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Abstract
We prove that the Pj-transformation is one-to-one on the set of
graphs with minimum degree at least 3, and if graphs G and G’ have
minimum degree at least 3 then any isomorphism from the Pj-graph
P4(G) to the Pj-graph Py(G') is induced by a vertex-isomorphism from
G to G’ unless G and G’ both belong to a special family of graphs.

1 Introduction

Broersma and Hoede [3] generalized the concept of line graphs and in-
troduced the concept of path graphs. We follow their terminology and give
the following definition. Let P, and C} denote a path and a cycle with k
vertices, respectively. Denote by II;(G) the set of all Py’s in G (k > 1). The
path graph Py(G) of a graph G has vertex set I1(G) and edges joining pairs
of vertices that represent two paths Py, the union of which forms either a
path Py,q or a cycle Cy in G. A graph is called a Py-graph if it is isomor-
phic to Py(H) for some graph H. If k = 2, then the P,-graph is exactly
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the line graph. The way of describing a line graph stresses the adjacency
concept, whereas the way of describing a path graph stresses the concept of
path generation by consecutive paths.

For a graph transformation, there are two general problems, which are
formulated by Griinbaum [4]. We state them here for the Pj-transformation.

Characterization Problem: Characterize those graphs that are the
Py-graph of some graph.

Determination Problem: Determine which graphs have a given graph
as their Py-graphs.

For line graphs, there is a well known result concerning the determination
problem: If G and G are connected and have isomorphic line graphs, then
G and G are isomorphic unless one is K 1,3 and the other is K3. This result
is due to Whitney [19]. For the Ps-transformation, Broersma and Hoede
[3] found two pairs and two classes of nonisomorphic connected graphs with
isomorphic connected Ps-graphs. These examples show that Whitney’s result
on line graphs has no similar counterpart with respect to Ps-graphs. In [8], Li
proved that the P3-transformation is one-to-one on all graphs with minimum
degree 6 > 4. Later in [9], Li obtained the same result for all graphs with
minimum degree 6 > 3. Then Aldred, Ellingham, Hemminger and Jipsen
[1] completely solved the determination problem for & = 3, and proposed
a question to investigate the same problem for & > 4. Li and Zhao [11]
proved that for k& > 4 the Pj-transformation is one-to-one on all graphs
with minimum degree 6 > k. In [10] Li and Zhao also showed that the Pj-
transformation is one-to-one on all graphs with minimum degree 6 = 3 and
satisfying one of two other conditions. In this paper, we obtain a stronger
result that the P;-transformation is one-to-one on all graphs with minimum
degree 0 > 3. For more literature related to the path graphs we refer the
reader(s) to [7, 12, 13, 14, 15, 16, 17, 18].



2 Preliminaries

In what follows, all graphs are connected and simple. For any graph G
and any vertex u in G, let N(u) denote the neighborhood of u in G and let
deg(u) denote the degree of u. We write u ~ v if v and v are adjacent in
G, and u o v otherwise. For « in I14(G), define N(«a), deg(a), o ~ 3 and
a o B in Py(G) similarly. For a nonnegative integer d, we denote by G, the
class of all connected graphs with minimum degree at least d.

We will follow the treatment of [8] for Ps-graphs, which in turn reflects
Jung’s ideas in [6] and Beineke-Hemminger’s treatment in [5]. We introduce
the following notation and obtain the corresponding results.

A wertez-isomorphism from G to G is a bijection f : V(G) — V(G') such
that two vertices are adjacent in G if and only if their images are adjacent
in G'. We let I'(G, G") denote the set of all vertex-isomorphisms of G to G'.

An edge-isomorphism from G to G is a bijection f : E(G) — E(G') such
that two edges are adjacent in G if and only if their images are adjacent
in G'. Obviously, an edge-isomorphism of two graphs is exactly a vertex-
isomorphism of their line graphs. Let T'.(G,G’) denote the set of all edge-
isomorphisms of G to G'. We shorten T'(P4(G), P,(G")) to T'4(G, G") and call
the members Py-isomorphisms from G to G .

Let f € T(G,G") and 2125 - - - 71, be a Py-path in G, then f(x1) f(22) - - - f (1)
is a Py-path in G'. Define a mapping f : II(G) — I (G') by f (2122 - - x1) =
f(z1) f(xa) -+ fzy) and call f* the mapping induced by a vertex-isomorphism
f. Let I'.(G,G") = {f'|f € T(G,G")}. Note that f  is not defined for a con-
nected graph in general unless it has at least one Py-path.

