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Abstract. It is shown that if the group ring RQgs of the quaternion group
Qg of order 8 over an integral domain R is duo, then R is a field for the
following cases: (1) char R # 0, and (2) char R = 0, and S C R C Kg,
where S is a ring of algebraic integers and Kg is its quotient field. Hence we
confirm that the field Q of rational numbers is the smallest integral domain
R of characteristic zero such that RQs is duo. A non-field integral domain
R of characteristic zero for which RQg is duo is also identified.
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1. INTRODUCTION

An associative ring R is called left (right) duo if every left (right) ideal is
an ideal, and R is said to be duo if it is both left and right duo. R is defined
to be reversible if a8 = 0 implies Sa = 0 for all o, 3 € R.

Let k£ be a commutative ring with identity and G be any group. Using the
standard involution * on the group ring kG, defined by (3 a;9:)* = > a;g; !
for all a; € k and g; € GG, we can easily see that the three duo conditions
defined on kG are equivalent.

It follows from a result of Marks [4] and a remark of Bell and the second
author [1] that if the group ring kG of an arbitrary group G over a commu-
tative ring k is duo, then it is reversible. The question of when a reversible
group ring kG is duo was investigated and all duo group algebras KG of
torsion groups G over fields K were characterized in [1]. It was shown that
such a group algebra is duo if and only if it is reversible (see [2, 3] for the
discussion of the reversibility of group rings). It was also pointed out that
a reversible group ring kG is not necessarily duo; for example, the integral
group ring ZQs of the quaternion group Qg of order 8 is a reversible ring,
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but not a duo ring [1, Example 1.1]. A natural question which arises is as
follows:

Question 1.1. Is there any ring R between Z and Q (in addition to Q the
field of all rational numbers), such that RQg is duo.

In this paper, we investigate a more general question of when an integral
domain R is a field under the assumption that RQsg is duo. We give an affir-
mative answer to the question for many cases. Our main result is Theorem
2.4, showing that if R is an integral domain such that RQs is duo, then R
is a field for the following cases: (1) char R # 0, and (2) char R = 0, and
S C R C Kg, where S is a ring of algebraic integers and Kg is its quotient
field. In particular, this shows that there does not exist any ring R between
Z and Q (except for Q) such that RQs is duo. Thus, Q is the smallest
integral domain R (up to isomorphism) of characteristic zero for which the
group ring RQg is duo. It is also proved that there exists an integral domain
R that is not a field for which RQg is duo (Proposition 2.6). We remark
that for a non-abelian torsion group G, if RG is duo, then RQg is always
duo (Remark 2.8). So we will use the latter weaker assumption when it is
required.

Throughout the paper, R and Ry denote an integral domain and its quo-
tient field respectively. U(R) denotes the unit group of R and, as mentioned
before, Qs = (a,bla* = 1,a®> = b?,a® = a~!) denotes the quaternion group
of order 8. Our other notation is standard and follows that in [6].

2. MAIN RESULT

We begin with two lemmas which will be required later. The first lemma is
a well known result in number theory and it is a consequence of [5, Theorem
5.14].

Lemma 2.1. 1+ 22 +y? = 0 (mod p) is solvable in Z for every prime p.

Lemma 2.2. Let R be an integral domain such that RQg is duo. If 14+ 2%+
y? # 0 for some x,y € R, then 1 + 2 + > is invertible in R.

Proof. If R is finite, then R is a field, and thus the result holds. From now
on we may assume that R is infinite.

For z,y € R, let L = (RQg)(1 4 za + yb) be a left ideal. Since RQg is
duo, we know that L is also a right ideal. Thus,

3 7
(1+za+yb)a = (Z aia’ + Z a;a?*b)(1 + za +yb) € L,
i=0 j=4

where a; € R fort=0,1,---,7, or

3 7
(2.1) a+ za® + yab = (Z a;a’ +Zajaj_4b)(1 + xa + yb)
=0 =4
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Simplifying and then comparing the coefficients of group elements on both
sides of the above equation, we obtain the following system.

(

ap + xaz + yag = 0
zag + a1 +yar =1
ra) +az +yaqg =
xas + az + yas =0
yag + a4 + xas =0
ya1 + as + xag = 0
yag + ag + xay =0
yaz +xrag +ayr =y

(2.2)

\
It is not hard to see that the determinant of the coefficient matrix A of
System (2.2) is as follows:

(2.3) det(A) = o8 — 2y* — 8y*z? — 2ytat — 822 — &2t — 22t + 2% 4 1.

