v$, and then let $\beta_7 = rpx_1v$. Since $\beta_7 \sim \alpha_6$, then β'_7 has a common P_3 -path $x'_1v'y'_1$ with α'_6 . Otherwise, $\beta'_7 = \gamma'_n$, a contradiction. So let $\beta'_7 = x'_1v'y'_1z'$. For $deg(r) \geq 3$, there must be a new member α_7 of $\Pi_4(G)$ that is adjacent to both α_1 and β_7 , then we require that $y'_1 = r'$, z' = p'and $\alpha'_7 = v'y'_1p'x'_1$. Let $\eta \in \Pi_4(G)$ with $\eta' = u'v'y'_1p'$, now $\eta' \sim \gamma'_1$, then η has a common P_3 -path uvy_1 with γ_1 . Otherwise, $\eta = \gamma$, a contradiction. So let $\eta = uvy_1z$. Now $\alpha'_7 \sim \beta'_7, \eta'$, then we require that $y_1 = r$, z = p and $\alpha_7 = vy_1px_1$. Let $\alpha_8 = px_1vy_1$ and $\beta_8 = x_1vy_1p$. By Lemma 2.9, we know that $\alpha'_7, \beta'_7, \alpha'_8$ and β'_8 form a C_4 in G'. Since $\alpha_8 \sim \beta_7$ and $\beta_8 \sim \alpha_7$, then we have $\alpha'_8 = p'x'_1v'y'_1$ and $\beta'_8 = y'_1p'x'_1v'$.

Claim 2. $N(p) = \{v, x_1, y_1\}, N(y_1) = \{p, v, x_1\}, N(p') = \{v', x'_1, y'_1\},$ and $N(y'_1) = \{p', v', x'_1\}.$

We see that η and β_8 have a common P_3 -path py_1v with α_7 . Since η' and β'_8 have no common middle edge, then we have that $N(p) = \{v, x_1, y_1\}$. Otherwise, there is a new P_4 -path apy_1v with $a \in N(p) \setminus \{v, x_1, y_1\}$. Then, by Lemma 2.8, we know that η' and β'_8 have a common middle edge, a contradiction. Similarly, we see that α_1 and β_7 have a common P_3 -path y_1px_1 with α_7 , then, as α'_1 and β'_7 have no common middle edge, we have that $N(y_1) = \{p, v, x_1\}$. Now, η' and β'_7 have a common P_3 -path $p'y'_1v'$ with α'_7 , but η and β_7 have no common middle edge. Since f^{-1} is also a P_4 isomorphism, then, by the same argument, we have that $N(p') = \{v', x'_1, y'_1\}$. Similarly, α'_1 and β'_8 have a common P_3 -path $y'_1p'x'_1$ with α'_7 , and as α_1 and β_8 have no common middle edge, we know that $N(y'_1) = \{p', v', x'_1\}$.

Claim 3. $N(x_1) = \{t, u, y_1, \cdots, y_{n-1}, v\}$ and $N(x'_1) = \{t', u', y'_1, \cdots, y'_{n-1}, v'\}$, and *n* is odd.