For f € T.(G,G"), define a mapping f* : I1,(G) — I14(G") by f*(tuvw) =
f(tu) f(uv) f(vw) for a Py-path tuvw in G, and call f* the mapping induced
by an edge-isomorphism f. We let I'*(G,G") = {f* | f € T.(G,G")}. Note
that f* is not defined for a connected graph in general unless it has at least
one Py-path.

If P, = tuvw, then the edge uv is called middle edge of the Py and tuvw =
wout. We let S(uv) denote the set of all Py-paths with a common middle



edge uv. Any subset of S(uv) is called a double star at the edge uv. A
mapping f : [I,(G) — II,(G") is called double star-preserving at the edge uv
if the set f(S(uv)) is a double star in G, and if the set f(S(uv)) is a double

star in G' for every edge uv of G, then f is called double star-preserving.

Theorem 2.1 ([5]) If G and H are connected graphs, then
(1) To(G, H) CT(G, H);
(2) the mapping T : T(G, H) — T5(G, H) given by T(f) = f is one-to-one.

Theorem 2.2 ([5]) If G and H are connected graphs, then, except for the
four cases shown in Figure 1, each edge-isomorphism of G onto H is induced

by an isomorphism of G onto H.
Go Gy Gy
04 € o € n
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H, H, H; H,

Figure 1

From [10], we have the following two results.
Theorem 2.3 ([10]) IfG,G € Gs, then
(1) T*(G,G") CTu(G, Q).
(2) the mapping T : T (G, G') — T(G, G") given by T(f) = f* is one-to-one.
Theorem 2.4 ([10]) Let G,G" € Gs and let f : TI4(G) — TIL(G') be a
bijective mapping. Then f is induced by an edge-isomorphism from G to G’

if and only if f and f~! are double star-preserving Py-isomorphisms.
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We let E1(G) = {uv € E(G) | uv is a common edge of two triangles
with deg(u) = deg(v) = 3 in G}, and denote by Ey(G) = E(G)\E1(G). For
a € II(G) and f € T4(G,G"), we let o denote f(a).

Lemma 2.5 Let G,G € Gy and let f be a Py-isomorphism from G to G'.
Then f is double star-preserving at every edge of Eo(G) if and only if for
every Ps-path tuv of G, f(xituv), -, f(x,tuv) have a common middle edge
and f(tuvyy), - -, f(tuvys) have a common middle edge, where N (t)\{u,v} =
{z1, -,z }, No)\{t,u} ={y1, -+ ,ys}, andr > 1, s > 1.

Proof. Let tuv be a Ps-path of G, and N(t)\{u,v} = {z1,---, 2.} and
N)\{t,u} = {y1, - ,ys}. If both tu and wv are in E,(G), then u is a
common vertex of at least three triangles. Thus, G must be the graph with
a K4 on t,u,v,w, where w is the only vertex joined to the remainder of
the graph G. In this case there is only one Pj of the form z;tuv (x; = w)
and only one Pj of the form tuvy; (y; = w), and then the conclusion of the
lemma obviously holds. Next we suppose that there is at least one of tu and
wv in Ey(G), without loss of generality, let tu € FEy(G). So we know that
f(zqtuv), -+ | f(z,tuv) have a common middle edge. If uv € FE3(G), then
f(tuvyy), -+, f(tuvys) also have a common middle edge. If wv € E;(G),
then we have that s =1, N(u) = {t,v,3:} and N(v) = {t,u,y;}, which is a
trivial case. This proves the necessity.

For the sufficiency, let uv be any edge of Ey(G) and let tuvw, t uvw' be
two Pj-paths in S(uv). We will distinguish the following four possible cases:

Case 1. The four vertices ¢, t', w and w’ are pairwise distinct.

From the condition we know that f(tuvw) and f(tuvw’) have a common
middle edge, and f(tuvw') and f(¢ uvw’) have a common middle edge. Thus
f(tuvw) and f(t'uvw’) have a common middle edge.

Case 2. t=t orw=1w".

From the condition, we know that f(tuvw) and f(t uvw’) have a common
middle edge.

Case 3. t=w butt #w,ort =wbut t #w.



By a proof similar to that of Case 1, we can show that f(tuvw) and
f(t'uvw") have a common middle edge.

Case 4. t =w and t = w.

In this case, we see that uv is a common edge of two triangles C' = tuuvt
and O = t'uvt. Since uv € Fy(G), we have max{deg(u),deg(v)} > 4.
Without loss of generality, we let deg(u) > 4. Then there exists a vertex z €
N(u)\{t,v,t}. From the condition, we know that f(tuvw)and f(zuvw) have
a common middle edge, f(zuvw) and f(zuvw') have a common middle edge,
and f(zuvw') and f(t' wvw) have a common middle edge. Thus f(tuvw) and
f(t'uvw") have a common middle edge.