If det(A) # 0 € R, then solving System (2.2) in the quotient field of R,
we obtain the following result.

a():O
a1 = e
GQZO
2
R
04 = Ty
a5 = — Ty
6 = ~ T
a7 = Tyt

In particular, if det(A) # 0, then

(2.4) (1+ 2%+ yHa; =1+ 2°.

We first prove that if 1+ y3 # 0 for some yo € R, then 1+ y3 is invertible
in R. Set z =1+ y3. Then z is a factor of 1 + (yo + wz)? for all w € R.
Let x = 0. Then det(A4) = (y* — 1)? and it has only finite zeros in R (in
fact, it has at most 4 distinct zeros in R). Since R is infinite, its subset
S = {yo + wz| w € R} has infinite many elements, so we can always choose
an element y € S such that det(A) # 0. Now by (2.4), (1 +%?)a; = 1.
Therefore, 1 + y? is invertible in R, and hence z = 1 + 42 (as a factor of
1+ y?) is also invertible in R.

Let u = (14 2%+ y?) # 0 for some z,y € R. Then as before, u is a factor
of 1+ (x + wu)? + y? for all w € R. Note that for a fixed y € R, det(A)
has at most finite zeros in R. Since R is infinite, as before, we can choose
an element 71 € {x + wu| w € R} such that 1 + 2% # 0 and det(4) # 0.
Substituting = by x; in (2.4), we have (1 + z? + 3?)a; = 1+ 22. Since
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1+ 22 # 0, by what we just proved, it must be invertible in R, and thus
1427 +4? is also invertible in R. Since 1+x2+y? is a factor of the invertible
element 1 + 2% + y?2, it is also invertible in R and we are done. g

We note that if R is an integral domain such that RQg is duo, then RQg
is reversible. It follows from [3, Theorem 2.5] that the characteristic of R is
either 2 or 0. In the latter case, by [3, Theorem 4.2] (see also [2, Theorem
3.1]), we have 1 4+ 22 + y? # 0, for all z,y € R. As a consequence of the
above lemma, we obtain

Corollary 2.3. Let R be an integral domain such that RQg is duo. Then
char R =2 or char R = 0. In the latter case, we have 1 + 2 + y* € U(R),
for allx,y € R.

We are now ready to show our main result.

Theorem 2.4. Let R be an integral domain such that RQg is duo. Then
the following statements hold.

(1) If char(R) # 0, then R must be a field.

(2) If S is a ring of algebraic integers with its quotient field Kg such
that S C R C Kg, then R = Kg. In particular, if Z C R C Q, then
R=Q.

Proof. (1) We note that char(R) = 2 by Corollary 2.3. Let aw # 0 € R and
r=a—-1€R. Then1+2%?=(1+x)%=a%+#0. It follows from Lemma
2.2 that o? is invertible in R and so is a. Therefore, R is a field.

(2) We need only show that Kg C R. To do this, it suffices to prove
that every nonzero element a € S is invertible in R. We first prove that if
0 # « € Z, then « is invertible in R. Let p be any prime. By Lemma 2.1,
p|1 + 22 + y? for some integers z,y € Z. It follows from Corollary 2.3 that
1+ 22 + 4?2, and thus p is invertible in R. Since every integer greater than 1
can be expressed as a product of primes, it follows that « is invertible in R.

We now turn to the general case when 0 # o € S. By the definition
of algebraic integers, there is a monic polynomial f(z) € Z[z]| such that
f(a) = 0. Suppose that

f(x) =2™ + cpqz™?

where all ¢; € Z and ¢g # 0. Then

+ ot e+ o,

A"+ cp1d M ea+ ¢ =0,

or

(a"_l +epo1a 4+ c1)a = —cp.

As proved above, —cg is invertible in R, so « is also invertible in R. This
completes the proof. O
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Corollary 2.5. Let R be an integral domain of char R = 0 such that RQg
is duo, and let M be any mazximal ideal of R. Then char (R/M) = 0 and
(R/M)Qs is duo.

