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Abstract. In this paper we study k-noncrossing, canonical RNA pseudoknot structures with

minimum arc-length ≥ 4. Let T
[4]
k,σ

(n) denote the number of these structures. We derive exact

enumeration results by computing the generating function T
[4]
k,σ

(z) =
P

n T
[4]
k,σ

(n)zn and derive

the asymptotic formulas T
[4]
k,3(n) ∼ ck n−(k−1)2−k−1

2 (γ
[4]
k,3)−n for k = 3, . . . , 9. In particular we

have for k = 3, T
[4]
3,3(n) ∼ c3 n−52.0348n. Our results prove that the set of biophysically relevant

RNA pseudoknot structures is surprisingly small and suggest a new structure class as target for

prediction algorithms.

1. Introduction

RNA pseudoknot structures have drawn a lot of attention over the last decade [1]. From micro-

RNA binding to ribosomal frameshifts [20], we currently discover novel RNA functionalities at

truly amazing rates. Our conceptional understanding of RNA pseudoknot structures has not kept

up with this pace. Only recently the generating functions of k-noncrossing RNA structures of

arc-length ≥ 2 [11], arc-length ≥ 4 [9] and canonical k-noncrossing RNA structures of arc-length

≥ 2 [13] have been derived. While these combinatorial results open new perspectives for the design

of new folding algorithms, it has to be noted that realistic pseudoknot structures are subject to

a minimum arc-length ≥ 4 and stack-length ≥ 3. Therefore the above structure classes are not

“best possible”. The lack of a transparent target class of RNA pseudoknot structures represents

a problem for ab initio prediction algorithms. There are four algorithms, capable of the energy

based prediction of certain pseudoknots in polynomial time: Rivas et al. (dynamic programming,
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gap-matrices, O(n6) time and O(n4) space) [21], Uemura et al. (O(n5) time and O(n4) space, tree-

adjoining grammars) [25], Akutsu [3] and Lyngso [18]. All of them follow the dynamic programming

paradigm and none produces an easily specifiable class of pseudoknots as output.

In this paper we characterize a class of pseudoknot RNA structures in which bonds have a minimum

length of four and stacks contains at least three base pairs. Our results show that this structure

class is ideally suited as a priori-output for prediction algorithms. Tab.1 indicates that this class

remains suitable even for more complex pseudoknots (specified in terms of larger sets of mutually

crossing bonds). In fact, one can search RNA 3-noncrossing pseudoknot structure with arc-length

≥ 4 and stack-length σ ≥ 3 for a sequence of length 100 w.r.t. a variety of objective functions (in

particular loop-based minimum free energy models) on a 4-core PC in a few minutes [10].

In order to put our results into context, we turn the clock back by almost three decades. 1978

M. Waterman et al. [27, 28, 29, 30] began deriving the concepts for enumeration and prediction

of RNA secondary structures. The latter represent arguably the prototype of prediction-targets of

RNA structures. RNA secondary structures are coarse grained structures which can be represented

as outer-planar graphs, diagrams, Motzkin-paths or words over “.” “ ( ” and “ ) ”. Their decisive

feature is that they have no two crossing bonds, see Fig.1. Let T
[λ]
2 (n) denote the number of

secondary structures with arc-length ≥ λ over [n] = {1, . . . , n}. The key to RNA secondary

structures is the following recursion for T
[λ]
2 (n):

(1.1) T
[λ]
2 (n) = T

[λ]
2 (n − 1) +

n−(λ+1)
∑

j=0

T
[λ]
2 (n − 2 − j)T

[λ]
2 (j),

where T
[λ]
2 (n) = 1 for 0 ≤ n ≤ λ. The latter follows from considering the concatenation of

Motzkin-paths with minimum peak length λ − 1. Eq. (1.1) implies for the generating function

T
[λ]
2 (z) =

∑

n≥0 T
[λ]
2 (n)zn the functional equation

(1.2) z2 T
[λ]
2 (z)2 − (1 − z + z2 + · · · + zλ)T

[λ]
2 (z) + 1 = 0

from which eventually

T
[λ]
2 (z) =

−1 + 2z − 2z2 + zλ+1 +
√

1 − 4z + 4z2 − 2zλ+1 + 4zλ+2 − 4zλ+3 + z2λ+2

2(z3 − z2)

follows. Therefore, minimum arc-length restrictions do not impose particular difficulties for RNA

secondary structures. In fact minimum stack size conditions can also be dealt with straightfor-

wardly. We furthermore note that eq. (1.1) is a constructive recursion, i.e. it allows to inductively

build secondary structures over [n] from those over [i], for all i < n.
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Figure 1. RNA secondary structures.

In order to analyze RNA structure with crossing bonds, we recall the notion of k-noncrossing

diagrams [11]. A k-noncrossing diagram is a labeled graph over the vertex set [n] with vertex

degrees ≤ 1, represented by drawing its vertices 1, . . . , n in a horizontal line and its arcs (i, j),

where i < j, in the upper half-plane, containing at most k − 1 mutually crossing arcs. The

vertices and arcs correspond to nucleotides and Watson-Crick (A-U, G-C) and (U-G) base pairs,
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Figure 2. k-noncrossing diagrams: we display a 4-noncrossing, arc-length λ ≥ 4 and

σ ≥ 1 (upper) and 3-noncrossing, λ ≥ 4 and σ ≥ 2 (lower) diagram.

respectively. Diagrams have the following three key parameters: the maximum number of mutually

crossing arcs, k− 1, the minimum arc-length, λ and minimum stack-length, σ (〈k, λ, σ〉-diagrams).