To sum up the above cases, we know that f(S(uv)) is a double star of G .

The proof is complete. |

Lemma 2.6 ([11]) Let f € T4(G,G') and let x1tuv, zotuv, tuvy; and tuvy,
be four Py-paths of G. Then f(xituv) and f(xstuv) have a common middle
edge if and only if f(tuvy,) and f(tuvys) have a common middle edge.

Lemma 2.7 ([11]) Let f € T4(G,G") and let z1tuv, zotuv, tuvy; and tuvy,
be four Py-paths of G. If f(xituv) and f(zatuv) have no common middle
edge, then f(zituv), f(zotuv), f(tuvy,) and f(tuvys) form a Cy in G

Lemma 2.8 Let G, G’ € Gy and f € T4(G,G"). If x1tuwv, zotuv, tuvy, and
tuvyy are four Py-paths of G, then f(xituv) and f(zotuv) have a common
middle edge, and f(tuvy,) and f(tuvys) have a common middle edge, respec-

tively.

Proof. Assume, to the contrary, that f(zituv) and f(zotuv) have no com-
mon middle edge. By Lemma 2.7, we have that f(xituv), f(xotuv), f(tuvy;)
and f(tuvys) form a Cy in G (denoted by C" = abeda), say f(xtuv) = abed,
f(zotuv) = bade, f(tuvy;) = beda and f(tuvys) = dabe.

We claim that N(¢)\{u,v,z1, 22} = 0 and N(v)\{t,u,y1,92} = 0. Oth-
erwise, there is another member « of I14(G) with the Ps-path tuv. Without
loss of generality, let o = tuvys and y3 & {t,u,y1, 92}, then we would have
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that ' is adjacent to both f(z;tuv) and f(zstuv), which is impossible. Now
r1tuv, xotuw, tuvy; and tuvys are all Py-paths of G with common P3-path
tuv. We will distinguish the following two possible cases:

Case 1. Not all xju, xou, uy; and uys are in E(G).

Without loss of generality, we let zyu ¢ E(G). Since G € Gs, there are
two vertices p,q € N(x1) and a vertex z € N(u)\{v} such that pzitu, qritu
and zituz are Py-paths in G. If f(zituv) and f(xituz) have a common
middle edge, then, as both f(zituv) and f(xituz) are adjacent to f(pzitu),
we know that f(xituv) and f(z1tuz) have a common Ps-path, say abc. Now,
let f(zituz) = abed , so f(x1tuz) is adjacent to f(tuvys), but zituz is not
adjacent to tuvy, in Py(G), a contradiction to the fact that f € ['4(G, G").
If f(x1tuv) and f(z,tuz) have no common middle edge, then by Lemma 2.7
f(pzitu), f(quitu), f(rituv) and f(xituz) form a Cy in G* (denoted by C”).
Obviously, " = C”, and so we have f(xytuv) = f(x1tuz), a contradiction
to the fact that f : II4(G) — TI4(G’) is a bijective mapping. Thus f(zituv)
and f(zotuv) have a common middle edge. By Lemma 2.6, we have that
f(tuvy,) and f(tuvys) have a common middle edge.

Case 2. All zyu, xou, uy; and uy, are in E(G).

Subcase 2.1 max{deg(x1),deg(x2),deg(y1),deg(y2)} > 4.

Without loss of generality, we let deg(x1) > 4. Then there are two ver-
tices p,q € N(x1) such that pzitu and gz tu are Py-paths in G. Now we
consider f(zituv) and f(xituzy) with the following two possible cases: One
is that f(z tuv) and f(z1tuxs) have a common middle edge, the other is that
f(zituv) and f(x1tuzy) have no common middle edge. By a proof similar to
that of Case 1, it is easy to see that f(zi1tuv) and f(xotuv) have a common
middle edge. By Lemma 2.6, f(tuvy;) and f(tuvys) have a common middle
edge.

Subcase 2.2 deg(x;) = deg(z2) = deg(y1) = deg(y2) = 3.

