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Abstract

We prove that the P4-transformation is one-to-one on the set of

graphs with minimum degree at least 3, and if graphs G and G
′

have

minimum degree at least 3 then any isomorphism from the P4-graph

P4(G) to the P4-graph P4(G
′

) is induced by a vertex-isomorphism from

G to G
′

unless G and G
′

both belong to a special family of graphs.

1 Introduction

Broersma and Hoede [3] generalized the concept of line graphs and in-

troduced the concept of path graphs. We follow their terminology and give

the following definition. Let Pk and Ck denote a path and a cycle with k

vertices, respectively. Denote by Πk(G) the set of all Pk’s in G (k ≥ 1). The

path graph Pk(G) of a graph G has vertex set Πk(G) and edges joining pairs

of vertices that represent two paths Pk, the union of which forms either a

path Pk+1 or a cycle Ck in G. A graph is called a Pk-graph if it is isomor-

phic to Pk(H) for some graph H . If k = 2, then the P2-graph is exactly
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the line graph. The way of describing a line graph stresses the adjacency

concept, whereas the way of describing a path graph stresses the concept of

path generation by consecutive paths.

For a graph transformation, there are two general problems, which are

formulated by Grünbaum [4]. We state them here for the P4-transformation.

Characterization Problem: Characterize those graphs that are the

P4-graph of some graph.

Determination Problem: Determine which graphs have a given graph

as their P4-graphs.

For line graphs, there is a well known result concerning the determination

problem: If G and G
′

are connected and have isomorphic line graphs, then

G and G
′

are isomorphic unless one is K1,3 and the other is K3. This result

is due to Whitney [19]. For the P3-transformation, Broersma and Hoede

[3] found two pairs and two classes of nonisomorphic connected graphs with

isomorphic connected P3-graphs. These examples show that Whitney’s result

on line graphs has no similar counterpart with respect to P3-graphs. In [8], Li

proved that the P3-transformation is one-to-one on all graphs with minimum

degree δ ≥ 4. Later in [9], Li obtained the same result for all graphs with

minimum degree δ ≥ 3. Then Aldred, Ellingham, Hemminger and Jipsen

[1] completely solved the determination problem for k = 3, and proposed

a question to investigate the same problem for k ≥ 4. Li and Zhao [11]

proved that for k ≥ 4 the Pk-transformation is one-to-one on all graphs

with minimum degree δ ≥ k. In [10] Li and Zhao also showed that the P4-

transformation is one-to-one on all graphs with minimum degree δ = 3 and

satisfying one of two other conditions. In this paper, we obtain a stronger

result that the P4-transformation is one-to-one on all graphs with minimum

degree δ ≥ 3. For more literature related to the path graphs we refer the

reader(s) to [7, 12, 13, 14, 15, 16, 17, 18].
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2 Preliminaries

In what follows, all graphs are connected and simple. For any graph G

and any vertex u in G, let N(u) denote the neighborhood of u in G and let

deg(u) denote the degree of u. We write u ∼ v if u and v are adjacent in

G, and u 6∼ v otherwise. For α in Π4(G), define N(α), deg(α), α ∼ β and

α 6∼ β in P4(G) similarly. For a nonnegative integer d, we denote by Gd the

class of all connected graphs with minimum degree at least d.

We will follow the treatment of [8] for P3-graphs, which in turn reflects

Jung’s ideas in [6] and Beineke-Hemminger’s treatment in [5]. We introduce

the following notation and obtain the corresponding results.

A vertex-isomorphism from G to G
′

is a bijection f : V (G) → V (G
′

) such

that two vertices are adjacent in G if and only if their images are adjacent

in G
′

. We let Γ(G, G
′

) denote the set of all vertex-isomorphisms of G to G
′

.

An edge-isomorphism from G to G
′

is a bijection f : E(G) → E(G
′

) such

that two edges are adjacent in G if and only if their images are adjacent

in G
′

. Obviously, an edge-isomorphism of two graphs is exactly a vertex-

isomorphism of their line graphs. Let Γe(G, G
′

) denote the set of all edge-

isomorphisms of G to G
′

. We shorten Γ(P4(G), P4(G
′

)) to Γ4(G, G
′

) and call

the members P4-isomorphisms from G to G
′

.

Let f ∈ Γ(G, G
′

) and x1x2 · · ·xk be a Pk-path in G, then f(x1)f(x2) · · · f(xk)

is a Pk-path in G
′

. Define a mapping f
′

: Πk(G) → Πk(G
′

) by f
′

(x1x2 · · ·xk) =

f(x1)f(x2) · · · f(xk) and call f
′

the mapping induced by a vertex-isomorphism

f . Let Γ
′

k(G, G
′

) = {f
′

|f ∈ Γ(G, G
′

)}. Note that f
′

is not defined for a con-

nected graph in general unless it has at least one Pk-path.

For f ∈ Γe(G, G
′

), define a mapping f ∗ : Π4(G) → Π4(G
′

) by f ∗(tuvw) =

f(tu)f(uv)f(vw) for a P4-path tuvw in G, and call f ∗ the mapping induced

by an edge-isomorphism f . We let Γ∗(G, G
′

) = {f ∗ | f ∈ Γe(G, G
′

)}. Note

that f ∗ is not defined for a connected graph in general unless it has at least

one P4-path.