The length of an arc (i, j) is j − i and a stack of length σ is a sequence of “parallel” arcs of the

form ((i, j), (i + 1, j − 1), . . . , (i + (σ − 1), j − (σ − 1))), see Fig.2. We call an arc of length λ a

λ-arc. Let T
[λ]
k,σ(n) denote the set of k-noncrossing diagrams with minimum arc- and stack-length

λ and σ and let T
[λ]
k,σ(n) denote their number.

In the following, we shall identify pseudoknot RNA structures with k-noncrossing diagrams and re-

fer to them as 〈k, λ, σ〉-structures. Pseudoknot RNA structures occur in functional RNA (RNAseP)

[17], ribosomal RNA [16] and plant viral RNAs and vitro RNA evolution experiments have pro-

duced families of RNA structures with pseudoknot motifs [24]. In Fig.3 we give several repre-

sentations of the UTR-pseudoknot of the mouse hepatitis virus. Due to the crossings of arcs

pseudoknots differs considerably from secondary structures: pseudoknot RNA structures are in-

herently non-inductive and no analogue of eq. (1.1) exists. One key for the generating function of

k-noncrossing RNA structures T
[λ]
k (z) was the bijection of Chen et al. [4] obtained in the context

of k-noncrossing partitions. This bijection has been generalized to k-noncrossing tangled diagrams

[5], a class of contact-structures tailored for expressing RNA tertiary interactions. Via the bijec-

tion k-noncrossing RNA structures can be identified with certain walks in Zk−1 that remain in the

region

{(x1, . . . , xk−1) ∈ Z
k−1 | x1 ≥ x2 ≥ . . . xk−1 ≥ 0}
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Figure 3. UTR-pseudoknot structure of the mouse hepatitis virus.

starting and ending at 0, the boundaries of which are called walls. The enumeration of these

walks is obtained employing the reflection principle. This method is due to André in 1887 [2]

and has subsequently been generalized by Gessel and Zeilberger [7]. In the reflection principle

“bad”-i.e. reflected- walks cancel themselves. In other words one enumerates all walks and due to

cancellation only the ones survive that never touch the walls. Despite its beauty this method does

not trigger any algorithmic intuition and is nonconstructive. Moreover, k-noncrossing RNA struc-

tures cannot directly be enumerated via the reflection principle: it does not preserve a minimum

arc-length. In [11] it is shown how to eliminate specific classes of arcs after reflection. One non-

trivial implication of this theory is that all generating functions for k-noncrossing RNA structures

are D-finite, i.e. there exists a nonconstructive recurrence relation of finite length with polynomial

coefficients for T
[λ]
k,σ(n). Note however, that although we can prove the existence of this recurrence
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it is at present not known for any k > 2. In Fig.4 we illustrate the key steps for the enumeration

of k-noncrossing RNA structures [11].

1 2 3 4 5 6

+ + + - - -
1 2 1 2 1 1

0

1

2

3

1 2 3

Figure 4. Exact enumeration of k-noncrossing RNA structures.

Once T
[4]
k,σ(z) is known we employ singularity analysis and study its dominant singularities, using

Hankel contours. This Ansatz has been pioneered by P. Flajolet and A.M. Odlyzko [6]. Its basic

idea is the construction of an “singular-analogue” of the Taylor-expansion. It can be shown that,

under certain conditions, there exists an approximation, which is locally of the same order as the

original function. The particular, local approximation allows then to derive the asymptotic form

of the coefficients. In our situation all conditions for singularity analysis are met, since all our

generating functions are D-finite [22, 31] and D-finite functions have an analytic continuation into

any simply-connected domain containing zero.

We will compute T
[4]
k,σ(z) and show that T

[4]
k,σ(z) has an unique dominant singularity, whose type

depends solely on the crossing number [12, 13]. Via singularity analysis will produce an array of

exponential growth rates indexed by k and σ, summarized in Tab. 1. The ideas of this paper build

on those of [11, 13]. In [13] core-structures are introduced via which σ-canonical k-noncrossing

structures can be enumerated. 〈k, 4, σ〉-structures where σ ≥ 3 can however not be enumerated via

core-structures, see Fig.5. This is a result from the fact that the core-map, obtained by identifying

stacks by single arcs does not preserve arc-length. Therefore we have to introduce a new set of

k-noncrossing diagrams, denoted by T ∗
k (n, h). This class is designed for inducing a new type of

cores, C∗
k(n′, h′) (see Theorem 3). Then we proceed using ideas similar to those in [13] and prove
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k 3 4 5 6 7 8 9

σ = 3 2.0348 2.2644 2.4432 2.5932 2.7243 2.8414 2.9480

σ = 4 1.7898 1.9370 2.0488 2.1407 2.2198 2.2896 2.3523

σ = 5 1.6465 1.7532 1.8330 1.8979 1.9532 2.0016 2.0449

σ = 6 1.5515 1.6345 1.6960 1.7457 1.7877 1.8243 1.8569

σ = 7 1.4834 1.5510 1.6008 1.6408 1.6745 1.7038 1.7297

σ = 8 1.4319 1.4888 1.5305 1.5639 1.5919 1.6162 1.6376

σ = 9 1.3915 1.4405 1.4763 1.5049 1.5288 1.5494 1.5677

Table 1. Exponential growth rates of 〈k, 4, σ〉-structures where σ ≥ 3.