Since $deg(t) + deg(x_1) - 4 = deg(\gamma_n) = deg(\gamma'_n) = deg(u') + deg(v') - 4$, and deg(t) = deg(u') = 3, then $deg(x_1) = deg(v')$. Similarly, we can have $deg(v) = deg(x'_1)$ for $deg(\beta_6) = deg(\beta'_6)$. By Claim 1, we know that deg(v) = deg(v'). Thus, $deg(x_1) = deg(v)$ and $deg(x'_1) = deg(v')$. Now, suppose that $N(x_1) = \{t, u, p, p_2, \cdots, p_{n-1}, v\}$. By Claim 2, we know that $p \in N(v) \setminus \{x_1, y_1\}$ and $y_1 \in N(x_1) \setminus \{p, v\}$. Thus, without loss of generality, let $p = y_{n-1}$ and $y_1 = p_{n-1}$. Similarly, $p' \in N(v') \setminus \{x'_1, y'_1\}$ and $y'_1 \in N(x'_1) \setminus \{p', v'\}$, then we can let $p' = y'_{n-1}$ and $y'_1 = p'_{n-1}$. In fact we would see that x_1, v, y_1 and y_{n-1} form a K_4 in G, and x'_1, v', y'_1 and y'_{n-1} form a K_4 in G'. By a similar proof as above, without loss of generality, we can show that $N(p_i) = \{v, x_1, y_i\}$ and $N(y_i) = \{p_i, v, x_1\}$ for $2 \le i \le n-2$. Then $p_i \in N(v) \setminus \{y_1, y_i, y_{n-1}, x_1\}$ and $y_i \in N(x_1) \setminus \{p, p_i, p_{n-1}, v\}$, without loss of generality, we can let $p_i = y_{n-i}$ and $y_i = p_{n-i}$ for $2 \le i \le \lfloor \frac{n}{2} \rfloor$. So, if n is even, then $p_{\frac{n}{2}} = y_{\frac{n}{2}}$ and $N(p_{\frac{n}{2}}) = \{v, x_1\}$, which is impossible. Thus n is odd, and $N(x_1) = \{t, u, y_1, \cdots, y'_{n-1}, v'\}$. By the same argument, we can show that $N(x'_1) = \{t', u', y'_1, \cdots, y'_{n-1}, v'\}$ and $N(y'_i) = \{v', x'_1, y'_{n-i}\}$ for $2 \le i \le n-2$.

Now, we conclude that the four vertices x_1, v, y_i and y_{n-i} form a K_4 in G, and x'_1, v', y'_i and y'_{n-i} form a K_4 in G', for $2 \le i \le \frac{n-1}{2}$. Hence, $G, G' \in \mathcal{H}$. (2) $N(x_1) = \{t, u, v\}$.

Without loss of generality, let $y_n = x_1$. By Lemma 2.9, we have that $f(x_1tuv)$, $f(tuvx_1)$, $f(uvx_1t)$ and $f(vx_1tu)$ form a C_4 in G', say $f(x_1tuv) = abcd$, $f(tuvx_1) = bcda$, $f(uvx_1t) = cdab$ and $f(vx_1tu) = dabc$. In fact $deg(tuvx_1) = 2$ by $N(t) = \{x_1, u, v\}$ and $N(x_1) = \{t, u, v\}$. So deg(bcda) = 2, and then $N(a) = \{b, c, d\}$ and $N(b) = \{a, c, d\}$. Then, as $f(tuvy_1), \cdots, f(tuvy_{n-1})$ are adjacent to $f(x_1tuv)$, we know that $f(tuvy_1), \cdots, f(tuvy_{n-1})$ have a common P_3 -path bcd with $f(x_1tuv)$. Hence, $f(tuvy_1), \cdots, f(tuvy_{n-1})$ and $f(tuvx_1)$ have a common middle edge.

Case 3. m = 1 and n = 1.

This case is trivial.

To sum up the above cases, we have proved that f is double star-preserving at each edge e of $E_2(G)$. **Lemma 3.2** Let $G, G' \in \mathcal{G}_3 \setminus \mathcal{H}$ and let f be a P_4 -isomorphism from G to G'. Then f is double star-preserving at the edge uv, where $uv \in E_1(G)$.

Proof. Let uv be a common edge of two triangles C = xuvx and C' = yuvy with deg(u) = deg(v) = 3. We will prove that f(xuvy) and f(yuvx) have a common middle edge.