Let a; = x;tuv and §; = tuvy; for ¢ = 1,2. Then, as x tuv, xotuv, tuvy;
and tuvy, are all Py-paths of G with common Ps-path tuv, we have that
deg(a;) = deg(c,) = deg(3;) = deg(3;) = 3 for i = 1,2. We can assume that



there exist a vertex p € N(z;) and a vertex ¢ € N(z3) such that pritu and
qrotu are Py-paths in G. Let (3 = pxitu and By = qrotu. Since (B3 ~ aj,
without loss of generality, we have ﬁé = gabc and g & {a,b,c,d}. Suppose
that az € T14(G) with ay = gadc. Now oy ~ f3;, so a3 has a common Ps-path
woy; with 8y by N(t)\{u,v,z1,22} = 0, and then let as = wvy;r. Next
we note that N(b) = {a,c¢,d} and N(d) = {a,b,c}. Otherwise, we would
have a fourth Py in II,(G") which is adjacent to o) or 3;, a contradiction to
deg(ay) = deg(3;) = 3. Since 34 ~ s, then we know that 3; has a common
Py-path adc with a,. So let 3, = adch. If ay € II(G) with o = abch,
then ay ~ (. By a similar argument as aé, we can let ay = uvyss. Now
aé ~ 3, and o) ~ ﬁé, then we conclude that x1 = y9, 9 = y1, p = ¢ = v and
r=s=tinG.

Let a5 = trqvxs and (5 = xotziv. Now g and a5 have a common Ps-path
triv with B3 and (5 in G, then we will show that a, 0/5, ﬂé and ﬂé form
aCyin G'. If o) and a/5 have a common middle edge in G, then, as both
o, and ay are adjacent to 35, we know that aj and oy have a Ps-path abc
in common. So let o = abch’, now ag ~ B,, but as o« 3, a contradiction.
Thus o, and 0/5 have no common middle edge. By Lemma 2.7, we have that
a;, a/5, ﬁé and ﬁé form a Cy in G', and then ¢ = h. Since az ~ (5 and
05 ~ ay, we conclude that 0/5 = cgab and ﬁé = bega. Let ag = txovry and
06 = x1txov. Now a3 and ag have a common Ps-path tzov with G, and [s.
Then, by a similar argument as above, we can get that aé, ag, @1 and ﬂé
form a Cy = gadcg in G’ with aé = dcga and /6(; = cgad.

Now, let a7 = uzitzy and B; = xitrou. Since N(v)\{t,u,x1, 22} = 0 and
deg(xs) = 3, we know that deg(s5) = 4 and N(fB5) = {au, as, B, B7}. So,
deg(f3;) = 4, and then ay, as, s, and dbcg are exactly the four neighbors of
ﬁé. Since f is a Pj-isomorphism from G to G, we have ﬁ; = dbcg. By the
same argument, we can have deg(3;) = deg(f3s) = 4, and then a; = gadb.
Now a7 ~ (37, but a, % 3., a contradiction. Then f(zituv) and f(zotuv)
have a common middle edge. By Lemma 2.6, f(tuvy;) and f(tuvys) have a

common middle edge. |



Remark. Let G, G’ € Gzand f € T'y(G,G"). If z1tuv, zotuv, tuvy, and tuvy,
are four P;-paths of G, then, without loss of generality, we can let f(zituv) =
it uv', flagtuv) = oot u'v', f(tuvy,) =t u'v'y;, and f(tuvys) = tu'v'y,.
By Lemma 2.8, we have f(zituv) and f(xotuv) have a common middle
edge. Then, as both f(xituv) and f(zotuv) are adjacent to f(tuvy;), we
have that f(zituv) and f(xstuv) have a common Ps-path with f(tuvy,), say
tu'v'. Sowe canlet f(zituv) =zt u'v', f(rotuv) = xot u'v', and f(tuvy,) =
tu'v'y,. Since f(tuvys) is adjacent to both f(zituv) and f(zptuv), then
f(tuvy,) has a common Ps-path tu'v" with f(xtuv) and f(zotuv). So let
f(tuvys) =t u'v'yy and y, & {t,u',v",y,} but possibly y, = x| or y, = 5.