I-1 I I+4 J JI+4I

Length=4 Length=2

Figure 5. Core-structures will in general have 2-arcs: the structure δ ∈ T
[4]
3,3(12) (lhs)

is mapped into its core c(δ) (rhs). Clearly δ has arc-length ≥ 4 and as a consequence of

the collapse of the stack ((I + 1, J + 2), (I + 2, J + 1), (I + 3, J)) (the red arcs are being

removed) into the arc (I +3, J), c(δ) contains the arc (I, I +4), which is, after relabeling,

a 2-arc.

our exact enumeration result, Theorem 3. As for the singularity analysis the main contribution is

Claim 1 of Theorem 4: a new functional equation for T
[4]
k,σ(z).

2. Preliminaries

In this Section we provide some background on the generating functions of k-noncrossing matchings

[4, 15] and k-noncrossing RNA structures [11, 12]. We denote the set (number) of k-noncrossing

RNA structures with arc-length ≥ λ and stack-size ≥ σ by T
[λ]
k,σ(n) (T

[λ]
k,σ(n)). By abuse of notation

we omit the indices λ and σ in T
[λ]
k,σ(n) (T

[λ]
k,σ(n)) for λ = 2 and σ = 1. A k-noncrossing core-

structure is a k-noncrossing RNA structures in which there exists no two arcs of the form (i, j), (i+

1, j−1). The set (number) of k-noncrossing core-structures and k-noncrossing core-structures with
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exactly h arcs is denoted by Ck(n)(Ck(n)) and Ck(n, h) (Ck(n, h)), respectively. Furthermore we

denote by fk(n, ℓ) the number of k-noncrossing diagrams with arbitrary arc-length and ℓ isolated

vertices over n vertices and set Mk(n) =
∑n

ℓ=0 fk(n, ℓ). That is, Mk(n) is the number of all

k-noncrossing partial matchings. In Fig.6 we display the various types of diagrams involved.

1 3 4 5 6 8 1 2 3 4 5 6 7 8

2 3 4 5 6 8 1 2 3 4 5 6 7 8

2 7

7

(A) (B)

(D)(C)
1

9 10

9 10

9 10

9 10

Figure 6. Basic diagram types: (A) 4-noncrossing matching (no isolated points), (B) 3-

noncrossing partial matching (isolated points 4 and 9), (C) 4-noncrossing RNA structure

with arc-length ≥ 4 and stack length ≥ 1, (D) RNA structure with arc-length ≥ 5 and

stack-length ≥ 3.

2.1. k-noncrossing partial matchings and RNA structures. The following identities are due

to Grabiner and Magyar [8]

∑

n≥0

fk(n, 0) · xn

n!
= det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1(2.1)

∑

n≥0

{

n
∑

ℓ=0

fk(n, ℓ)

}

· xn

n!
= ex det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1 ,(2.2)

where Ir(2x) =
∑

j≥0
x2j+r

j!(r+j)! denotes the hyperbolic Bessel function of the first kind of order r.

Eq. (2.1) and (2.2) allow only “in principle” for explicit computation of the numbers fk(n, ℓ) and

in view of fk(n, ℓ) =
(

n
ℓ

)

fk(n − ℓ, 0) everything can be reduced to (perfect) matchings, where we

have the following situation: there exists an asymptotic approximation of the determinant of the

hyperbolic Bessel function for general k due to [15] and employing the subtraction of singularities-

principle [19] one can prove [15]

(2.3) ∀ k ∈ N; fk(2n, 0) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n, ck > 0 ,
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k 2 3 4 5 6 7 8 9 10

γ−1
k 2.6180 4.7913 6.8541 8.8875 10.9083 12.9226 14.9330 16.9410 18.9472

Table 2. The exponential growth rates of 〈k, 2, 1〉-structures.

k 4 5 6 7 8 9

γ
[4]
k

−1
6.5290 8.6483 10.7176 12.7635 14.7963 16.8210

Table 3. The exponential growth rates of 〈k, 4, 1〉-structures.

where ρk = 1
2(k−1) is the dominant real singularity of

∑

n≥0 fk(2n, 0)z2n. For 〈k, 2, 1〉-structures

we have [11, 12]

Tk(n) =

⌊n/2⌋
∑

b=0

(−1)b

(

n − b

b

)

Mk(n − 2b)(2.4)

