General Randić Index on Trees with a Given Order and Diameter *

Lingping Zhong
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, P.R. China
E-mail: shirleyjung@mail.nankai.edu.cn

(Received April 14, 2008)

Abstract

The general Randić index $R_{\alpha}(G)$ of a graph G, which is also called the connectivity index, is defined as the sum of the weights $(d(u) d(v))^{\alpha}$ of all edges $u v$ of G, where $d(u)$ denotes the degree of a vertex u in G and α is an arbitrary real number. In this paper, we consider the set of trees with a given order and diameter, and determine the extremal trees with the maximum general Randić index for $0<\alpha<1$ among this kind of trees. The minimum general Randić index for $-1 \leq \alpha<0$ is also considered.

1 Introduction

The Randić index $R(G)$ of a graph G was introduced by the chemist Milan Randić under the name "branching index" in 1975 [7] as the sum of $1 / \sqrt{d(u) d(v)}$ over all edges

[^0]$u v$ of G, where $d(u)$ denotes the degree of a vertex u in G, i.e.,
$$
R(G)=\sum_{u v \in E} \frac{1}{\sqrt{d(u) d(v)}}
$$

It is well known that $R(G)$ was introduced as one of the many graph-theoretical parameters derived from the graph underlying some molecule. Later, in 1998 Bollobás and Erdös [2] generalized this index by replacing $-\frac{1}{2}$ with any real number α, which is called the general Randić index. The research background of Randić index together with its generalization appears in chemistry or mathematical chemistry and can be found in the literature (see [2], [3], [4], [7]). Recently, finding bounds for the general Randić index of a given class of graphs, as well as related problem of finding the graphs with maximum or minimum general Randić index have attracted much attention (see [10]-[15]). For a comprehensive survey of its mathematical properties, see the survey [8] and the recent book of Li and Gutman [9].

We only consider trees here. For a vertex x of a tree T, we use $N_{T}(x)$ and $d_{T}(x)$ to denote the neighborhood and the degree of x, respectively. For two vertices v_{i} and $v_{j}(i \neq j)$, the distance between v_{i} and v_{j} in T is the number of edges in a shortest path joining v_{i} and v_{j}. The diameter of T is the maximum distance between any two vertices of T. We use $T-x y$ to denote the graph obtained from T by deleting the edge $x y \in E(T)$. Similarly, $T+x y$ is the graph that arises from T by adding an edge $x y \notin E(T)$, where $x, y \in E(T)$. Denote by S_{n} and P_{n} the star and the path with n vertices, respectively.

Let $\mathcal{T}(n, r)$ be the set of trees with order n and diameter r, and let $T \in \mathcal{T}(n, r)$. A main chain of T is a path in T of length r. Let $P^{r}=u_{0} u_{1} \ldots u_{r}$ be a main chain of T and assume that $r \geq 2$. We use $T\left(n, r, k_{1}, \ldots, k_{r-1}\right)$ to denote the tree of order n obtained from P^{r} by attaching $k_{i}\left(k_{i} \geq 0\right)$ pendent vertices to u_{i}, for each $i \in\{1, \ldots, r-1\}$. Define

$$
\mathcal{T}^{*}(n, r)=\left\{T\left(n, r, k_{1}, \ldots, k_{r-1}\right): \sum_{i=1}^{r-1} k_{i}=n-r-1\right\} .
$$

It is easy to see that $\mathcal{T}^{*}(n, r) \subset \mathcal{T}(n, r)$.
Let $T_{i_{1}, \ldots, i_{j}}\left(n, r, k_{i_{1}}, \ldots, k_{i_{j}}\right)$ be the tree in $\mathcal{T}^{*}(n, r)$ with $k_{l} \geq 1$ if $l \in\left\{i_{1}, \ldots, i_{j}\right\}$ and $k_{l}=0$ otherwise, and let $\mathcal{T}_{j}^{*}(n, r)=\left\{T_{i_{1}, \ldots, i_{j}}\left(n, r, k_{i_{1}}, \ldots, k_{i_{j}}\right) \mid 1 \leq i_{1}, \ldots, i_{j} \leq r-1\right\}$. In particular, $\mathcal{T}_{1}^{*}(n, r)=\left\{T_{i}(n, r, n-r-1)\right.$ with $k_{i}=n-r-1 \geq 1$ and $k_{j}=0$ for $j \neq$ $i \mid 1 \leq i \leq r-1\}$. Obviously, $\mathcal{T}^{*}(n, r)=\bigcup_{j=1}^{r-1} \mathcal{T}_{j}^{*}(n, r)$.