If P4 = tuvw, then the edge uv is called middle edge of the P4 and tuvw =

wvut. We let S(uv) denote the set of all P4-paths with a common middle
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edge uv. Any subset of S(uv) is called a double star at the edge uv. A

mapping f : Π4(G) → Π4(G
′

) is called double star-preserving at the edge uv

if the set f(S(uv)) is a double star in G
′

, and if the set f(S(uv)) is a double

star in G
′

for every edge uv of G, then f is called double star-preserving.

Theorem 2.1 ([5]) If G and H are connected graphs, then

(1) Γ
′

2(G, H) ⊆ Γe(G, H);

(2) the mapping T : Γ(G, H) → Γ
′

2(G, H) given by T (f) = f
′

is one-to-one.

Theorem 2.2 ([5]) If G and H are connected graphs, then, except for the

four cases shown in Figure 1, each edge-isomorphism of G onto H is induced

by an isomorphism of G onto H.

G1 G2 G3 G4

H1 H2 H3 H4

ααα
α

αααα

βββ
β

ββββ

γγγ
γ

γγγγ

δδδ

δδδ

εε

εε

η

η

Figure 1

From [10], we have the following two results.

Theorem 2.3 ([10]) If G, G
′

∈ G3, then

(1) Γ∗(G, G
′

) ⊆ Γ4(G, G
′

).

(2) the mapping T : Γe(G, G
′

) → Γ∗(G, G
′

) given by T (f) = f ∗ is one-to-one.

Theorem 2.4 ([10]) Let G, G
′

∈ G3 and let f : Π4(G) → Π4(G
′

) be a

bijective mapping. Then f is induced by an edge-isomorphism from G to G
′

if and only if f and f−1 are double star-preserving P4-isomorphisms.
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We let E1(G) = {uv ∈ E(G) | uv is a common edge of two triangles

with deg(u) = deg(v) = 3 in G}, and denote by E2(G) = E(G)\E1(G). For

α ∈ Π4(G) and f ∈ Γ4(G, G
′

), we let α
′

denote f(α).

Lemma 2.5 Let G, G
′

∈ G3 and let f be a P4-isomorphism from G to G
′

.

Then f is double star-preserving at every edge of E2(G) if and only if for

every P3-path tuv of G, f(x1tuv), · · · , f(xrtuv) have a common middle edge

and f(tuvy1), · · · , f(tuvys) have a common middle edge, where N(t)\{u, v} =

{x1, · · · , xr}, N(v)\{t, u} = {y1, · · · , ys}, and r ≥ 1, s ≥ 1.

Proof. Let tuv be a P3-path of G, and N(t)\{u, v} = {x1, · · · , xr} and

N(v)\{t, u} = {y1, · · · , ys}. If both tu and uv are in E1(G), then u is a

common vertex of at least three triangles. Thus, G must be the graph with

a K4 on t, u, v, w, where w is the only vertex joined to the remainder of

the graph G. In this case there is only one P4 of the form xituv (x1 = w)

and only one P4 of the form tuvyj (y1 = w), and then the conclusion of the

lemma obviously holds. Next we suppose that there is at least one of tu and

uv in E2(G), without loss of generality, let tu ∈ E2(G). So we know that

f(x1tuv), · · · , f(xrtuv) have a common middle edge. If uv ∈ E2(G), then

f(tuvy1), · · · , f(tuvys) also have a common middle edge. If uv ∈ E1(G),

then we have that s = 1, N(u) = {t, v, y1} and N(v) = {t, u, y1}, which is a

trivial case. This proves the necessity.

For the sufficiency, let uv be any edge of E2(G) and let tuvw, t
′

uvw′ be

two P4-paths in S(uv). We will distinguish the following four possible cases:

Case 1. The four vertices t, t
′

, w and w
′

are pairwise distinct.

From the condition we know that f(tuvw) and f(tuvw
′

) have a common

middle edge, and f(tuvw
′

) and f(t
′

uvw
′

) have a common middle edge. Thus

f(tuvw) and f(t
′

uvw
′

) have a common middle edge.

Case 2. t = t
′

or w = w
′

.

From the condition, we know that f(tuvw) and f(t
′

uvw
′

) have a common

middle edge.

Case 3. t = w
′

but t
′

6= w, or t
′

= w but t 6= w
′

.
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By a proof similar to that of Case 1, we can show that f(tuvw) and

f(t
′

uvw
′

) have a common middle edge.

Case 4. t = w
′

and t
′

= w.

In this case, we see that uv is a common edge of two triangles C = tuvt

and C
′

= t
′

uvt
′

. Since uv ∈ E2(G), we have max{deg(u), deg(v)} ≥ 4.

Without loss of generality, we let deg(u) ≥ 4. Then there exists a vertex x ∈

N(u)\{t, v, t
′

}. From the condition, we know that f(tuvw) and f(xuvw) have

a common middle edge, f(xuvw) and f(xuvw
′

) have a common middle edge,

and f(xuvw
′

) and f(t
′

uvw
′

) have a common middle edge. Thus f(tuvw) and

f(t
′

uvw
′

) have a common middle edge.

To sum up the above cases, we know that f(S(uv)) is a double star of G
′

.

The proof is complete.

Lemma 2.6 ([11]) Let f ∈ Γ4(G, G
′

) and let x1tuv, x2tuv, tuvy1 and tuvy2

be four P4-paths of G. Then f(x1tuv) and f(x2tuv) have a common middle

edge if and only if f(tuvy1) and f(tuvy2) have a common middle edge.