Tk(n) ∼ ck n−((k−1)2+(k−1)/2) (γk)−n, ck > 0 ,(2.5)

where γk is the unique, minimal solution of z
z2−z+1 = ρk, see Tab. 2. For 〈k, 4, 1〉-structures we

have according to [9] the following exact enumeration result

T
[4]
k (n) =

∑

b≤⌊n
2
⌋
(−1)b λ(n, b)Mk(n − 2b), 4 ≤ k ≤ 9 ,(2.6)

where λ(n, b) denotes the number of way of selecting b arcs of length ≤ 3 over n vertices and

(2.7) T
[4]
k (n) ∼ ck n−((k−1)2+(k−1)/2)

(

γ
[4]
k

)−n

where γ
[4]
k is the unique positive, real solution of z r1(−z2)

1−zr1(−z2) = ρk where r1(z) satisfies

u(z) =
√

1 + 4z − 4z2 − 6z3 + 4z4 + z6

r1(z) = −−2z2 + z3 − 1 + u(z)

2(1 − 2z − z2 + z4)
.

In Tab. 3 we present the exponential growth rates for T
[4]
k (n) for k = 4, . . . , 9. For 〈k, 2, σ〉-

structures we have according to [13]

(2.8) Tk,σ(x) =
1

u0x2 − x + 1

∑

n≥0

fk(2n, 0)

( √
u0 x

u0x2 − x + 1

)2n

where u0 = (x2)σ−1

(x2)σ−x2+1 and

(2.9) Tk,σ(n) ∼ ck n−((k−1)2+(k−1)/2)
(

γ−1
k

)n
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k 2 3 4 5 6 7 8 9 10

σ = 2 1.9680 2.5881 3.0382 3.4138 3.7438 4.0420 4.3162 4.5715 4.8115

σ = 3 1.7160 2.0477 2.2704 2.4466 2.5955 2.7259 2.8427 2.9490 3.0469

σ = 4 1.5782 1.7984 1.9410 2.0511 2.1423 2.2209 2.2904 2.3529 2.4100

σ = 5 1.4899 1.6528 1.7561 1.8347 1.8991 1.9540 2.0022 2.0454 2.0845

Table 4. The exponential growth rates of 〈k, 2, σ〉-structures [13].

where γk,σ is a positive real dominant singularity of
∑

n≥0 Tk,σ(n)xn and the minimal positive real

solution of the equation

(2.10)

√

(x2)σ−1

(x2)σ−x2+1 x
(

(x2)σ−1

(x2)σ−x2+1

)

x2 − x + 1
= ρk.

In Table 4 we present the exponential growth rates of 〈k, 2, σ〉-structures.

2.2. Singularity analysis. Let us next recall some basic fact about analytic functions. Pfring-

sheim’s Theorem [23] guarantees that each power series with positive coefficients has a positive

real dominant singularity. This singularity plays a key role for the asymptotics of the coefficients.

In the proof of Theorem 4 it will be important to deduce relations between the coefficients from

functional equations of generating functions. The class of theorems that deal with such deductions

are called transfer-theorems [6]. We consider a specific domain in which the functions in question

are analytic and which is “slightly” bigger than their respective radius of convergence. It is tailored

for extracting the coefficients via Cauchy’s integral formula. Details on the method can be found

in [6]. In case of D-finite functions we have analytic continuation in any simply connected domain

containing zero [26] and all prerequisites of singularity analysis are met. To be precise, given two

numbers φ, R, where R > 1 and 0 < φ < π
2 and ρ ∈ R, the open domain ∆ρ(φ, R) is defined as

(2.11) ∆ρ(φ, R) = {z | |z| < R, z 6= ρ, |Arg(z − ρ)| > φ}

A domain is a ∆ρ-domain if it is of the form ∆ρ(φ, R) for some R and φ. A function is ∆ρ-analytic

if it is analytic in some ∆ρ-domain. We use the notation

(2.12) (f(z) = O (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) is bounded as z → ρ)

and if we write f(z) = O(g(z)) it is implicitly assumed that z tends to a (unique) singularity.

[zn] f(z) denotes the coefficient of zn in the power series expansion of f(z) around 0.
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k q0,k(z) Mk

3 (1/4 − 4z2) z2 {±1/4}
4 (144 z4 − 40 z2 + 1) z6 {±1/2,±1/6}
5 (−80 z2 + 1024 z4 + 1) z8 {±1/4,±1/8}
6 (−4144 z4 + 140 z2 + 14400 z6 + 1) z10 {±1/2,±1/6,±1/10, }
7 (−1 − 12544 z4 + 224 z2 + 147456 z6) z12 {±1/4,±1/8,±1/12}
8 (1 − 336z2 + 31584z4 + 2822400z8 − 826624z6)z14 {±1/2,±1/6,±1/10,±1/14}
9 −(−480z2 + 1 + 69888z4 + 37748736z8 − 3358720z6)z16 {±1/4,±1/8,±1/12,±1/16}

Table 5. The polynomials q0,k(z) and their nonzero roots.

Theorem 1. [6] Let f(z), g(z) be D-finite, ∆ρ-analytic functions with unique dominant singularity

ρ and suppose

(2.13) f(z) = O(g(z)) for z → ρ .