For terminology and notations not defined here, we refer the readers to [1].
Let $T \in \mathcal{T}(n, r)$. In [5], Jiang and Lu gave the sharp upper bound $R_{\alpha}(T)$ of T for $\alpha=1$. In [6], Li and Zhao obtained the sharp lower bound $R_{\alpha}(T)$ of T for $\alpha=-\frac{1}{2}$. In this paper, we will give the sharp upper bound $R_{\alpha}(T)$ for $0<\alpha<1$ and determine the extremal trees. The sharp lower bound $R_{\alpha}(T)$ of T for $-1 \leq \alpha<0$ is also considered by using the similar method.

Note that if $r=2$ or $r=n-1$, then the only trees in $\mathcal{T}(n, r)$ are S_{n} and P_{n}, respectively. Since $R_{\alpha}\left(S_{n}\right)=(n-1)^{\alpha+1}$ and $R_{\alpha}\left(P_{n}\right)=4^{\alpha}(n-3)+2^{\alpha+1}$, we always assume that $3 \leq r \leq n-2$ in the following sections.

2 Main result

We first give several lemmas which will be used in the proof of our main result.

Lemma 1 Let $T \in \mathcal{T}(n, r), P^{r}=u_{0} u_{1} \ldots u_{r}$ be the main chain of T and for some i, $d_{T}\left(u_{i}\right)=q+1 \geq 3$. Suppose that there exists $v_{1} \in V(T) \backslash V\left(P^{r}\right)$ such that $u_{i} v_{1} \in E(T)$ and $d_{T}\left(v_{1}\right)=p+1 \geq 2$. Denote $N_{T}\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, v_{1}, \ldots, v_{q-1}\right\}$ and $N_{T}\left(v_{1}\right)=$ $\left\{u_{i}, w_{1}, \ldots, w_{p}\right\}$. Let $T^{\prime}=T-\left\{v_{1} w_{1}, \ldots, v_{1} w_{p}\right\}+\left\{u_{i} w_{1}, \ldots, u_{i} w_{p}\right\}$. Then for $0<\alpha<$ 1 , $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$.

Proof. As shown in Figure 2.1, we have

Figure 2.1 T and T^{\prime}

$$
\begin{aligned}
R_{\alpha}\left(T^{\prime}\right)-R_{\alpha}(T)= & \left(\sum_{j=1}^{p} d_{T^{\prime}}^{\alpha}\left(w_{j}\right)+\sum_{k=1}^{q-1} d_{T^{\prime}}^{\alpha}\left(v_{k}\right)+d_{T^{\prime}}^{\alpha}\left(u_{i-1}\right)+d_{T^{\prime}}^{\alpha}\left(u_{i+1}\right)\right)(p+q+1)^{\alpha} \\
& -\sum_{k=1}^{q-1} d_{T}^{\alpha}\left(v_{k}\right)(q+1)^{\alpha}-\sum_{j=1}^{p} d_{T}^{\alpha}\left(w_{j}\right)(p+1)^{\alpha} \\
& -\left[d_{T}^{\alpha}\left(u_{i-1}\right)+d_{T}^{\alpha}\left(u_{i+1}\right)\right](q+1)^{\alpha} \\
= & \left(\sum_{k=2}^{q-1} d_{T}^{\alpha}\left(v_{k}\right)+d_{T}^{\alpha}\left(u_{i-1}\right)+d_{T}^{\alpha}\left(u_{i+1}\right)\right)\left[(p+q+1)^{\alpha}-(q+1)^{\alpha}\right] \\
& +\sum_{j=1}^{p} d_{T}^{\alpha}\left(w_{j}\right)\left[(p+q+1)^{\alpha}-(p+1)^{\alpha}\right] \\
& +(p+q+1)^{\alpha}-(p+1)^{\alpha}(q+1)^{\alpha} \\
\geq & q\left[(p+q+1)^{\alpha}-(q+1)^{\alpha}\right]+p\left[(p+q+1)^{\alpha}-(p+1)^{\alpha}\right] \\
& +(p+q+1)^{\alpha}-(p+1)^{\alpha}(q+1)^{\alpha} \\
> & q\left[(p+q+1)^{\alpha}-(q+1)^{\alpha}\right]+(p+q+1)^{\alpha}-(p+1)^{\alpha}(q+1)^{\alpha} .
\end{aligned}
$$