Since $G \neq K_4$, G has at least five vertices. Without loss of generality, let $t \in N(x) \setminus \{u, v, y\}$. For $G \in \mathcal{G}_3$, there exist a vertex $s \in N(t) \setminus \{x, y\}$ and a vertex $p \in N(s) \setminus \{t, x\}$ such that stxu, stxv and pstx are P_4 -paths in G. Let $\alpha_1 = stxu$, $\alpha_2 = stxv$ and $\beta_0 = pstx$. By Lemma 3.1, we know that α'_1 and α'_2 have a common middle edge. Since $\alpha_1, \alpha_2 \sim \beta_0$, we have that α'_1 and α'_2 have a common P_3 -path, say s't'x'. Then, let $\alpha'_1 = s't'x'u'$ and $\alpha'_2 = s't'x'v'$. Let $\beta_1 = txuv$, $\beta_2 = txuy$, $\gamma_1 = xuvy$ and $\gamma_2 = xuyv$. Since $\beta_1, \beta_2 \sim \alpha_1$, but $\beta_1, \beta_2 \not\sim \alpha_2$, we have that β'_1 and β'_2 have a common P_3 -path t'x'u' with α'_1 . So let $\beta'_1 = t'x'u'v_1$ and $\beta'_2 = t'x'u'y_1$. Similarly, $\gamma_1 \sim \beta_1$ but $\gamma_1 \not\sim \beta_2$, and $\gamma_2 \sim \beta_2$ but $\gamma_2 \not\sim \beta_1$, then we would let $\gamma'_1 = x'u'v_1y_2$ and $\gamma'_2 = x'u'y_1v_2$. Let $\beta_3 = txvu$, $\beta_4 = txvy$, $\gamma_3 = xvuy$ and $\gamma_4 = xvyu$. By symmetry, we can let $\beta'_3 = t'x'v'u_1$, $\beta'_4 = t'x'v'y_3$, $\gamma'_3 = x'v'u_1y_4$ and $\gamma'_4 = x'v'y_3u_2$. Since $\gamma_2 \sim \gamma_4$, it requires that $y_1 = y_3$, $u' = u_2$ and $v' = v_2$.

Now we suppose that f(xuvy) and f(yuvx) have no common middle edge, i.e., $u'v_1 \neq v'u_1$. We will distinguish the following two possible cases:

Case 1. $u' \neq u_1$ and $v' \neq v_1$.

Suppose that $\alpha_3, \alpha_4 \in \Pi_4(G)$ with $\alpha'_3 = v_1 u' x' v'$ and $\alpha'_4 = u' x' v' u_1$. Now, $\alpha'_3 \sim \gamma'_1$ and $\alpha'_4 \sim \gamma'_3$. Hence, $\alpha_3 = a_1 x u v$ or $u v y b_1$, and $\alpha_4 = a_2 x v u$ or $v u y b_2$. In any cases, $\alpha_3 \not\sim \alpha_4$, but in fact $\alpha'_3 \sim \alpha'_4$, a contradiction.

Case 2. $u' \neq u_1$ and $v' = v_1$ (or $u' = u_1$ and $v' \neq v_1$).

We claim that $y_2 = y_1 = u_1$. If $y_2 \neq y_1$, let $\alpha_5 \in \Pi_4(G)$ with $\alpha'_5 = x'u'v'y_1$. Now $\alpha'_5 \sim \beta'_1$, then α_5 has a common P_3 -path txu with β_1 . Otherwise, $\alpha_5 = \gamma_1$, a contradiction. So let $\alpha_5 = rtxu$, now $\alpha_5 \sim \beta_2$, but $\alpha'_5 \not\sim \beta'_2$, a contradiction. Thus $y_2 = y_1$. If $u_1 \neq y_1$, let $\alpha_6 \in \Pi_4(G)$ with $\alpha'_6 = x'u'v'u_1$. By a similar argument as α'_5 , we conclude $u_1 = y_1$, and then $\beta'_3 = \beta'_4$, a contradiction. Thus f(xuvy) and f(yuvx) have a common middle edge. The proof is now complete.

Theorem 3.3 Let $G, G' \in \mathcal{G}_3 \setminus \mathcal{H}$. Then $f \in \Gamma_4(G, G')$ if and only if f is induced by an edge-isomorphism from G to G', i.e., $P_4(G)$ is isomorphic to $P_4(G')$ if and only if the line graph L(G) is isomorphic to L(G').

Proof. The "if" part is obvious. For the "only if" part, let $f \in \Gamma_4(G, G')$. By Theorem 2.4, we only need to prove that both f and f^{-1} are double star-preserving. Then, from Lemmas 3.1 and 3.2, we have that f is double star-preserving. Since G' has the same property as G, we have that f^{-1} is also double star-preserving, which completes the proof.