Lemma 2.9 Let G,G' € Gy and f € T4(G,G"). If there is a Cy = xtuvz in
G, then f(ztuv), f(tuvz), f(uvwt) and f(vwtu) form a Cy in G

Proof. Since f(xtuv) is adjacent to f(tuvx), let f(ztuv) = habc and
f(tuvzx) = abed. 1If f(uvxt) and f(ztuv) have a common middle edge, then,
as f(uvxt) is adjacent to f(tuvx), we have that f(uvzt) has a common Ps-
path abe with f(tuvz), say f(uvaet) = h'abe. Since f(vatu) is adjacent to
both f(ztuv) and f(uvxt), we know that f(vrtu) has a common Ps-path abe
with f(ztuv) and f(uvet), and then let f(vatu) = abed . Apply Lemma 2.8
for f~! and the four Py-paths habe, h'abe, abed, and abed of G', we have
that xtuv and wvzrt have a common middle edge in G, a contradiction. Thus
f(uvzxt) and f(ztuv) have no common middle edge. Then, as f(uvat) is
adjacent to f(tuvz), we have that f(uvzt) = bedg. Since f(vzrtu) is adjacent
to both f(xtuv) and f(uvxt), the middle edge of f(vztu) must be a common
edge of f(xtuv) and f(uvzt). However, the edge bc is not the middle edge of
f(vatu), so ha = dg is the middle edge of f(vztu), i.e., g = a, h = d. Thus,
f(ztuw), f(tuwvz), fluvat) and f(vetu) form a Cy in G with f(vetu) = cdab.
|



3 Main result

Denote by ‘H the set of all graphs obtained by taking one or more copies
of the complete graph K, choosing one edge in each copy, and identifying
together all chosen edges into a single edge, or H is the class of graphs
K5+ (mK>), where ‘4’ denotes join and mG means the union of m disjoint

copies of G.

Lemma 3.1 Let G,G € Gs, and let f be a Py-isomorphism from G to G'.
Then f is double star-preserving at every edge of Es(G), or both G and G’
belong to H.

Proof. We only need to show that f satisfies the condition of Lemma 2.5.
Let tuv be a Ps-path in G, where N (¢)\{u,v} = {z1, - , 2}, N)\{t,u} =
{y1,-+* ,yn}, and m > 1, n > 1. Then we will distinguish the following three
cases:

Case 1. m>2and n > 2.

The lemma is obvious by Lemma 2.8.

Case 2. m=1landn>2,orm>2andn=1.

If m = 1, then the edge tv must belong to E(G), i.e., N(t) = {x1,u,v}.
So we only need to show that f(tuvy),-- -, f(tuvy,) have a common middle
edge.

Subcase 2.1 zu ¢ E(G).

Since G € G, there are two vertices p,q € N(x;) and a vertex z €
N(u)\{v} such that pzitu, qritu and zituz are Pj-paths in G. Then,
from the above Remark, we can let f(zituv) = xjtu'v and f(zituz) =
zit'u' 2. Since f(tuvy,),-- -, f(tuvy,) are adjacent to f(zituv), but none of
tuvyy, - -+, tuvy, is adjacent to xituz, we have that f(tuvy),---, f(tuvy,)
have a common Ps-path t'u'v" with f(z tuv). Thus, f(tuvy,),--- , f(tuvy,)
have a common middle edge.

Subcase 2.2 ru € E(G).

(1) There is a vertex p € N(x1)\{t,u,v}.
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Since G € s, there are two vertices r,s € N(p) such that rpz;t and
spxyt are Py-paths in G. From the Remark, we can let f(rpxit) = r'pait,
f(sprit) = spat, f(pritu) = paitu and f(pritv) = p'ajt'v’. Since
f(xituv) is adjacent to f(pzitu), but xituv is not adjacent to pzitv, then
f(z1tuv) has a common Ps-path zyt'u’ with f(pzitu). So let f(zjtuv) =
:L’llt'ulvl.

(1.1) deg(u) > 4.

Then there exists a vertex z € N(u)\{v} such that xituz is a P;-path
in G. Since f(xituz) is adjacent to f(pxitu), but zituz is not adjacent to
pritv, we have that f(z,tuz) has a common Ps-path 2)t'v’ with f(pxitu),
say f(zituz) = xtu'z. Similarly, since f(tuvy,),---, f(tuvy,) are adja-
cent to f(xituv), then f(tuvyy),--- , f(tuvy,) must have a common Ps-path
t'w'vy with f(z,tuv). Otherwise, tuvyy, - - - , tuvy, are adjacent to x;tuz, a
contradiction. Hence f(tuvy;),--- , f(tuvy,) have a common middle edge.

(1.2) deg(u) = 3, i.e., N(u) = {z1,t,v}.