By the Lagrange Mean-Value Theorem, there exist $\xi \in(q+1, p+q+1)$ and $\zeta \in$ $(p+q+1, p q+p+q+1)$ such that $(p+q+1)^{\alpha}-(q+1)^{\alpha}=\alpha p \xi^{\alpha-1}$ and $(p+q+1)^{\alpha}-$ $(p+1)^{\alpha}(q+1)^{\alpha}=-\alpha p q \zeta^{\alpha-1}$, respectively. Hence

$$
\begin{aligned}
R_{\alpha}\left(T^{\prime}\right)-R_{\alpha}(T) & >q\left[(p+q+1)^{\alpha}-(q+1)^{\alpha}\right]+(p+q+1)^{\alpha}-(p+1)^{\alpha}(q+1)^{\alpha} \\
& =\alpha p q\left(\xi^{\alpha-1}-\zeta^{\alpha-1}\right)>0,
\end{aligned}
$$

since $0<\alpha<1$ and $\xi<\zeta$.

Corollary 1 Let $T \in \mathcal{T}(n, r)$. Then for $0<\alpha<1$, there exists $T^{\prime} \in \mathcal{T}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$.

Proof. Let $P^{r}=u_{0} u_{1} \ldots u_{r}$ be the main chain of T. Denote $m(T)=\mid\left\{v \mid d_{T}(v) \geq 2, v \in\right.$ $\left.V(T) \backslash V\left(P^{r}\right)\right\} \mid$. Clearly, if $m(T)=0$, then $T \in \mathcal{T}^{*}(n, r)$.

Claim : If $m(T) \neq 0$, then for some $u_{i} \in V\left(P^{r}\right)$, there exists $v_{0} \notin V\left(P^{r}\right)$ such that $u_{i} v_{0} \in E(T)$ and $d_{T}\left(v_{0}\right) \geq 2$.

By the definition of $m(T)$, if $m(T) \neq 0$, there exists $v \in V(T) \backslash V\left(P^{r}\right)$ with $d_{T}(v) \geq 2$. Since T is a tree, there exists a path $P=u_{i} v_{0}, \ldots, v_{s-1} v_{s}\left(v_{s}=v\right)$ joining u_{i} and v with $v_{j} \in V(T) \backslash V\left(P^{r}\right)(0 \leq j \leq s)$. Then v_{0} is the vertex as required and hence the claim holds.

If $m(T)=1$, then by Lemma 1 and the claim, there exists $T^{\prime} \in \mathcal{T}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$ and $m\left(T^{\prime}\right)=0$.

If $m(T)=k \geq 2$, then from Lemma 1 and our claim, we have trees T^{k}, T^{k-1}, \ldots, T^{1} such that $R_{\alpha}\left(T^{k}\right)>R_{\alpha}\left(T^{k-1}\right)>\cdots>R_{\alpha}\left(T^{1}\right)>R_{\alpha}(T)$ and $m\left(T^{k-j}\right)=j(0 \leq j \leq$ $k-1)$. So $m\left(T^{k}\right)=0$, i.e., $T^{k} \in \mathcal{T}^{*}(n, r)$. This proves the lemma.