Then we have

(2.14) [zn]f(z) = K

(

1 − O(
1

n
)

)

[zn]g(z) ,

where K is some constant.

Let Fk(z) =
∑

n fk(2n, 0)z2n, the ordinary generating function of k-noncrossing matchings. It

follows from eq. (2.1) that the power series Fk(z) is D-finite, i.e. there exists some e ∈ N such that

(2.15) q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · · + qe,k(z)Fk(z) = 0 ,

where qj,k(z) are polynomials. The key point is that any dominant singularity of Fk(z) is contained

in the set of roots of q0,k(z) [22], which we denote by Mk. The polynomials q0,k(z) and their sets

of roots for k = 3, . . . , 9 are given in Table 5. Accordingly, Fk(z) has singularities ±ρk, where

ρk = (2(k − 1))−1.

As a consequence of Theorem 1, eq. (2.3) and the so called supercritical case of singularity analysis

[6], VI.9., p. 400, we give the following result[14] tailored for our functional equations.
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Theorem 2. Suppose ϑσ(z) is algebraic over K(z), regular for |z| < δ and satisfies ϑσ(0) = 0.

Suppose further γk,σ is the unique solution with minimal modulus < δ of the two equations ϑσ(x) =

ρk and ϑσ(x) = −ρk. Then γk,σ is the unique dominant singularity of Fk(ϑσ(z)) and

(2.16) [zn]Fk(ϑσ(z)) ∼ ck n−((k−1)2+(k−1)/2)
(

γ−1
k,σ

)n

.

3. Exact Enumeration

In this section we present the exact enumeration of 〈k, 4, σ〉-structures, where σ ≥ 3. The struc-

ture of our formula is analogous to the Möbius inversion formula proved in [13]: Tk,σ(n, h) =
∑h−1

b=σ−1

(

b+(2−σ)(h−b)−1
h−b−1

)

Ck(n−2b, h− b), which relates the number of all structures and the num-

ber of core-structures. As we pointed out in the introduction the latter cannot be used in order to

enumerate k-noncrossing structures with arc-length ≥ 4, see Fig.5. We consider the arc-sets

β2 = {(i, i + 2) | i + 1 isolated} and β3 = {(i, i + 3) | i + 1, i + 2 isolated}

and set β = β2 ∪ β3. Furthermore

C∗
k (n, h) = {δ | δ ∈ Ck(n, h); δ contains no 1-arc and no β-arc}(3.1)

T ∗
k (n, h) = {δ | δ ∈ Tk(n, h); δ contains no 1-arc and no β-arc} .(3.2)

Theorem 3. Suppose we have k, h, σ ∈ N, k ≥ 2, h ≤ n/2 and σ ≥ 3. Then the number of

〈k, 4, σ〉-structures having exactly h arcs is given by

(3.3) T
[4]
k,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

C
∗
k(n − 2b, h− b)

where C∗
k(n, h) satisfies C∗

k(n, 0) = 1 and

C
∗
k(n, h) =

h−1
∑

b=0

(−1)h−b−1

(

h − 1

b

)

T
∗
k(n − 2h + 2b + 2, b + 1) for h ≥ 1 .(3.4)

Furthermore, T∗
k(n, h) satisfies

(3.5) T
∗
k(n, h) =

∑

0≤j1+j2+j3≤h

(−1)j1+j2+j3λ(n, j1, j2, j3) fk(n− 2j1 − 3j2 − 4j3, n− 2h− j2 − 2j3)

where

λ(n, j1, j2, j3) =

(

n − j1 − 2j2 − 3j3
j1, j2, j3, n − 2j1 − 3j2 − 4j3

)

.



CANONICAL RNA PSEUDOKNOT STRUCTURES 13

n 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
[4]
3,3(n) 1 2 4 8 15 28 52 96 176 316 557 965 1660 2860 4974 8754 15562

T
[4]
3,4(n) 1 1 1 2 4 8 14 23 36 56 88 141 231 382 633 1038 1679

Table 6. Exact enumeration: T
[4]
3,3(n) and T

[4]
3,4(n) for n ≤ 24, respectively.

In Tab.6 we display the first numbers of 〈k, 4, 3〉-structures and 〈k, 4, 4〉-structures, respectively.

Proof. We first show that there exists a mapping from 〈k, 4, σ〉-structures with h arcs over [n] into
˙⋃

σ−1≤b≤h−1C
∗
k (n − 2b, h − b):

(3.6) c : T
[4]
k,σ(n, h) → ˙⋃

σ−1≤b≤h−1
C∗

k(n − 2b, h− b), δ 7→ c(δ)

which is obtained in two steps: first induce c(δ) by mapping arcs and isolated vertices as follows:

(3.7) ∀ ℓ ≥ σ − 1; ((i − ℓ, j + ℓ), . . . , (i, j)) 7→ (i, j) and j 7→ j if j is an isolated vertex

and second relabel the resulting diagram from left to right in increasing order, see Fig.7.

Claim 1. c : T
[4]
k,σ(n, h) −→ ˙⋃

σ−1≤b≤h−1C
∗
k(n − 2b, h− b) is well-defined and surjective.