Let ay = rpxit, ag = spxt, By = pritu, B = pritv and v = zituv. Since
n > 2, there must exist some i such that y; # x;. Without loss of generality,
say y; # x1. Let ag = zitvyy, ay = xtvu and fP3 = uxitv. Now [y and
(3 have a common Ps-path zitv with a3 and ay4. Since az,ay4 ~ (35, but
as, oy % (1, we know that a;’ and 0/4 have a common Ps-path x’lt/v/ with
B,. Then, from the Remark, we can let ay = x,t'v'y), oy = 2t v'uy, and
ﬂé = upxyt'v’. Now, let a5 = vuzt and By = tvur;. By Lemma 2.9, we get
that ﬁé, a;, @1 and a/5 form a C, in G, and then u; = us. Since B4 ~ ay
and as ~ (3, we have that §; = t v'u;z} and ay = v'uiz;t . Next we note
that u; = v and vy =v". If uy # ', then let 6, € II,(G) with 6] = w2} t'u’.
Now, 6 ~ ag,v', but there is no P; of I1,(G) which is adjacent to both as
and v, a contradiction. Thus, u; = «'. Similarly, if v; # v', let 6, € TI4(G)
with 0, = 2t u'v". Now 6, ~ 3], and so px;t is the common Ps-path of 6,
and (1, otherwise 05 = ~, a contradiction. So let 3 = ripzit. Then we have
0y ~ Ba, but 0, 4 [3,, a contradiction.
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Next we will show that f(tuvy;),---, f(tuvy,) have a common Ps-path
t'u'v" with f(z,tuv), unless G, G’ € H. Let v; = tuvy; for 1 < i < n.

First, we consider ;v ¢ E(G). Assume, to the contrary, that 4, has a
common Ps-path x}t'u" with 7', say v, = ax|tu". Since deg(y,) > 3, there is
a vertex z; € N(y;) such that uvy;z; is a Py-path in G. Let n; = uvy;21, now
M ~ 71, but 11 o B, then 7, has a common Ps-path az)t’ with 7;. So let
n, = bax it Ifa #v', let 05 € TI4(G) with 03 = azt'v". Now, 05 ~ ), n;, but
there is no Py of I14(G) which is adjacent to both oy and 7;, a contradiction.
If a =, then 7, isin a Cy; = v'v'zjt' v of G'. Apply Lemma 2.9 for f~1,
we have that 7, is in a Cy of G, which is impossible. Thus 7; has a common
Ps-path t u'v’ with . By the same argument, we would have that +, - ,7,
have a common Ps-path t'u'v' with +". Thus f(tuvy,),--- , f(tuvy,) have a
common middle edge.

At last, we will consider x1v € E(G). Without loss of generality, we let
Yp = tuvzy, ie., y, = 1. By the above argument we have that vy, -+ ,7,_;
have a common Ps-path t'u'v" with 4, and then let v, = t'u'v'y, for 1 <
1 < n — 1. Now, suppose that %’l and ~ have a Ps-path xllt’u/ in common.
Let 5 = wvrit and B¢ = vaitu. By Lemma 2.9, we have that v, 7, ﬂé
and B form a Cy in G, and then 2 ~ v'. So v, = v'z)t'u’. Since B5 ~ v,
and s ~ v, we have 3, = v'v'xt and B3y = t'u'v'x|. In fact, deg(Bs) = 2
by N(t) = {z1,u,v} and N(u) = {x1,t,v}. So deg(B;) = 2, and then
N({t') = {z,,u',v'} and N(u') = {2}, ¢ ,v'}.

Claim 1. N(v') = {t', v/, vy, ,y,_, 21}, i.e., deg(v') = deg(v).

Let S = {t,u,y, .y, 1,7} If there exists a vertex w' € N(v')\S,
then tuv'w is a Py-path in G'. Let vy € II4(G) with 7y = tu'v'w’, now
7('] ~ ', then 7y must have a common Ps-path z;tu with 7. Otherwise,
Yo = 7 for some i € {1,---,n}, a contradiction. So let 79 = wztu, and
w # v. Since deg(w) > 3, there is a vertex ¢ € N(w) such that quzit is a
Py-path in G. Let ag = quwzit, now ag ~ 7o, SO aé) has a common Ps3-path
w'v'w with 7,. Otherwise, ay = 7', a contradiction. So let o = u'v'w'q .

Let By = wxitv, now By ~ «q,ay. But there is no P, of H4(G/) which is
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adjacent to both o and a, a contradiction. Hence, N(v') = S.