Lemma 2 Let A be a positive constant and $0 \leq x \leq A$. For $0<\alpha<1$, denote $G(x)=(A-x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\alpha(x+2)^{\alpha}+(A-x+2)+\alpha(A-x)\right]-(x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\right.$ $\left.\alpha(A-x+2)^{\alpha}+x+2+\alpha x\right]$, then

$$
G(x) \begin{cases}>0 & \text { if } 0 \leq x<\frac{A}{2} \\ =0 & \text { if } x=\frac{A}{2} \\ <0 & \text { if } \frac{A}{2}<x \leq A\end{cases}
$$

Proof. Let $A-x+2=c(x+2)$, then we have

$$
\begin{aligned}
G(x)= & c^{\alpha-1}(x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\alpha(x+2)^{\alpha}+c(x+2)+\alpha c(x+2)-2 \alpha\right] \\
& -(x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\alpha c^{\alpha}(x+2)^{\alpha}+(x+2)+\alpha(x+2)-2 \alpha\right] \\
= & (x+2)^{\alpha-1}\left[-\alpha(x+2)^{\alpha}\left(c^{\alpha}-c^{\alpha-1}\right)+(\alpha+1)(x+2)\left(c^{\alpha}-1\right)\right] \\
& +(x+2)^{\alpha-1}\left[\alpha\left(1-c^{\alpha-1}\right)\left(2-2^{\alpha}\right)\right] .
\end{aligned}
$$

For $0 \leq x<\frac{A}{2}$, we have $c>1$. So $\alpha\left(1-c^{\alpha-1}\right)\left(2-2^{\alpha}\right) \geq 0$, and $(\alpha+1)(x+$ 2) $\left(c^{\alpha}-1\right)-\alpha(x+2)^{\alpha}\left(c^{\alpha}-c^{\alpha-1}\right)>(x+2)^{\alpha}\left[(\alpha+1)\left(c^{\alpha}-1\right)-\alpha\left(c^{\alpha}-c^{\alpha-1}\right)\right]>0$, since
the function $g(y):=(\alpha+1)\left(y^{\alpha}-1\right)-\alpha\left(y^{\alpha}-y^{\alpha-1}\right)$ is strictly increasing for $y>1$ $\left(\frac{d g(y)}{d y}=\alpha y^{\alpha-2}(y-1+\alpha)>0\right)$, and hence $G(x)>0$.

On the other hand, since $G(x)=-G(A-x)$, we have $G(x)<0$ when $\frac{A}{2}<x \leq A$. It is easy to check that $G(x)=0$ when $x=\frac{A}{2}$. Thus the lemma holds.

Lemma 3 Let A be a positive constant and $0 \leq x \leq A$. For $0<\alpha<1$, denote $H(x)=(A-x+2)^{\alpha-1}\left[(A-x+2)+\alpha\left(A-x+2^{\alpha+1}\right)\right]-(x+2)^{\alpha-1}\left[(x+2)+\alpha\left(x+2^{\alpha+1}\right)\right]$, then

$$
H(x) \begin{cases}>0 & \text { if } \quad 0 \leq x<\frac{A}{2} \\ =0 & \text { if } \quad x=\frac{A}{2} \\ <0 & \text { if } \quad \frac{A}{2}<x \leq A\end{cases}
$$

Proof. Let $h(x)=(x+2)^{\alpha-1}\left[(x+2)+\alpha\left(x+2^{\alpha+1}\right)\right]$, then

$$
\frac{d h(x)}{d x}=\alpha(x+2)^{\alpha-2}\left(x+\alpha x+\alpha 2^{\alpha+1}+4-2^{\alpha+1}\right)>0 .
$$

Thus if $A-x+2>x+2, H(x)>0$; if $A-x+2=x+2, H(x)=0$; if $A-x+2<x+2$, $H(x)<0$. This proves the lemma.

Lemma 4 Let $r \geq 3$ and $T \in \mathcal{T}_{k}^{*}(n, r)(k \geq 2)$. Then for $0<\alpha<1$, there exists $T^{\prime} \in \mathcal{T}_{k-1}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$.