From Theorems 2.2 and 3.3, the following result is immediate.

Theorem 3.4 Let $G, G' \in \mathcal{G}_3 \setminus \mathcal{H}$. Then $f \in \Gamma_4(G, G')$ if and only if f is induced by an isomorphism from G to G', i.e., $P_4(G)$ is isomorphic to $P_4(G')$ if and only if G is isomorphic to G'.

By Lemma 3.1, it is easy to get a result as follows.

Corollary 3.5 Let $G \in \mathcal{H}$ and $G' \in \mathcal{G}_3$. If f is a P_4 -isomorphism from G to G', then G is isomorphic to G'.

Corollary 3.6 The P_4 -transformation is one-to-one on \mathcal{G}_3 .

Proof. Let f be a P_4 -isomorphism from G to G'. If $G \in \mathcal{G}_3 \setminus \mathcal{H}$ and $G' \in \mathcal{H}$, apply Corollary 3.5 for f^{-1} , then $G \in \mathcal{H}$, a contradiction. So from Theorems 2.1, 2.3 and 3.4, and Corollary 3.5, we have this result immediately.

Acknowledgement: The authors are very grateful to the referees for their comments and suggestions, which helped to improve the presentation of the original version.

References

- R.E.L. Aldred, M.N. Ellingham, R.L. Hemminger and P. Jipsen, P₃isomorphisms for graphs, J. Graph Theory 26 (1997) 35-51.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan/Elesevier, London/New York, 1976.
- [3] H.J. Broersma and C. Hoede, *Path graphs*, J. Graph Theory **13** (1989) 427-444.
- [4] B. Grünbaum, Incidence patterns of graphs and complexes, Lecture Notes in Mathematics (eds. G. Chartrand and S.F. Kapoor) 110 (1969) 115-128.
- [5] R.L. Hemminger and L.W. Beineke, *Line graphs and line digraphs*, in: L.W. Beineke and R.J. Wilson, eds, Selected Topics in Graph Theory, Academic Press, London, New York, San Francisco, 1978.
- [6] H.A. Jung, Zu einem isomorphiesatz von H. Whitney f
 ür graphen, Math. Ann. 164 (1966) 270-271.
- [7] H. Li and Y. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993) 463-466.
- [8] X. Li, Isomorphisms of P_3 -graphs, J. Graph Theory **21** (1996) 81-85.
- [9] X. Li, On the determination problem for P_3 -transformation of graphs, Ars Combinatoria **49** (1998) 296-302.
- [10] X. Li and B. Zhao, Isomorphisms of P₄-graphs, Australasian J. Combinatorics 15 (1997) 135-143.
- [11] X. Li and B. Zhao, *Isomorphisms of* P_k -graphs for $k \ge 4$, Discrete Math. **289** (2004) 71-80.
- [12] E. Prisner, The dynamics of the line and path graph operators, Graphs and Combinatorics 9 (1993) 335-352.

- [13] E. Prisner, A common generalization of line graphs and clique graphs, J. Graph Theory 18 (1994) 301-313.
- [14] E. Prisner, Line graphs and generalizations a survey, in: Surveys in Graph Theory (G. Chartrand, M. Jacobson eds.) Congressus Numerantium 116 (1996) 193-230.
- [15] E. Prisner, Bicliques in graphs. II. Recognizing k-path graphs and underlying graphs of line digraphs, Graph-Theoretic Concepts in Computer Science (Berlin, 1997), 273–287, Lecture Notes in Comput. Sci., 1335, Springer, Berlin, 1997.
- [16] E. Prisner, Bicliques in graphs I: Bounds on their number, Combinatorica 20(1) (2000) 109-117.
- [17] E. Prisner, *Recognizing k-path graphs*, Proceedings of the 5th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1997), Discrete Appl. Math. 99 (2000) 169–181.
- [18] Van Bang Le and E. Prisner, *Iterated k-line graphs*, Graphs and Combinatorics 10 (1994) 193-203.
- [19] H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.