Let ag = privu, now ag ~ 7,, then ag has a common Ps-path t/xllv'
with 7., otherwise, ay = 7', a contradiction. By Claim 1, without loss of
generality, we have a; = ¢ 7v'y;. There is at least one of 7 and s which is not
equal to v, say r # v, and then let 8; = rpxjv. Since 37 ~ ag, then (3, has
a common Ps-path 2)v'y; with ozé. Otherwise, ﬁ; = ., a contradiction. So
let 3; = 2yv'y,2". For deg(r) > 3, there must be a new member oy of TI4(G)
that is adjacent to both a; and (7, then we require that ¢, = 7', 2 = p’
and a; = v'ypx;. Let n € T4(G) with ' = w'v'y;p, now ' ~ 7;, then
n has a common Pj-path wvy; with ;. Otherwise, n = v, a contradiction.
So let n = wvy;2. Now a; ~ ﬁ;, n', then we require that y; = r, 2 = p and
a7 = vypr1. Let ag = privy; and Bs = xjvyp. By Lemma 2.9, we know
that av, 3, ag and B form a Cy in G'. Since ag ~ 37 and s ~ az, then we
have ag = p'xjv'y, and By = y;p 2,0

Claim 2. N(p) = {v,z1,y1}, N(y1) = {p,v, 21}, N(p) = {',2],9,},
and N(y,) = {p’, v, 21},

We see that n and (s have a common Ps-path py;v with a7. Since 7
and [ have no common middle edge, then we have that N(p) = {v, 21,41}
Otherwise, there is a new Pj;-path apy,v with a € N(p)\{v,x1,y1}. Then,
by Lemma 2.8, we know that 1 and 3; have a common middle edge, a
contradiction. Similarly, we see that a; and [; have a common P3-path
y1pry with oz, then, as o/l and ﬂ; have no common middle edge, we have
that N(y1) = {p,v,z1}. Now, n’ and (3, have a common Ps-path p'y,v" with
a;, but n and (3; have no common middle edge. Since f~! is also a Pj-
isomorphism, then, by the same argument, we have that N(p') = {v", 2}, v, }.
Similarly, o and ﬂé have a common Ps-path y;p z] with 0/7, and as a; and
s have no common middle edge, we know that N(y,) = {p’, v,z }.

Claim 3. N(zy) = {t,u,y1, ,yn_1,vrand N(z}) = {t' v, yy, -,y 1,
v'}, and n is odd.

Since deg(t) + deg(z1) — 4 = deg(v,) = deg(y,) = deg(u') + deg(v') — 4,
and deg(t) = deg(u') = 3, then deg(z,) = deg(v'). Similarly, we can
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have deg(v) = deg(x)) for deg(f3s) = deg(f3;). By Claim 1, we know that
deg(v) = deg(v'). Thus, deg(x,) = deg(v) and deg(x)) = deg(v'). Now,
suppose that N(z1) = {t,u,p,p2,*+ ,Pn_1,v}. By Claim 2, we know that
p € Nw)\{z1,y1} and y; € N(z1)\{p,v}. Thus, without loss of gener-
ality, let p = y,_, and y; = p,_;. Similarly, p € N(v')\{z],v,} and
y, € N(@)\{p,v'}, then we can let p' = ¢, , and y;, = p, ;. In fact
we would see that z, v, y; and y,_; form a K, in G, and z7, v', y; and y,,_,
form a K, in G'. By a similar proof as above, without loss of generality, we
can show that N(p;) = {v,x1,y;} and N(y;) = {pi,v, 21} for 2 <i <n—2.
Then p; € N(v)\{v1,Yi, Yn—1,21} and y; € N(z1)\{p, pi, Pn_1,v}, without
loss of generality, we can let p; = y,—; and y; = p,—; for 2 < i < [5]. So,
if n is even, then p» = y» and N(pz) = {v, 21}, which is impossible. Thus
n is odd, and N(z1) = {t,u,y1, -+ ,Yn_1,v}. By the same argument, we
can show that N(z}) = {t',u',y,, - ,y,_,,v' } and N(y;) = {v',z},y,_;} for
2<1<n—2.

Now, we conclude that the four vertices x1, v, y; and y,_; form a K, in G,
and z, v', y; and y,_; form a K, in G, for 2 <4 < 221 Hence, G,G € H.

(2) N(z1) = {t,u,v}.

Without loss of generality, let y, = z;. By Lemma 2.9, we have that
f(zitww), f(tuvz,), fluvet) and f(vzitu) form a Cy in G, say f(xituv) =
abed, f(tuvxy) = beda, f(uvzit) = cdab and f(vzritu) = dabe. In fact
deg(tuvxy) = 2by N(t) = {z1,u,v} and N(z1) = {t,u,v}. So deg(beda) = 2,
and then N(a) = {b,c,d} and N(b) = {a,c,d}. Then, as f(tuvy,), -, f(tuvy,_1)
are adjacent to f(xituv), we know that f(tuvy,),---, f(tuvy,_1) have a
common Ps-path bed with f(xituv). Hence, f(tuvy),---, f(tuvy,_1) and
f(tuvzy) have a common middle edge.