Proof. Since $T \in \mathcal{T}_{k}^{*}(n, r)(k \geq 2)$, let $P^{r}=u_{0} u_{1} \ldots u_{r}$ be the main chain of T and $u_{i}, u_{j}(1 \leq i<j \leq r-1)$ the first and second vertex in $V\left(P^{r}\right)$ such that $d_{T}\left(u_{i}\right), d_{T}\left(u_{j}\right) \geq 3$. Then $d_{T}\left(u_{i-1}\right) \leq 2$ and $d_{T}\left(u_{j+1}\right) \geq 1$. If $d_{T}\left(u_{i-1}\right)>d_{T}\left(u_{j+1}\right)$, then we have $d_{T}\left(u_{i-1}\right)=2$ and $d_{T}\left(u_{j+1}\right)=1$, which implies u_{i} and u_{j} are the only two vertices with degree greater than two in $V\left(P^{r}\right)$. In this case, we exchange the order of u_{i} and u_{j} in the main chain P^{r}. So we can always assume that $d_{T}\left(u_{i-1}\right) \leq d_{T}\left(u_{j+1}\right)$.

Let $N_{T}\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, v_{1}, \ldots, v_{p}\right\}$ and $N_{T}\left(u_{j}\right)=\left\{u_{j-1}, u_{j+1}, w_{1}, \ldots, w_{q-p}\right\}(p \geq$ $1, q-p \geq 1)$. Set $T^{\prime}=T-\left\{v_{1} u_{i}, \ldots, v_{p} u_{i}\right\}+\left\{v_{1} u_{j}, \ldots, v_{p} u_{j}\right\}$, then $T^{\prime} \in T_{k-1}^{*}(n, r)$ (See Figure 2.2). Next we show that $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$. We consider two cases.

Case 1. $j=i+1$.

Figure $2.2 T$ and T^{\prime}
In this case, we get

$$
\begin{aligned}
R_{\alpha}\left(T^{\prime}\right)-R_{\alpha}(T)= & q(q+2)^{\alpha}+\left[d_{T^{\prime}}^{\alpha}\left(u_{j+1}\right)+2^{\alpha}\right](q+2)^{\alpha}+2^{\alpha} d_{T^{\prime}}^{\alpha}\left(u_{i-1}\right) \\
& -p(p+2)^{\alpha}-d_{T}^{\alpha}\left(u_{i-1}\right)(p+2)^{\alpha}-(p+2)^{\alpha}(q-p+2)^{\alpha} \\
& -(q-p)(q-p+2)^{\alpha}-d_{T}^{\alpha}\left(u_{j+1}\right)(q-p+2)^{\alpha} \\
= & d_{T}^{\alpha}\left(u_{j+1}\right)\left[(q+2)^{\alpha}-(q-p+2)^{\alpha}\right]-d_{T}^{\alpha}\left(u_{i-1}\right)\left[(p+2)^{\alpha}-2^{\alpha}\right] \\
& +\left(q+2^{\alpha}\right)(q+2)^{\alpha}-\left[(q-p+2)^{\alpha}+p\right](p+2)^{\alpha} \\
& -(q-p)(q-p+2)^{\alpha} \\
\geq & d_{T}^{\alpha}\left(u_{i-1}\right)\left[(q+2)^{\alpha}-(p+2)^{\alpha}-(q-p+2)^{\alpha}+2^{\alpha}\right] \\
& +\left(q+2^{\alpha}\right)(q+2)^{\alpha}-\left[(q-p+2)^{\alpha}+p\right](p+2)^{\alpha} \\
& -(q-p)(q-p+2)^{\alpha} \\
\geq & 2^{\alpha}\left[(q+2)^{\alpha}-(p+2)^{\alpha}-(q-p+2)^{\alpha}+2^{\alpha}\right]+\left(q+2^{\alpha}\right)(q+2)^{\alpha} \\
& -\left[(q-p+2)^{\alpha}+p\right](p+2)^{\alpha}-(q-p)(q-p+2)^{\alpha} \\
= & \left(q+2^{\alpha+1}\right)(q+2)^{\alpha}-\left[(p+2)^{\alpha}+2^{\alpha}+q-p\right](q-p+2)^{\alpha} \\
& -\left(p+2^{\alpha}\right)(p+2)^{\alpha}+4^{\alpha} .
\end{aligned}
$$