Lemma 2.7 ([11]) Let f ∈ Γ4(G, G
′

) and let x1tuv, x2tuv, tuvy1 and tuvy2

be four P4-paths of G. If f(x1tuv) and f(x2tuv) have no common middle

edge, then f(x1tuv), f(x2tuv), f(tuvy1) and f(tuvy2) form a C4 in G
′

.

Lemma 2.8 Let G, G
′

∈ G3 and f ∈ Γ4(G, G
′

). If x1tuv, x2tuv, tuvy1 and

tuvy2 are four P4-paths of G, then f(x1tuv) and f(x2tuv) have a common

middle edge, and f(tuvy1) and f(tuvy2) have a common middle edge, respec-

tively.

Proof. Assume, to the contrary, that f(x1tuv) and f(x2tuv) have no com-

mon middle edge. By Lemma 2.7, we have that f(x1tuv), f(x2tuv), f(tuvy1)

and f(tuvy2) form a C4 in G
′

(denoted by C
′

= abcda), say f(x1tuv) = abcd,

f(x2tuv) = badc, f(tuvy1) = bcda and f(tuvy2) = dabc.

We claim that N(t)\{u, v, x1, x2} = ∅ and N(v)\{t, u, y1, y2} = ∅. Oth-

erwise, there is another member α of Π4(G) with the P3-path tuv. Without

loss of generality, let α = tuvy3 and y3 6∈ {t, u, y1, y2}, then we would have
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that α
′

is adjacent to both f(x1tuv) and f(x2tuv), which is impossible. Now

x1tuv, x2tuv, tuvy1 and tuvy2 are all P4-paths of G with common P3-path

tuv. We will distinguish the following two possible cases:

Case 1. Not all x1u, x2u, uy1 and uy2 are in E(G).

Without loss of generality, we let x1u /∈ E(G). Since G ∈ G3, there are

two vertices p, q ∈ N(x1) and a vertex z ∈ N(u)\{v} such that px1tu, qx1tu

and x1tuz are P4-paths in G. If f(x1tuv) and f(x1tuz) have a common

middle edge, then, as both f(x1tuv) and f(x1tuz) are adjacent to f(px1tu),

we know that f(x1tuv) and f(x1tuz) have a common P3-path, say abc. Now,

let f(x1tuz) = abcd
′

, so f(x1tuz) is adjacent to f(tuvy2), but x1tuz is not

adjacent to tuvy2 in P4(G), a contradiction to the fact that f ∈ Γ4(G, G
′

).

If f(x1tuv) and f(x1tuz) have no common middle edge, then by Lemma 2.7

f(px1tu), f(qx1tu), f(x1tuv) and f(x1tuz) form a C4 in G
′

(denoted by C
′′

).

Obviously, C
′

= C
′′

, and so we have f(x2tuv) = f(x1tuz), a contradiction

to the fact that f : Π4(G) → Π4(G
′

) is a bijective mapping. Thus f(x1tuv)

and f(x2tuv) have a common middle edge. By Lemma 2.6, we have that

f(tuvy1) and f(tuvy2) have a common middle edge.

Case 2. All x1u, x2u, uy1 and uy2 are in E(G).

Subcase 2.1 max{deg(x1), deg(x2), deg(y1), deg(y2)} ≥ 4.

Without loss of generality, we let deg(x1) ≥ 4. Then there are two ver-

tices p, q ∈ N(x1) such that px1tu and qx1tu are P4-paths in G. Now we

consider f(x1tuv) and f(x1tux2) with the following two possible cases: One

is that f(x1tuv) and f(x1tux2) have a common middle edge, the other is that

f(x1tuv) and f(x1tux2) have no common middle edge. By a proof similar to

that of Case 1, it is easy to see that f(x1tuv) and f(x2tuv) have a common

middle edge. By Lemma 2.6, f(tuvy1) and f(tuvy2) have a common middle

edge.

Subcase 2.2 deg(x1) = deg(x2) = deg(y1) = deg(y2) = 3.

Let αi = xituv and βi = tuvyi for i = 1, 2. Then, as x1tuv, x2tuv, tuvy1

and tuvy2 are all P4-paths of G with common P3-path tuv, we have that

deg(αi) = deg(α
′

i) = deg(βi) = deg(β
′

i) = 3 for i = 1, 2. We can assume that
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there exist a vertex p ∈ N(x1) and a vertex q ∈ N(x2) such that px1tu and

qx2tu are P4-paths in G. Let β3 = px1tu and β4 = qx2tu. Since β3 ∼ α1,

without loss of generality, we have β
′

3 = gabc and g 6∈ {a, b, c, d}. Suppose

that α3 ∈ Π4(G) with α
′

3 = gadc. Now α
′

3 ∼ β
′

1, so α3 has a common P3-path

uvy1 with β1 by N(t)\{u, v, x1, x2} = ∅, and then let α3 = uvy1r. Next

we note that N(b) = {a, c, d} and N(d) = {a, b, c}. Otherwise, we would

have a fourth P4 in Π4(G
′

) which is adjacent to α
′

1 or β
′

1, a contradiction to

deg(α
′

1) = deg(β
′

1) = 3. Since β4 ∼ α2, then we know that β
′

4 has a common

P3-path adc with α
′

2. So let β
′

4 = adch. If α4 ∈ Π4(G) with α
′

4 = abch,

then α4
′ ∼ β

′

2. By a similar argument as α
′

3, we can let α4 = uvy2s. Now

α
′

3 ∼ β
′

4 and α
′

4 ∼ β
′

3, then we conclude that x1 = y2, x2 = y1, p = q = v and

r = s = t in G.