Proof. Since M is a maximal idea of R, R/M is a field. By Lemma 2.1 and
Corollary 2.3, we know that every prime is invertible in R, so it is not in M.
Therefore, char (R/M) = 0. Again by Corollary 2.3, we know that for any
o,y € R, 1 + x% + y% is invertible, so it is not in M. This shows that the
equation 1+ 2 +y? = 0 has no solutions in R/M. By [1, Theorem 2.1], we
conclude that (R/M)Qs is duo. O

The following proposition shows that there exists an integral domain R
which is not a field such that RQg is duo.

Proposition 2.6. Let S = Qxz] be the polynomial ring over the rational
field, and Sp be the localization of S at the maximal ideal P = (x). Then
R = Sp is a local integral domain of characteristic 0, but not a field, such
that RQg is duo.

Proof. Clearly R is a local integral domain of characteristic 0, but not a field
(as  is not invertible in R).

We next make the following easy observations:

For all z1, -+, z. € R, we have

(1) 22+ +22=0ifand only if 2y = --- = 2, = 0.

(2) 22 +---+22 is invertible in R if and only if at least one of z;, 1 <i <r
is invertible in R

The first observation follows from the fact that R is totally real. To prove
the second observation, without loss of generality we may assume that all z;
are in Q[z]. Now 2% + - - - + 22 is invertible if and only if the constant term
of 22 + -+ 22 is not zero if and only if the constant term of at least one of
z; is not zero if and only if at least one of z; is invertible.

We now show that RQg is duo. To do so, it suffices to prove that every left
principal ideal in RQg is a right ideal. Let @ = Z?:o zat + 2524 :cjaj —4p
be any element in RQgs and L = (RQg)a. We will prove that L is a right
ideal. Clearly, it suffices to prove that both ca € L and ab € L.

We first prove that aa € L. We need to show that there exists f =
Z?:o a;a’ + 237-24 aja’~*h € RQs such that aa = Ba, or

3 7 3 7 3 7
(Z xiai—i—z zjal 4b)a = (Z aiai+z ajaj_4b)(z xiai—i—z zja?b) € L.
=0 j=4 =0 j=4 =0 j=4

Simplifying and then comparing the coefficients of group elements on both
sides of the above equation, we obtain the following system.



Toag + x3a1 + X202 + X103 + Tea4 + T7as + X406 + T5a7 = X3
xr1a9 + rga1 + r3as + xroas + rsaq + xgas + r7a6 + 407 = T
xoag + xr1a1 + Toa2 + Tr303 + T404 + TH05 + Tgag + TrAT = X1
x3ag + roa1 + x1a2 + xoas + rra4 + x4a5 + Tsa6 + TgGT = T2
x4a0 + 7071 + T2 + xr503 + Toa4 + x105 + Toag + 307 = T3
Tr5ag + raa1 + x702 + Tgaz + r3a4 + X905 + r1a6 + T207 = T
Teag + r5a1 + r4a0 + xr703 + To04 + X305 + Toaeg + r107 = X7
xT7ag + rga1 + rsas + xraas + r104 + X205 + T3a6 + xoar = T4

\

Thus, aa € L if and only if System (2.5) has a solution (ag, - -- ,a7) in R.
We distinguish two cases.

Case 1. (zg — 12)% + (z1 — 23)? + (24 — 26)% + (x5 — 27)% # 0. It is not
hard to check that the following is a solution of System (2.5) in the quotient
field of R.

ag = 0
a = (xo—2)%4(x1—23)>
1 (xo—w2)2+(z1—23)%+(wa—w6) %+ (T5—27)*
a9 = 0
e = (w4—6)%+(x5—27)*
3 = (wo—w2)?+(w1—23)2+(2a—w6) 2+ (x5 —x7)2
. (x1—23)(ra—26)+(x0—22)(T5—27)
(2'6) a4 = (%—9012)2j(mli$3§2+(rz—wz)2f(r5Zw?)z
s — (z1—23) (w5 —x7)—(T0—T2)(T4—T6)
5 = (wo—w2)2+(x1—23) 2+ (z4—x6) >+ (w5 —a7)2

(z1—23)(va—x6)+(x0—22)(T5—27)

_ )(
A6 = T (@o—z2)2+ (w1 —23) 2+ (24—6 )2+ (25 —77)2
a4 — — (@=zs)(@s—wr)—(zo—w3)(xa—2c)
T T @wo—a2) 2+ (x1—23) 2+ (wa—16) 2+ (25 —27)

We verify only that (2.6) satisfies the first equation of System (2.5). The
rest of verifications can be done similarly. Let A = zg—x9, B =21 —x3,C =
x4—2x6, D = x5—x7, and E = A>+B?+C?+D?. Then a4 = —ag = w
and a5 = —ay = LEAC. Substituting (2.6) into the left side of the first
equation in System (2.5) and then simplifying, we obtain the following.