The last inequality holds since $d_{T}\left(u_{i-1}\right) \leq 2$ and the function $f(x):=(x+q-p)^{\alpha}-x^{\alpha}$ is strictly decreasing for $x \geq 0$ when $0<\alpha<1$.

$$
\text { Let } F(x)=\left(q+2^{\alpha+1}\right)(q+2)^{\alpha}-\left[(x+2)^{\alpha}+2^{\alpha}+q-x\right](q-x+2)^{\alpha}-\left(x+2^{\alpha}\right)(x+2)^{\alpha}+4^{\alpha},
$$ then we have

$$
\begin{aligned}
\frac{d F(x)}{d x}= & (q-x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\alpha(x+2)^{\alpha}+\alpha(q-x)+q-x+2\right] \\
& -(x+2)^{\alpha-1}\left[\alpha 2^{\alpha}+\alpha(q-x+2)^{\alpha}+\alpha x+x+2\right] .
\end{aligned}
$$

Then by Lemma 2, for $0 \leq x \leq q, \frac{d F(x)}{d x}$ reaches its minimum only at $x=0$ or $x=q$ where $\frac{d F(x)}{d x}=0$, hence $\frac{d F(x)}{d x} \geq 0$ and equality holds if and only if $x=0$ or $x=q$. Therefore $F(p)>\max \{F(0), F(q)\}=0$ for $0<p<q$, i.e., $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$.

Case 2. $j \geq i+2$.
In this case, we have

$$
\begin{aligned}
R_{\alpha}\left(T^{\prime}\right)-R_{\alpha}(T)= & q(q+2)^{\alpha}-p(p+2)^{\alpha}-\left[2^{\alpha}+d_{T}^{\alpha}\left(u_{i-1}\right)\right]\left[(p+2)^{\alpha}-2^{\alpha}\right] \\
& -(q-p)(q-p+2)^{\alpha}+\left[2^{\alpha}+d_{T}^{\alpha}\left(u_{j+1}\right)\right]\left[(q+2)^{\alpha}-(q-p+2)^{\alpha}\right] \\
\geq & q(q+2)^{\alpha}-p(p+2)^{\alpha}-(q-p)(q-p+2)^{\alpha} \\
& -\left[2^{\alpha}+d_{T}^{\alpha}\left(u_{i-1}\right)\right]\left\{\left[(q-p+2)^{\alpha}-2^{\alpha}\right]-\left[(q+2)^{\alpha}-(p+2)^{\alpha}\right]\right\} \\
\geq & q(q+2)^{\alpha}-p(p+2)^{\alpha}-(q-p)(q-p+2)^{\alpha} \\
& -\left(2^{\alpha}+2^{\alpha}\right)\left\{\left[(q-p+2)^{\alpha}-2^{\alpha}\right]-\left[(q+2)^{\alpha}-(p+2)^{\alpha}\right]\right\} \\
= & \left(q+2^{\alpha+1}\right)(q+2)^{\alpha}-\left(p+2^{\alpha+1}\right)(p+2)^{\alpha} \\
& -\left(q-p+2^{\alpha+1}\right)(q-p+2)^{\alpha}+2 \cdot 4^{\alpha} .
\end{aligned}
$$

The last inequality holds since $d_{T}\left(u_{i-1}\right) \leq 2$ and the function $f(x):=(x+q-p)^{\alpha}-x^{\alpha}$ is strictly decreasing for $x \geq 0$ when $0<\alpha<1$.

Let $F(x)=\left(q+2^{\alpha+1}\right)(q+2)^{\alpha}-\left(x+2^{\alpha+1}\right)(x+2)^{\alpha}-\left(q-x+2^{\alpha+1}\right)(q-x+2)^{\alpha}+2 \cdot 4^{\alpha}$, then

$$
\begin{aligned}
\frac{d F(x)}{d x}= & (q-x+2)^{\alpha-1}\left[(q-x+2)+\alpha\left(q-x+2^{\alpha+1}\right)\right] \\
& -(x+2)^{\alpha-1}\left[(x+2)+\alpha\left(x+2^{\alpha+1}\right)\right]
\end{aligned}
$$

By Lemma 3, we have

$$
\frac{d F(x)}{d x} \begin{cases}>0 & \text { if } \quad 0 \leq x<\frac{q}{2} \\ =0 & \text { if } \quad x=\frac{q}{2} \\ <0 & \text { if } \quad \frac{q}{2}<x \leq q\end{cases}
$$

Hence for $0 \leq x \leq q, F(x)$ reaches its maximum at $x=\frac{q}{2}$ and its minimum at $x=0$ or $x=q$. Thus, for $0<p<q, F(p)>\max \{F(0), F(q)\}=0$.