Let α5 = tx1vx2 and β5 = x2tx1v. Now α4 and α5 have a common P3-path

tx1v with β3 and β5 in G, then we will show that α
′

4, α
′

5, β
′

3 and β
′

5 form

a C4 in G
′

. If α
′

4 and α
′

5 have a common middle edge in G
′

, then, as both

α
′

4 and α
′

5 are adjacent to β
′

3, we know that α
′

4 and α
′

5 have a P3-path abc

in common. So let α
′

5 = abch
′

, now α
′

5 ∼ β
′

2, but α5 6∼ β2, a contradiction.

Thus α
′

4 and α
′

5 have no common middle edge. By Lemma 2.7, we have that

α
′

4, α
′

5, β
′

3 and β
′

5 form a C4 in G
′

, and then g = h. Since α5 ∼ β3 and

β5 ∼ α4, we conclude that α
′

5 = cgab and β
′

5 = bcga. Let α6 = tx2vx1 and

β6 = x1tx2v. Now α3 and α6 have a common P3-path tx2v with β4 and β6.

Then, by a similar argument as above, we can get that α
′

3, α
′

6, β
′

4 and β
′

6

form a C4 = gadcg in G
′

with α
′

6 = dcga and β
′

6 = cgad.

Now, let α7 = ux1tx2 and β7 = x1tx2u. Since N(v)\{t, u, x1, x2} = ∅ and

deg(x2) = 3, we know that deg(β5) = 4 and N(β5) = {α4, α5, β6, β7}. So,

deg(β
′

5) = 4, and then α
′

4, α
′

5, β
′

6, and dbcg are exactly the four neighbors of

β
′

5. Since f is a P4-isomorphism from G to G
′

, we have β
′

7 = dbcg. By the

same argument, we can have deg(β
′

6) = deg(β6) = 4, and then α
′

7 = gadb.

Now α7 ∼ β7, but α
′

7 6∼ β
′

7, a contradiction. Then f(x1tuv) and f(x2tuv)

have a common middle edge. By Lemma 2.6, f(tuvy1) and f(tuvy2) have a

common middle edge.
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Remark. Let G, G
′

∈ G3 and f ∈ Γ4(G, G
′

). If x1tuv, x2tuv, tuvy1 and tuvy2

are four P4-paths of G, then, without loss of generality, we can let f(x1tuv) =

x
′

1t
′

u
′

v
′

, f(x2tuv) = x
′

2t
′

u
′

v
′

, f(tuvy1) = t
′

u
′

v
′

y
′

1, and f(tuvy2) = t
′

u
′

v
′

y
′

2.

By Lemma 2.8, we have f(x1tuv) and f(x2tuv) have a common middle

edge. Then, as both f(x1tuv) and f(x2tuv) are adjacent to f(tuvy1), we

have that f(x1tuv) and f(x2tuv) have a common P3-path with f(tuvy1), say

t
′

u
′

v
′

. So we can let f(x1tuv) = x
′

1t
′

u
′

v
′

, f(x2tuv) = x
′

2t
′

u
′

v
′

, and f(tuvy1) =

t
′

u
′

v
′

y
′

1. Since f(tuvy2) is adjacent to both f(x1tuv) and f(x2tuv), then

f(tuvy2) has a common P3-path t
′

u
′

v
′

with f(x1tuv) and f(x2tuv). So let

f(tuvy2) = t
′

u
′

v
′

y
′

2 and y
′

2 6∈ {t
′

, u
′

, v
′

, y
′

1} but possibly y
′

2 = x
′

1 or y
′

2 = x
′

2.

Lemma 2.9 Let G, G
′

∈ G3 and f ∈ Γ4(G, G
′

). If there is a C4 = xtuvx in

G, then f(xtuv), f(tuvx), f(uvxt) and f(vxtu) form a C4 in G
′

.

Proof. Since f(xtuv) is adjacent to f(tuvx), let f(xtuv) = habc and

f(tuvx) = abcd. If f(uvxt) and f(xtuv) have a common middle edge, then,

as f(uvxt) is adjacent to f(tuvx), we have that f(uvxt) has a common P3-

path abc with f(tuvx), say f(uvxt) = h
′

abc. Since f(vxtu) is adjacent to

both f(xtuv) and f(uvxt), we know that f(vxtu) has a common P3-path abc

with f(xtuv) and f(uvxt), and then let f(vxtu) = abcd
′

. Apply Lemma 2.8

for f−1 and the four P4-paths habc, h
′

abc, abcd, and abcd
′

of G
′

, we have

that xtuv and uvxt have a common middle edge in G, a contradiction. Thus

f(uvxt) and f(xtuv) have no common middle edge. Then, as f(uvxt) is

adjacent to f(tuvx), we have that f(uvxt) = bcdg. Since f(vxtu) is adjacent

to both f(xtuv) and f(uvxt), the middle edge of f(vxtu) must be a common

edge of f(xtuv) and f(uvxt). However, the edge bc is not the middle edge of

f(vxtu), so ha = dg is the middle edge of f(vxtu), i.e., g = a, h = d. Thus,

f(xtuv), f(tuvx), f(uvxt) and f(vxtu) form a C4 in G
′

with f(vxtu) = cdab.
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3 Main result

Denote by H the set of all graphs obtained by taking one or more copies

of the complete graph K4, choosing one edge in each copy, and identifying

together all chosen edges into a single edge, or H is the class of graphs

K2 + (mK2), where ‘+’ denotes join and mG means the union of m disjoint

copies of G.