Case 3. m=1land n=1.

This case is trivial.

To sum up the above cases, we have proved that f is double star-preserving
at each edge e of Ex(G) . |
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Lemma 3.2 Let G,G € Gs\'H and let f be a Pj-isomorphism from G to
G'. Then f is double star-preserving at the edge uv, where wv € F\(G).

Proof. Let uv be a common edge of two triangles C' = zuvz and C" = yuvy
with deg(u) = deg(v) = 3. We will prove that f(zuvy) and f(yuvz) have a
common middle edge.

Since G # K4, G has at least five vertices. Without loss of generality, let
t € N(x)\{u,v,y}. For G € Gs, there exist a vertex s € N(¢)\{z,y} and a
vertex p € N(s)\{t, x} such that stzu, stzv and pstr are Pj-paths in G. Let
a1 = stru, ag = strv and By = pstx. By Lemma 3.1, we know that o/l and
a, have a common middle edge. Since oy, ay ~ B, we have that o) and a,
have a common Pj-path, say s't 2. Then, let o) = st z'u and o, = st v
Let (81 = tzuv, [y = truy, v1 = xuvy and v = xuyv. Since [, By ~ aq, but
By, B2 % i, we have that 3, and 3, have a common Ps-path ¢ z'u" with o.
So let B, = t'2'u'v; and B, = t' x'u'y;. Similarly, v, ~ B but v, £ 3,, and
Yo ~ By but 5 o By, then we would let v, = z'u vyys and v, = z'u'yyvy. Let
B3 = txvu, By = tevy, v3 = rvuy and y4 = xvyu. By symmetry, we can let
By =tx'v'uy, By =t 20 ys, 75 = 20 u1ys and v, = 2 v ysus. Since o ~ Yy,
it requires that y; = ys, U = uy and v = vy,

Now we suppose that f(zuvy) and f(yuvz) have no common middle edge,
ie., u'vy # v'uy. We will distinguish the following two possible cases:

Case 1. v # uy and v' # v;.

Suppose that as, ay € II4(G) with o = viu'z'v" and o) = v'z'v'u;. Now,
aé ~ v, and o) ~ 7:;. Hence, a3 = ayxuv or uvyby, and ay = asxvu or vuybs.
In any cases, as o ay, but in fact o ~ o, a contradiction.

Case 2. v #wu; and v = v; (or ' = uy and v’ # vy).

We claim that yo = y1 = uy. If yo # y1, let as € 14(G) with 0/5 = z'u'v .
Now ag ~ f3;, then as has a common Ps-path tru with 3. Otherwise,
as = 71, a contradiction. So let ay = rtzu, now as ~ [y, but ag % 3, a
contradiction. Thus y, = y1. If uy # y1, let o € I, (G) with ag = 2'v'v'uy.
By a similar argument as 0/5, we conclude u; = y;, and then ﬂé = £, a

contradiction.
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Thus f(zuvy) and f(yuvz) have a common middle edge. The proof is

now complete. |

Theorem 3.3 Let G, G’ € G3\H. Then f € I'y(G,G") if and only if f is
induced by an edge-isomorphism from G to G, i.e., Py(G) is isomorphic to
Py(G") if and only if the line graph L(G) is isomorphic to L(G").

Proof. The “if’ part is obvious. For the “only if’ part, let f € T4(G,G").
By Theorem 2.4, we only need to prove that both f and f~! are double
star-preserving. Then, from Lemmas 3.1 and 3.2, we have that f is double
star-preserving. Since G’ has the same property as G, we have that f~' is

also double star-preserving, which completes the proof. |

From Theorems 2.2 and 3.3, the following result is immediate.

Theorem 3.4 Let G,G € Gs\'H. Then f € I'y(G,G) if and only if f is
induced by an isomorphism from G to G', i.e., Py(G) is isomorphic to Py(G")
if and only if G is isomorphic to G .

By Lemma 3.1, it is easy to get a result as follows.

Corollary 3.5 Let G € H and G € Gs. If f is a Py-isomorphism from G
to G', then G is isomorphic to G’ .

Corollary 3.6 The P,-transformation is one-to-one on Gs.

Proof. Let f be a Pj-isomorphism from G to G'. If G € G5\'H and G’ € H,
apply Corollary 3.5 for =%, then G' € H, a contradiction. So from Theorems
2.1, 2.3 and 3.4, and Corollary 3.5, we have this result immediately. |
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