This completes the proof of the lemma.

Corollary 2 Let $r \geq 3$ and $T \in \mathcal{T}_{k}^{*}(n, r)(k \geq 2)$. Then for $0<\alpha<1$, there exists $T^{\prime} \in \mathcal{T}_{1}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)>R_{\alpha}(T)$.

Proof. It follows immediately from Lemma 4.
We now can prove the main result.

Theorem 1 Let $r \geq 3$ and $T \in \mathcal{T}(n, r)$. Then for $0<\alpha<1$, we have
$R_{\alpha}(T) \leq \begin{cases}\left(n+2^{\alpha}-3\right)(n-2)^{\alpha}+2^{\alpha} & \text { if } r=3 ; \\ \left(n-r-1+2^{\alpha+1}\right)(n-r+1)^{\alpha}+4^{\alpha}(r-4)+2^{\alpha+1} & \text { if } r \geq 4 .\end{cases}$
Equalities hold in (1) and (2) if and only if $T \cong T_{i}(n, 3, n-4), i=1,2$ and $T \in$ $\mathcal{T}_{1}^{*}(n, r) \backslash\left\{T_{1}(n, r, n-r-1), T_{r-1}(n, r, n-r-1)\right\}$, respectively.

Proof. For any $T \in \mathcal{T}(n, 3)$, we have $T \in \mathcal{T}^{*}(n, 3)$. Since $R_{\alpha}\left(T_{1}(n, 3, n-4)\right)=$ $R_{\alpha}\left(T_{2}(n, 3, n-4)\right)=\left(n+2^{\alpha}-3\right)(n-2)^{\alpha}+2^{\alpha}$, it follows from Corollary 2 that (1) holds and the equality holds if and only if $T \cong T_{i}(n, 3, n-4), i=1,2$.

Now we consider the case $r \geq 4$. By Corollaries 1 and 2 , for any $T \in \mathcal{T}(n, r)$, there exists $T^{\prime} \in \mathcal{T}_{1}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right) \geq R_{\alpha}(T)$. By an elementary calculation, we have $R_{\alpha}\left(T_{i}(n, r, n-r-1)\right)=R_{\alpha}\left(T_{j}(n, r, n-r-1)\right)=\left(n-r-1+2^{\alpha+1}\right)(n-r+1)^{\alpha}+$ $4^{\alpha}(r-4)+2^{\alpha+1}>\left(n-r+2^{\alpha}\right)(n-r+1)^{\alpha}+(r-3) 4^{\alpha}+2^{\alpha}=R_{\alpha}\left(T_{1}(n, r, n-r-1)\right)=$ $R_{\alpha}\left(T_{r-1}(n, r, n-r-1)\right)$ if $2 \leq i, j \leq r-2$. Therefore (2) holds and the equality holds if and only if $T \in \mathcal{T}_{1}^{*}(n, r) \backslash\left\{T_{1}(n, r, n-r-1), T_{r-1}(n, r, n-r-1)\right\}$.

3 Remarks

In Section 2, we have considered the maximum general Randić index on trees with a given order and diameter for $0<\alpha<1$. We remark in this section that by using the similar method, we can also get the minimum general Randić index on trees in $\mathcal{T}(n, r)$ for $-1 \leq \alpha<0$. (We omit the proofs of Lemmas 5 and 6.)

Lemma 5 Let $T \in \mathcal{T}(n, r)$. Then for $-1 \leq \alpha<0$, there exists $T^{\prime} \in \mathcal{T}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)<R_{\alpha}(T)$.