Lemma 3.1 Let G, G
′

∈ G3, and let f be a P4-isomorphism from G to G
′

.

Then f is double star-preserving at every edge of E2(G), or both G and G′

belong to H.

Proof. We only need to show that f satisfies the condition of Lemma 2.5.

Let tuv be a P3-path in G, where N(t)\{u, v} = {x1, · · · , xm}, N(v)\{t, u} =

{y1, · · · , yn}, and m ≥ 1, n ≥ 1. Then we will distinguish the following three

cases:

Case 1. m ≥ 2 and n ≥ 2.

The lemma is obvious by Lemma 2.8.

Case 2. m = 1 and n ≥ 2, or m ≥ 2 and n = 1.

If m = 1, then the edge tv must belong to E(G), i.e., N(t) = {x1, u, v}.

So we only need to show that f(tuvy1), · · · , f(tuvyn) have a common middle

edge.

Subcase 2.1 x1u /∈ E(G).

Since G ∈ G3, there are two vertices p, q ∈ N(x1) and a vertex z ∈

N(u)\{v} such that px1tu, qx1tu and x1tuz are P4-paths in G. Then,

from the above Remark, we can let f(x1tuv) = x
′

1t
′

u
′

v
′

and f(x1tuz) =

x
′

1t
′

u
′

z
′

. Since f(tuvy1), · · · , f(tuvyn) are adjacent to f(x1tuv), but none of

tuvy1, · · · , tuvyn is adjacent to x1tuz, we have that f(tuvy1), · · · , f(tuvyn)

have a common P3-path t
′

u
′

v
′

with f(x1tuv). Thus, f(tuvy1), · · · , f(tuvyn)

have a common middle edge.

Subcase 2.2 x1u ∈ E(G).

(1) There is a vertex p ∈ N(x1)\{t, u, v}.
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Since G ∈ G3, there are two vertices r, s ∈ N(p) such that rpx1t and

spx1t are P4-paths in G. From the Remark, we can let f(rpx1t) = r
′

p
′

x
′

1t
′

,

f(spx1t) = s
′

p
′

x
′

1t
′

, f(px1tu) = p
′

x
′

1t
′

u
′

and f(px1tv) = p
′

x
′

1t
′

v
′

. Since

f(x1tuv) is adjacent to f(px1tu), but x1tuv is not adjacent to px1tv, then

f(x1tuv) has a common P3-path x
′

1t
′

u
′

with f(px1tu). So let f(x1tuv) =

x
′

1t
′

u
′

v1.

(1.1) deg(u) ≥ 4.

Then there exists a vertex z ∈ N(u)\{v} such that x1tuz is a P4-path

in G. Since f(x1tuz) is adjacent to f(px1tu), but x1tuz is not adjacent to

px1tv, we have that f(x1tuz) has a common P3-path x
′

1t
′

u
′

with f(px1tu),

say f(x1tuz) = x
′

1t
′

u
′

z
′

. Similarly, since f(tuvy1), · · · , f(tuvyn) are adja-

cent to f(x1tuv), then f(tuvy1), · · · , f(tuvyn) must have a common P3-path

t
′

u
′

v1 with f(x1tuv). Otherwise, tuvy1, · · · , tuvyn are adjacent to x1tuz, a

contradiction. Hence f(tuvy1), · · · , f(tuvyn) have a common middle edge.

(1.2) deg(u) = 3, i.e., N(u) = {x1, t, v}.

Let α1 = rpx1t, α2 = spx1t, β1 = px1tu, β2 = px1tv and γ = x1tuv. Since

n ≥ 2, there must exist some i such that yi 6= x1. Without loss of generality,

say y1 6= x1. Let α3 = x1tvy1, α4 = x1tvu and β3 = ux1tv. Now β2 and

β3 have a common P3-path x1tv with α3 and α4. Since α3, α4 ∼ β2, but

α3, α4 6∼ β1, we know that α
′

3 and α
′

4 have a common P3-path x
′

1t
′

v
′

with

β
′

2. Then, from the Remark, we can let α
′

3 = x
′

1t
′

v
′

y
′′

1 , α
′

4 = x
′

1t
′

v
′

u1, and

β
′

3 = u2x
′

1t
′

v
′

. Now, let α5 = vux1t and β4 = tvux1. By Lemma 2.9, we get

that β
′

3, α
′

4, β
′

4 and α
′

5 form a C4 in G
′

, and then u1 = u2. Since β4 ∼ α4

and α5 ∼ β3, we have that β
′

4 = t
′

v
′

u1x
′

1 and α
′

5 = v
′

u1x
′

1t
′

. Next we note

that u1 = u
′

and v1 = v
′

. If u1 6= u
′

, then let θ1 ∈ Π4(G) with θ
′

1 = u1x
′

1t
′

u
′

.

Now, θ
′

1 ∼ α
′

5, γ
′

, but there is no P4 of Π4(G) which is adjacent to both α5

and γ, a contradiction. Thus, u1 = u
′

. Similarly, if v1 6= v
′

, let θ2 ∈ Π4(G)

with θ
′

2 = x
′

1t
′

u
′

v
′

. Now θ
′

2 ∼ β
′

1, and so px1t is the common P3-path of θ2

and β1, otherwise θ2 = γ, a contradiction. So let θ2 = r1px1t. Then we have

θ2 ∼ β2, but θ
′

2 6∼ β
′

2, a contradiction.
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Next we will show that f(tuvy1), · · · , f(tuvyn) have a common P3-path

t
′

u
′

v
′

with f(x1tuv), unless G, G′ ∈ H. Let γi = tuvyi for 1 ≤ i ≤ n.