1 2 3 4 5 6 7 8 9 10 11 12 3 4 7 1 2 3 48 7 12 5 613 14

Figure 7. The mapping c : T
[4]
k,σ(n, h) −→ ˙S

σ−1≤b≤h−1C
∗
k(n − 2b, h − b) is obtained

in two steps: first contraction of the stacks while keeping isolated points and secondly

relabeling of the resulting diagram.

By construction, c does not change the crossing number. Since T
[4]
k,σ(n) contains only arcs of length

≥ 4 we derive c(T
[4]
k,σ(n)) ⊂ C∗

k (n−2b, h− b). Therefore c is well-defined. It remains to show that c

is surjective. For this purpose let δ ∈ C∗
k (n− 2b, h− b) and set a = b− (σ − 1)(h− b). We proceed

constructing a k-noncrossing structure δ̃ in three steps:

Step 1. replace each label i by ri, where ri ≤ rs if and only if i ≤ s.

Step 2. replace the leftmost arc (rp, rq) by the sequence of arcs

(3.8) ((τp − ([σ − 1] + a), τq + ([σ − 1] + a)), . . . , (τp, τq))
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replace any other arc (rp, rq) by the sequence

(3.9) ((τp − [σ − 1], τq + [σ − 1]), . . . , (τp, τq))

and each isolated vertex rs by τs.

Step 3. Set for x, y ∈ Z, τb +y ≤ τc +x if and only if (b < c) or (b = c and y ≤ x). By construction,

≤ is a linear order over

n − 2b + 2(h − b) (σ − 1) + 2a = n − 2b + 2(h − b) (σ − 1) + 2(b − (σ − 1)(h − b)) = n

elements, which we then label from 1 to n (left to right) in increasing order. It is straightforward

to verify that c(δ̃) = δ holds. It remains to show that δ̃ ∈ T
[4]
k,σ(n). Suppose a contrario δ̃ contains

an arc (i, i + 2). Since σ ≥ 3 we can then conclude that i + 1 is necessarily isolated. The arc

(i, i + 2) is mapped by c into (j, j + 2) with isolated point j + 1, which is impossible by definition

of C∗
k (n′, h′). It follows similarly that an arc of the form (i, i + 3) cannot be contained in δ̃ and

Claim 1 follows.

Labeling the h arcs of δ ∈ T
[4]
k,σ(n, h) from left to right and keeping track of multiplicities gives rise

to the map

(3.10)

fk,σ : T
[4]
k,σ(n, h) → ˙⋃

σ−1≤b≤h−1



C∗
k(n − 2b, h− b) ×







(aj)1≤j≤h−b |
h−b
∑

j=1

aj = b, aj ≥ σ − 1









 ,

given by fk,σ(δ) = (c(δ), (aj)1≤j≤h−b). We can conclude that fk,σ is well-defined and a bijection.

We proceed computing the multiplicities of the resulting core-structures [13]:

(3.11) |{(aj)1≤j≤b |
h−b
∑

j=1

aj = b; aj ≥ σ − 1}| =

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

.

Eq. (3.11) and eq. (3.10) imply

(3.12) T
[4]
k,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

C
∗
k(n − 2b, h − b) ,

whence eq. (3.3). Next we consider the map

(3.13) c∗ : T ∗
k (n, h) → ˙⋃

0≤b≤h−1
C∗

k(n − 2b, h− b), δ 7→ c∗(δ)

Indeed, c∗ is well defined, since any diagram in T ∗
k (n, h) can be mapped into a core structure

without 1- and β-arcs, i.e. into an element of C∗
k(n′, h′). That gives rise to

T
∗
k(n, h) =

h−1
∑

b=0

(

h − 1

b

)

C
∗
k(n − 2b, h − b)(3.14)



CANONICAL RNA PSEUDOKNOT STRUCTURES 15

and via Möbius-inversion formula we obtain eq. (3.4). It is straightforward to show there are

λ(n, j1, j2, j3) =
(

n−j1−2j2−3j3
j1,j2,j3,n−2j1−3j2−4j3

)

ways to select j1 1-arcs ,j2 β2-arcs and j3 β3-arcs over [n].

Since removing j1 1-arcs, j2 β2-arcs and j3 β3-arcs removes 2j1 + 3j2 + 4j3 vertices, the number of

configurations of at least j1 1-arcs, j2 β2-arcs and j3 β3-arcs is given by λ(n, j1, j2, j3)fk(n− 2j1 −
3j2 − 4j3, n − 2h − j2 − 2j3). Via inclusion-exclusion principle, we arrive at

T
∗
k(n, h) =

∑

0≤j1+j2+j3≤h

(−1)j1+j2+j3λ(n, j1, j2, j3)fk(n − 2j1 − 3j2 − 4j3, n − 2h − j2 − 2j3) ,

whence Theorem 3. �

The following functional identity, relating the bivariate generating functions of T
[4]
k,σ(n, h) and

C∗
k(n, h), is instrumental for proving our main result in the next section, Theorem 4.