Lemma 6 Let $r \geq 3$ and $T \in \mathcal{T}_{k}^{*}(n, r)(k \geq 2)$. Then for $-1 \leq \alpha<0$, there exists $T^{\prime} \in \mathcal{T}_{1}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right)<R_{\alpha}(T)$.

Theorem 2 Let $r \geq 3$ and $T \in \mathcal{T}(n, r)$. Then for $-1 \leq \alpha<0$,

$$
R_{\alpha}(T) \geq\left(n-r+2^{\alpha}\right)(n-r+1)^{\alpha}+4^{\alpha}(r-3)+2^{\alpha} .
$$

Equality holds if and only if $T \cong T_{1}(n, r, n-r-1)$ or $T \cong T_{r-1}(n, r, n-r-1)$.

Proof. It follows from Lemmas 5 and 6 that for any $T \in \mathcal{T}(n, r)$, there exists $T^{\prime} \in$ $\mathcal{T}_{1}^{*}(n, r)$ such that $R_{\alpha}\left(T^{\prime}\right) \leq R_{\alpha}(T)$. If $r=3$, then $R_{\alpha}\left(T_{1}(n, 3, n-4)\right)=R_{\alpha}\left(T_{2}(n, 3, n-\right.$ 4) $)=\left(n-3+2^{\alpha}\right)(n-2)^{\alpha}+2^{\alpha}$. So we may assume that $r \geq 4$.

Now by an elementary calculation, $R_{\alpha}\left(T_{i}(n, r, n-r-1)\right)=R_{\alpha}\left(T_{j}(n, r, n-r-1)\right)=$ $\left(n-r+2^{\alpha}\right)(n-r+1)^{\alpha}+4^{\alpha}(r-3)+2^{\alpha}<\left(n-r+2^{\alpha+1}-1\right)(n-r+1)^{\alpha}+(r-4) 4^{\alpha}+$ $2^{\alpha+1}=R_{\alpha}\left(T_{1}(n, r, n-r-1)\right)=R_{\alpha}\left(T_{r-1}(n, r, n-r-1)\right)$ if $2 \leq i, j \leq r-2$. Hence $R_{\alpha}(T) \geq\left(n-r+2^{\alpha}\right)(n-r+1)^{\alpha}+4^{\alpha}(r-3)+2^{\alpha}$ holds with equality if and only if $T \cong T_{1}(n, r, n-r-1)$ or $T \cong T_{r-1}(n, r, n-r-1)$.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press Ltd. London, 1976.
[2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50(1998), 225-233.
[3] G. Caporossi, I. Gutman, P. Hansen and L. Pavlović, Graphs with maximum connectivity index, Comput. Biol. Chem. 27(2003), 85-90.
[4] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 6: Analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43(2003), 1-14.
[5] Y. Jiang and M. Lu, On the connectivity index of trees, J. Math. Chem. 43(2008), 955-965.
[6] X. Li and H. Zhao, Trees with small Randić connectivity indices, MATCH Commun. Math. Comput. Chem. 51(2004), 167-178.
[7] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975), 6609-6615.
[8] X. Li and Y. Shi, A survey on the Randic index, MATCH Commun. Math. Comput. Chem. 59(2008), 127-156.
[9] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.
[10] B. Liu and I. Gutman, On general Randić indices, MATCH Commun. Math. Comput. Chem. 58(2007), 147-154.
[11] H. Liu, X. Yan, Z. Yan, Bounds on the general Randić index of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 58(2007), 155-166.
[12] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59(2008), 5-124.
[13] M. Song, X. F. Pan, On the Randić index of unicyclic graphs with fixed diameter, MATCH Commun. Math. Comput. Chem. 60(2008), 523-538.
[14] X. Li, Y. Shi, L. Zhong, Minimum general Randić index on chemical trees with given order and number of pendent vertices, MATCH Commun. Math. Comput. Chem. 60(2008), 539-554.
[15] J. Zheng, Two results on extremal chemical trees with maximum general Randić index R_{α} for $\alpha<0$, MATCH Commun. Math. Comput. Chem. 60(2008), 555-566.

[^0]: *Supported by NSFC, PCSIRT and the " 973 " program.