First, we consider x1v 6∈ E(G). Assume, to the contrary, that γ
′

1 has a

common P3-path x
′

1t
′

u
′

with γ
′

, say γ
′

1 = ax
′

1t
′

u
′

. Since deg(y1) ≥ 3, there is

a vertex z1 ∈ N(y1) such that uvy1z1 is a P4-path in G. Let η1 = uvy1z1, now

η1 ∼ γ1, but η1 6∼ β1, then η
′

1 has a common P3-path ax
′

1t
′

with γ
′

1. So let

η
′

1 = bax
′

1t
′

. If a 6= v
′

, let θ3 ∈ Π4(G) with θ
′

3 = ax
′

1t
′

v
′

. Now, θ
′

3 ∼ α
′

4, η
′

1, but

there is no P4 of Π4(G) which is adjacent to both α4 and η1, a contradiction.

If a = v
′

, then γ
′

1 is in a C4 = u
′

v
′

x
′

1t
′

u
′

of G
′

. Apply Lemma 2.9 for f−1,

we have that γ1 is in a C4 of G, which is impossible. Thus γ
′

1 has a common

P3-path t
′

u
′

v
′

with γ
′

. By the same argument, we would have that γ
′

1, · · · , γ
′

n

have a common P3-path t
′

u
′

v
′

with γ
′

. Thus f(tuvy1), · · · , f(tuvyn) have a

common middle edge.

At last, we will consider x1v ∈ E(G). Without loss of generality, we let

γn = tuvx1, i.e., yn = x1. By the above argument we have that γ
′

1, · · · , γ
′

n−1

have a common P3-path t
′

u
′

v
′

with γ
′

, and then let γ
′

i = t
′

u
′

v
′

y
′

i for 1 ≤

i ≤ n − 1. Now, suppose that γ
′

n and γ
′

have a P3-path x
′

1t
′

u
′

in common.

Let β5 = uvx1t and β6 = vx1tu. By Lemma 2.9, we have that γ
′

, γ
′

n, β
′

5

and β
′

6 form a C4 in G
′

, and then x
′

1 ∼ v
′

. So γ
′

n = v
′

x
′

1t
′

u
′

. Since β5 ∼ γn

and β6 ∼ γ, we have β
′

5 = u
′

v
′

x
′

1t
′

and β
′

6 = t
′

u
′

v
′

x
′

1. In fact, deg(β5) = 2

by N(t) = {x1, u, v} and N(u) = {x1, t, v}. So deg(β
′

5) = 2, and then

N(t
′

) = {x
′

1, u
′

, v
′

} and N(u
′

) = {x
′

1, t
′

, v
′

}.

Claim 1. N(v
′

) = {t
′

, u
′

, y
′

1, · · · , y
′

n−1, x
′

1}, i.e., deg(v
′

) = deg(v).

Let S = {t
′

, u
′

, y
′

1, · · · , y
′

n−1, x
′

1}. If there exists a vertex w
′

∈ N(v
′

)\S,

then t
′

u
′

v
′

w
′

is a P4-path in G
′

. Let γ0 ∈ Π4(G) with γ
′

0 = t
′

u
′

v
′

w
′

, now

γ
′

0 ∼ γ
′

, then γ0 must have a common P3-path x1tu with γ. Otherwise,

γ0 = γi for some i ∈ {1, · · · , n}, a contradiction. So let γ0 = wx1tu, and

w 6= v. Since deg(w) ≥ 3, there is a vertex q ∈ N(w) such that qwx1t is a

P4-path in G. Let α0 = qwx1t, now α0 ∼ γ0, so α
′

0 has a common P3-path

u
′

v
′

w
′

with γ
′

0. Otherwise, α
′

0 = γ
′

, a contradiction. So let α
′

0 = u
′

v
′

w
′

q
′

.

Let β0 = wx1tv, now β0 ∼ α0, α4. But there is no P4 of Π4(G
′

) which is
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adjacent to both α
′

0 and α
′

4, a contradiction. Hence, N(v
′

) = S.

Let α6 = px1vu, now α6 ∼ γn, then α
′

6 has a common P3-path t
′

x
′

1v
′

with γ
′

n, otherwise, α
′

6 = γ
′

, a contradiction. By Claim 1, without loss of

generality, we have α
′

6 = t
′

x
′

1v
′

y
′

1. There is at least one of r and s which is not

equal to v, say r 6= v, and then let β7 = rpx1v. Since β7 ∼ α6, then β
′

7 has

a common P3-path x
′

1v
′

y
′

1 with α
′

6. Otherwise, β
′

7 = γ
′

n, a contradiction. So

let β
′

7 = x
′

1v
′

y
′

1z
′

. For deg(r) ≥ 3, there must be a new member α7 of Π4(G)

that is adjacent to both α1 and β7, then we require that y
′

1 = r
′

, z
′

= p
′

and α
′

7 = v
′

y
′

1p
′

x
′

1. Let η ∈ Π4(G) with η
′

= u
′

v
′

y
′

1p
′

, now η
′

∼ γ
′

1, then

η has a common P3-path uvy1 with γ1. Otherwise, η = γ, a contradiction.