(23(A2 + B2) + 21(C? + D?) — (24 — 26)(BC + AD) — (x5 — 27)(BD — AC))
(v3(A% + B?) + 21(C%? + D?) — C(BC + AD) — D(BD — AC))

(z3(A% + B?) + 21(C? + D?) — BC? — BD?)

(z3(A% + B?) + (21 — B)(C? + D?) = 3,

Il =

1
¥
e
E

which is equal to the right side of the first equation in System (2.5). This
completes our verification.

We claim that all a; given in (2.6) are, in fact, in R. We need only check
that a; € R for i € {1,3,4,5,6,7}. Since (xg — 22)% + (v1 — 23)% + (24 —
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26)? + (x5 — 27)? # 0, we know that at least one of xg — 2, 21 — 3, 24 — ¢
and x5 — z7 is not zero. If x; — x;49 # 0 for some i € {0,1,4,5}, then
T; — Xipo = x™u;, where n; > 0 is an integer and w; is invertible in R.
Otherwise, write x; — x;10 = ™ u;, where u; = 0 and n; € Z can be chosen
as large as we want. Define n = min{ng,n1,nq,ns} = min{n;|x; — z;42 #

o zn1+n472nulu4+$n0+n572nuOu5
0}. Then a4 = (000 ) E T (@ T )2 4 (T a4 (5= 2 We note that
at least one of (2™ "u;)? is invertible, so it follows from observation (2)

that (20 "ug)? + (2™ "uq)? + (2™ "uy)? + (25 "us)? is invertible in R.
Therefore, a4 € R and hence ag = —a4q € R. Similarly, we can prove that
a; € R for 1 € {1,3,5,7}. This completes the proof of Case 1.

Case 2. (v0 — 22)® + (1 — 23)* + (24 — w6)? + (w5 — 27)®> = 0. By
observation (1), we now have xg = z2,21 = x3,24 = x6, and x5 = x7, SO
a = (zo + x1a + 24b + w50b)(1 + a?) is a central element in RQs, and hence
aa = aa € L.

We have just proved that aa € L. Since elements a and b are symmetric
in (g, by using a symmetric argument we can easily show that ab € L.
Therefore, L is an ideal, and thus RQg is duo. O

Remark 2.7. We note that the ring R in Proposition 2.6 is a principal
local integral domain such that RQs is duo. However, for any prime p, Z,)
the localization of Z at the ideal generated by p, is a principal local integral
domain, but Z Qs is not duo.

Let G be a non-abelian torsion group and R be a commutative ring with
identity. If RG is duo, then as mentioned before, RG is reversible, so it
follows from [3] that G = Qs x F2 x E} is a Hamiltonian group, where
E5 is an elementary abelian 2-group, and FE) is an abelian group all of
whose elements are of odd order. Since RG = (RQs)(E2 x E}) can be
regarded as a group ring over the ring RQs, the coefficient ring RQgs is an
homomorphic image of RG under the standard augmentation mapping [6].
As a homomorphic image of a duo ring RG, RQg is clearly duo.

Remark 2.8. Let G be a non-abelian torsion group and R be a commutative
ring with identity. If RG is duo, then RQg is also duo.

We note that it follows from Theorem 2.4 and [1, Theorem 3.1] that if
R is an integral domain with char(R) # 0, then RQg is duo if and only
if R is a field of char(R) = 2 and 1+ z + 22 € U(R) for all x € R. If
char(R) = 0, a necessary condition for RQg to be duo is given in Corollary
2.3,i.e. 1+22+y% € U(R) for all z,y € R. We are not aware of any example
of an integral domain R of char(R) = 0 satisfying this necessary condition
for which RQg is not duo. We close this paper by proposing the following
question.

Question 2.9. Assume that R is an integral domain of char(R) = 0 such
that 1+ 22 + 42 € U(R) for all z,y € R. Is RQg duo?
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