Lemma 1. [13] Let k, σ ∈ N, k ≥ 2 and let u, x be indeterminants. Suppose we have

(3.15) ∀h ≥ 1, Ak,σ(n, h) =

h−1
∑

b=σ−1

(

b + (2 − σ)(h − b) − 1

h − b − 1

)

Bk(n−2b, h−b) and Ak,σ(n, 0) = 1 .

Then we have the functional relation

∑

n≥0

∑

0≤h≤n
2

Ak,σ(n, h)uhxn =
∑

n≥0

∑

0≤h≤n
2

Bk(n, h)

(

u · (ux2)σ−1

1 − ux2

)h

xn .(3.16)

According to Lemma 1 eq. (3.14) and eq. (3.3) we obtain the two functional identities

∑

n≥0

∑

0≤h≤n
2

T
∗
k(n, h)uhxn =

∑

n≥0

∑

0≤h≤n
2

C
∗
k(n, h)

(

u

1 − ux2

)h

xn(3.17)

∑

n≥0

T
[4]
k,σ(n)xn =

∑

n≥0

∑

0≤h≤n
2

C
∗
k(n, h)

(

(x2)σ−1

1 − x2

)h

xn for σ ≥ 3 .(3.18)

4. Asymptotic Enumeration

In this section we study the asymptotics of 〈k, 4, σ〉-structures, where σ ≥ 3. We are particularly

interested in deriving simple formulas that can be used for assessing the complexity of prediction
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algorithms for k-noncrossing RNA structures. In order to state Theorem 4 below we introduce

w0(x) =
x2σ−2

1 − x2 + x2σ
(4.1)

v(x) = 1 − x + w(x)x2 + w(x)x3 + w(x)x4(4.2)

v0(x) = 1 − x + w0(x)x2 + w0(x)x3 + w0(x)x4.(4.3)

Theorem 4. Let k, σ ∈ N, k, σ ≥ 3, x be an indeterminate and ρk the dominant, positive real

singularity of
∑

n≥0 fk(2n, 0)z2n. Then T
[4]
k,σ(x), the generating function of 〈k, 4, σ〉-structures is

given by

(4.4) T
[4]
k,σ(x) =

1

v0(x)

∑

n≥0

fk(2n, 0)

(

√

w0(x)x

v0(x)

)2n

.

Furthermore

(4.5) T
[4]
k,σ(n) ∼ ck n−(k−1)2− k−1

2

(

1

γ
[4]
k,σ

)n

, for k = 3, 4, . . . , 9

holds, where γ
[4]
k,σ is the positive real dominant singularity of T

[4]
k,σ(x) and the minimal positive real

solution of the equation

√
w0(x) x

v0(x) = ρk and fk(2n, 0) ∼ n−(k−1)2− k−1

2

(

1
ρk

)2n

(eq. (2.3)).

Proof. In the following we will use the notation w0 instead of w0(x), eq. (4.1). The first step

derives a functional equation relating the bivariate generating functions of T ∗
k (n, h) and fk(2h′, 0).

For this purpose we use eq. (3.5).

Claim 1.

∑

n≥0

∑

h≤n
2

T
∗
k(n, h)whxn =

1

v(x)

∑

n≥0

fk(2n, 0)

(√
wx

v(x)

)2n

.(4.6)
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Set ϕm(w) =
∑

h≤m
2

(

m
2h

)

fk(2h, 0)wh. In order to prove Claim 1 we compute

∑

n≥0

∑

h≤n
2

T
∗
k(n, h)whxn

=
∑

n≥0

∑

h≤n
2

∑

0≤j1+j2+j3≤h

(−1)j1+j2+j3λ(n, j1, j2, j3)fk(n − 2j1 − 3j2 − 4j3, n − 2h − j2 − 2j3)w
hxn

=
∑

n≥0

∑

j1+j2+j3≤n
2

(−1)j1+j2+j3λ(n, j1, j2, j3)x
n

×
∑

h≥j1+j2+j3

fk(n − 2j1 − 3j2 − 4j3, n − 2h− j2 − 2j3)w
h

=
∑

n≥0

∑

j1+j2+j3≤n
2

(−1)j1+j2+j3λ(n, j1, j2, j3)x
n

×
∑

h≥j1+j2+j3

(

n − 2j1 − 3j2 − 4j3
n − 2h − j2 − 2j3

)

fk(2(h − j1 − j2 − j3), 0)wh

=
∑

n≥0

∑

j1+j2+j3≤n
2

(−1)j1+j2+j3λ(n, j1, j2, j3)w
j1+j2+j3ϕn−2j1−3j2−4j3(w)xn .

We interchange the summation over j1 + j2 + j3 and n and arrive at

∑

j1+j2+j3≥0

∑

n≥2j1+3j2+4j3

(−1)j1+j2+j3

(

n − j1 − 2j2 − 3j3
j1, j2, j3, n − 2j1 − 3j2 − 4j3

)

wj1+j2+j3ϕn−2j1−3j2−4j3(w)xn

=
∑

j1+j2+j3≥0

(−w)j1+j2+j3

j1!j2!j3!

∑

n≥2j1+3j2+4j3

(n − j1 − 2j2 − 3j3)!

(n − 2j1 − 3j2 − 4j3)!
ϕn−2j1−3j2−4j3(w)xn .