So let η = uvy1z. Now α
′

7 ∼ β
′

7, η
′

, then we require that y1 = r, z = p and

α7 = vy1px1. Let α8 = px1vy1 and β8 = x1vy1p. By Lemma 2.9, we know

that α
′

7, β
′

7, α
′

8 and β
′

8 form a C4 in G
′

. Since α8 ∼ β7 and β8 ∼ α7, then we

have α
′

8 = p
′

x
′

1v
′

y
′

1 and β
′

8 = y
′

1p
′

x
′

1v
′

.

Claim 2. N(p) = {v, x1, y1}, N(y1) = {p, v, x1}, N(p
′

) = {v
′

, x
′

1, y
′

1},

and N(y
′

1) = {p
′

, v
′

, x
′

1}.

We see that η and β8 have a common P3-path py1v with α7. Since η
′

and β
′

8 have no common middle edge, then we have that N(p) = {v, x1, y1}.

Otherwise, there is a new P4-path apy1v with a ∈ N(p)\{v, x1, y1}. Then,

by Lemma 2.8, we know that η
′

and β
′

8 have a common middle edge, a

contradiction. Similarly, we see that α1 and β7 have a common P3-path

y1px1 with α7, then, as α
′

1 and β
′

7 have no common middle edge, we have

that N(y1) = {p, v, x1}. Now, η
′

and β
′

7 have a common P3-path p
′

y
′

1v
′

with

α
′

7, but η and β7 have no common middle edge. Since f−1 is also a P4-

isomorphism, then, by the same argument, we have that N(p
′

) = {v
′

, x
′

1, y
′

1}.

Similarly, α
′

1 and β
′

8 have a common P3-path y
′

1p
′

x
′

1 with α
′

7, and as α1 and

β8 have no common middle edge, we know that N(y
′

1) = {p
′

, v
′

, x
′

1}.

Claim 3. N(x1) = {t, u, y1, · · · , yn−1, v} and N(x
′

1) = {t
′

, u
′

, y
′

1, · · · , y
′

n−1,

v
′

}, and n is odd.

Since deg(t) + deg(x1) − 4 = deg(γn) = deg(γ
′

n) = deg(u
′

) + deg(v
′

) − 4,

and deg(t) = deg(u
′

) = 3, then deg(x1) = deg(v
′

). Similarly, we can
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have deg(v) = deg(x
′

1) for deg(β6) = deg(β
′

6). By Claim 1, we know that

deg(v) = deg(v
′

). Thus, deg(x1) = deg(v) and deg(x
′

1) = deg(v
′

). Now,

suppose that N(x1) = {t, u, p, p2, · · · , pn−1, v}. By Claim 2, we know that

p ∈ N(v)\{x1, y1} and y1 ∈ N(x1)\{p, v}. Thus, without loss of gener-

ality, let p = yn−1 and y1 = pn−1. Similarly, p
′

∈ N(v
′

)\{x
′

1, y
′

1} and

y
′

1 ∈ N(x
′

1)\{p
′

, v
′

}, then we can let p
′

= y
′

n−1 and y
′

1 = p
′

n−1. In fact

we would see that x1, v, y1 and yn−1 form a K4 in G, and x
′

1, v
′

, y
′

1 and y
′

n−1

form a K4 in G
′

. By a similar proof as above, without loss of generality, we

can show that N(pi) = {v, x1, yi} and N(yi) = {pi, v, x1} for 2 ≤ i ≤ n − 2.

Then pi ∈ N(v)\{y1, yi, yn−1, x1} and yi ∈ N(x1)\{p, pi, pn−1, v}, without

loss of generality, we can let pi = yn−i and yi = pn−i for 2 ≤ i ≤ ⌊n
2
⌋. So,

if n is even, then pn

2
= yn

2
and N(pn

2
) = {v, x1}, which is impossible. Thus

n is odd, and N(x1) = {t, u, y1, · · · , yn−1, v}. By the same argument, we

can show that N(x
′

1) = {t
′

, u
′

, y
′

1, · · · , y
′

n−1, v
′

} and N(y
′

i) = {v
′

, x
′

1, y
′

n−i} for

2 ≤ i ≤ n − 2.

Now, we conclude that the four vertices x1, v, yi and yn−i form a K4 in G,

and x
′

1, v
′

, y
′

i and y
′

n−i form a K4 in G
′

, for 2 ≤ i ≤ n−1

2
. Hence, G, G

′

∈ H.

(2) N(x1) = {t, u, v}.

Without loss of generality, let yn = x1. By Lemma 2.9, we have that

f(x1tuv), f(tuvx1), f(uvx1t) and f(vx1tu) form a C4 in G
′

, say f(x1tuv) =

abcd, f(tuvx1) = bcda, f(uvx1t) = cdab and f(vx1tu) = dabc. In fact

deg(tuvx1) = 2 by N(t) = {x1, u, v} and N(x1) = {t, u, v}. So deg(bcda) = 2,

and then N(a) = {b, c, d} and N(b) = {a, c, d}. Then, as f(tuvy1), · · · , f(tuvyn−1)

are adjacent to f(x1tuv), we know that f(tuvy1), · · · , f(tuvyn−1) have a

common P3-path bcd with f(x1tuv). Hence, f(tuvy1), · · · , f(tuvyn−1) and

f(tuvx1) have a common middle edge.

Case 3. m = 1 and n = 1.

This case is trivial.

To sum up the above cases, we have proved that f is double star-preserving

at each edge e of E2(G) .
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Lemma 3.2 Let G, G
′

∈ G3\H and let f be a P4-isomorphism from G to

G
′

. Then f is double star-preserving at the edge uv, where uv ∈ E1(G).

Proof. Let uv be a common edge of two triangles C = xuvx and C
′

= yuvy

with deg(u) = deg(v) = 3. We will prove that f(xuvy) and f(yuvx) have a

common middle edge.

Since G 6= K4, G has at least five vertices. Without loss of generality, let

t ∈ N(x)\{u, v, y}. For G ∈ G3, there exist a vertex s ∈ N(t)\{x, y} and a

vertex p ∈ N(s)\{t, x} such that stxu, stxv and pstx are P4-paths in G. Let

α1 = stxu, α2 = stxv and β0 = pstx. By Lemma 3.1, we know that α
′

1 and

α
′

2 have a common middle edge. Since α1, α2 ∼ β0, we have that α
′

1 and α
′

2

have a common P3-path, say s
′

t
′

x
′

. Then, let α
′

1 = s
′

t
′

x
′

u
′

and α
′

2 = s
′

t
′

x
′

v
′

.

Let β1 = txuv, β2 = txuy, γ1 = xuvy and γ2 = xuyv. Since β1, β2 ∼ α1, but

β1, β2 6∼ α2, we have that β
′

1 and β
′

2 have a common P3-path t
′

x
′

u
′

with α
′

1.

So let β
′

1 = t
′

x
′

u
′

v1 and β
′

2 = t
′

x
′

u
′

y1. Similarly, γ1 ∼ β1 but γ1 6∼ β2, and

γ2 ∼ β2 but γ2 6∼ β1, then we would let γ
′

1 = x
′

u
′

v1y2 and γ
′

2 = x
′

u
′

y1v2. Let

β3 = txvu, β4 = txvy, γ3 = xvuy and γ4 = xvyu. By symmetry, we can let

β
′

3 = t
′

x
′

v
′

u1, β
′

4 = t
′

x
′

v
′

y3, γ
′

3 = x
′

v
′

u1y4 and γ
′

4 = x
′

v
′

y3u2. Since γ2 ∼ γ4,

it requires that y1 = y3, u
′

= u2 and v
′

= v2.

Now we suppose that f(xuvy) and f(yuvx) have no common middle edge,

i.e., u
′

v1 6= v
′

u1. We will distinguish the following two possible cases:

Case 1. u
′

6= u1 and v
′

6= v1.

Suppose that α3, α4 ∈ Π4(G) with α
′

3 = v1u
′

x
′

v
′

and α
′

4 = u
′

x
′

v
′

u1. Now,

α
′

3 ∼ γ
′

1 and α
′

4 ∼ γ
′

3. Hence, α3 = a1xuv or uvyb1, and α4 = a2xvu or vuyb2.

In any cases, α3 6∼ α4, but in fact α
′

3 ∼ α
′

4, a contradiction.

Case 2. u
′

6= u1 and v
′

= v1 (or u
′

= u1 and v
′

6= v1).

We claim that y2 = y1 = u1. If y2 6= y1, let α5 ∈ Π4(G) with α
′

5 = x
′

u
′

v
′

y1.

Now α
′

5 ∼ β
′

1, then α5 has a common P3-path txu with β1. Otherwise,

α5 = γ1, a contradiction. So let α5 = rtxu, now α5 ∼ β2, but α
′

5 6∼ β
′

2, a

contradiction. Thus y2 = y1. If u1 6= y1, let α6 ∈ Π4(G) with α
′

6 = x
′

u
′

v
′

u1.

By a similar argument as α
′

5, we conclude u1 = y1, and then β
′

3 = β
′

4, a

contradiction.
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Thus f(xuvy) and f(yuvx) have a common middle edge. The proof is

now complete.

Theorem 3.3 Let G, G
′

∈ G3\H. Then f ∈ Γ4(G, G
′

) if and only if f is

induced by an edge-isomorphism from G to G
′

, i.e., P4(G) is isomorphic to

P4(G
′

) if and only if the line graph L(G) is isomorphic to L(G
′

).

Proof. The “if” part is obvious. For the “only if” part, let f ∈ Γ4(G, G
′

).

By Theorem 2.4, we only need to prove that both f and f−1 are double

star-preserving. Then, from Lemmas 3.1 and 3.2, we have that f is double

star-preserving. Since G
′

has the same property as G, we have that f−1 is

also double star-preserving, which completes the proof.

From Theorems 2.2 and 3.3, the following result is immediate.

Theorem 3.4 Let G, G
′

∈ G3\H. Then f ∈ Γ4(G, G
′

) if and only if f is

induced by an isomorphism from G to G
′

, i.e., P4(G) is isomorphic to P4(G
′

)

if and only if G is isomorphic to G
′

.

By Lemma 3.1, it is easy to get a result as follows.

Corollary 3.5 Let G ∈ H and G
′

∈ G3. If f is a P4-isomorphism from G

to G
′

, then G is isomorphic to G
′

.

Corollary 3.6 The P4-transformation is one-to-one on G3.

Proof. Let f be a P4-isomorphism from G to G
′

. If G ∈ G3\H and G
′

∈ H,

apply Corollary 3.5 for f−1, then G ∈ H, a contradiction. So from Theorems

2.1, 2.3 and 3.4, and Corollary 3.5, we have this result immediately.
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