Setting m = n − 2j1 − 3j2 − 4j3 this becomes

=
∑

j1+j2+j3≥0

(−w)j1+j2+j3

j1!j2!j3!
x2j1+3j2+4j3

∑

m≥0

(m + j1 + j2 + j3)!

m!
ϕm(w)xm

=
∑

m≥0





∑

j1+j2+j3≥0

(

m + j1 + j2 + j3
m, j1, j2, j3

)

(−wx2)j1 (−wx3)j2(−wx4)j3



ϕm(w)xm

=
∑

m≥0

ϕm(w)xm

(

1

1 + wx2 + wx3 + wx4

)m+1

=
1

1 + wx2 + wx3 + wx4

∑

m≥0

ϕm(w)

(

x

1 + wx2 + wx3 + wx4

)m

.
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Next we compute

∑

m≥0

ϕm(w)ym =

∫ ∞

0

∑

m≥0

ϕm(w)
(xy)m

m!
e−xdx

=

∫ ∞

0

∑

m≥0

∑

h≤m
2

(

m

2h

)

fk(2h, 0)wh (xy)m

m!
e−xdx

=

∫ ∞

0

∑

m≥0

∑

h≤m
2

fk(2h, 0)wh (xy)2h

(2h)!

(xy)m−2h

(m − 2h)!
e−xdx

=

∫ ∞

0

∑

h≥0

fk(2h, 0)
(
√

w xy)2h

(2h)!

∑

m≥2h

(xy)m−2h

(m − 2h)!
e−xdx

=
∑

n≥0

fk(2n, 0)
(
√

wy)2n

(2n)!

∫ ∞

0

e−(1−y)xx2ndx

=
∑

n≥0

fk(2n, 0)
(
√

wy)2n

(2n)!

∫∞
0

e−(1−y)x((1 − y)x)2nd((1 − y)x)

(1 − y)2n+1

=
1

1 − y

∑

n≥0

fk(2n, 0)

(√
wy

1 − y

)2n

.

Therefore the bivariate generating function can be written as

∑

n≥0

∑

h≤n
2

T
∗
k(n, h)whxn =

1

v(x)

∑

n≥0

fk(2n, 0)

(√
w x

v(x)

)2n

,

whence Claim 1. In view of eq. (3.17) and Claim1 we arrive at

(4.7)
∑

n≥0

∑

0≤h≤n
2

C
∗
k(n, h)

(

w

1 − wx2

)h

xn =
1

v(x)

∑

n≥0

fk(2n, 0)

(√
w x

v(x)

)2n

.

By definition of w0 = w0(x) have

(4.8)
(x2)σ−1

1 − x2
=

w0

1 − w0x2
.
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According to eq.(3.18), eq.(4.8) and eq.(4.7) this allows us to derive

T
[4]
k,σ(x) =

∑

n≥0

∑

0≤h≤n
2

C
∗
k(n, h)

(

(x2)σ−1

1 − x2

)h

xn

=
∑

n≥0

∑

0≤h≤n
2

C
∗
k(n, h)

(

w0

1 − w0x2

)h

xn

=
1

v0(x)

∑

n≥0

fk(2n, 0)

(√
w0x

v0(x)

)2n

,

whence (4.4). Let Vk(x) =
∑

n≥0 fk(2n, 0)
(√

w0 x
v0(x)

)2n

.

Claim 2. The unique, minimal, positive, real solution of

(4.9) ϑσ(x) =

√
w0x

v0(x)
= ρk , for k = 3, 4, . . . , 9

denoted by γ
[4]
k,σ is the unique dominant singularity of T

[4]
k,σ(x).

Clearly, a dominant singularity of 1
v0(x)Vk(x) is either a singularity of Vk(x) or 1

v0(x) . Suppose

there exists some singularity ζ ∈ C which is a pole of 1
v0(x) . By construction ζ 6= 0 and ζ is

necessarily a non-finite singularity of Vk(x). If |ζ| ≤ γ
[4]
k,σ, then we arrive at the contradiction

|Vk(ζ)| > |Vk(γ
[4]
k,σ)| ≥ Vk(|ζ|)

since Vk(ζ) is not finite and Vk(γ
[4]
k,σ) =

∑

n≥0 fk(2n, 0)ρ2n
k < ∞. Therefore all dominant singu-

larities of T
[4]
k,σ(x) are singularities of Vk(x). According to Pringsheim’s Theorem [23], T

[4]
k,σ(x) has

a dominant positive real singularity which by construction equals γ
[4]
k,σ being the minimal positive

real solution of eq. (4.9). To prove this, we use that for 3 ≤ k ≤ 9, the generating function Fk(x)

has only the two dominant singularities ±ρk, see Section 2, Tab. 5. Furthermore we verify that for

3 ≤ k ≤ 9, γ
[4]
k,σ, has strictly smaller modulus than all solutions of ϑσ(z) = −ρk, whence Claim 2.

Accordingly, Theorem 2 applies and we have

(4.10) T
[4]
k,σ(n) ∼ ckn−(k−1)2− k−1

2

(

1

γ
[4]
k,σ

)n

for some constant ck

completing the proof of Theorem 4. �
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