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Abstract. It is shown that if the group ring RQ8 of the quaternion group
Q8 of order 8 over an integral domain R is duo, then R is a field for the
following cases: (1) char R 6= 0, and (2) char R = 0, and S ⊆ R ⊆ KS ,
where S is a ring of algebraic integers and KS is its quotient field. Hence we
confirm that the field Q of rational numbers is the smallest integral domain
R of characteristic zero such that RQ8 is duo. A non-field integral domain
R of characteristic zero for which RQ8 is duo is also identified.
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1. Introduction

An associative ring R is called left (right) duo if every left (right) ideal is
an ideal, and R is said to be duo if it is both left and right duo. R is defined
to be reversible if αβ = 0 implies βα = 0 for all α, β ∈ R.

Let k be a commutative ring with identity and G be any group. Using the
standard involution ∗ on the group ring kG, defined by (

∑
aigi)∗ =

∑
aig

−1
i

for all ai ∈ k and gi ∈ G, we can easily see that the three duo conditions
defined on kG are equivalent.

It follows from a result of Marks [4] and a remark of Bell and the second
author [1] that if the group ring kG of an arbitrary group G over a commu-
tative ring k is duo, then it is reversible. The question of when a reversible
group ring kG is duo was investigated and all duo group algebras KG of
torsion groups G over fields K were characterized in [1]. It was shown that
such a group algebra is duo if and only if it is reversible (see [2, 3] for the
discussion of the reversibility of group rings). It was also pointed out that
a reversible group ring kG is not necessarily duo; for example, the integral
group ring ZQ8 of the quaternion group Q8 of order 8 is a reversible ring,
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but not a duo ring [1, Example 1.1]. A natural question which arises is as
follows:

Question 1.1. Is there any ring R between Z and Q (in addition to Q the
field of all rational numbers), such that RQ8 is duo.

In this paper, we investigate a more general question of when an integral
domain R is a field under the assumption that RQ8 is duo. We give an affir-
mative answer to the question for many cases. Our main result is Theorem
2.4, showing that if R is an integral domain such that RQ8 is duo, then R
is a field for the following cases: (1) char R 6= 0, and (2) char R = 0, and
S ⊆ R ⊆ KS , where S is a ring of algebraic integers and KS is its quotient
field. In particular, this shows that there does not exist any ring R between
Z and Q (except for Q) such that RQ8 is duo. Thus, Q is the smallest
integral domain R (up to isomorphism) of characteristic zero for which the
group ring RQ8 is duo. It is also proved that there exists an integral domain
R that is not a field for which RQ8 is duo (Proposition 2.6). We remark
that for a non-abelian torsion group G, if RG is duo, then RQ8 is always
duo (Remark 2.8). So we will use the latter weaker assumption when it is
required.

Throughout the paper, R and RK denote an integral domain and its quo-
tient field respectively. U(R) denotes the unit group of R and, as mentioned
before, Q8 = 〈a, b|a4 = 1, a2 = b2, ab = a−1〉 denotes the quaternion group
of order 8. Our other notation is standard and follows that in [6].

2. Main result

We begin with two lemmas which will be required later. The first lemma is
a well known result in number theory and it is a consequence of [5, Theorem
5.14].

Lemma 2.1. 1 + x2 + y2 ≡ 0 (mod p) is solvable in Z for every prime p.

Lemma 2.2. Let R be an integral domain such that RQ8 is duo. If 1+x2 +
y2 6= 0 for some x, y ∈ R, then 1 + x2 + y2 is invertible in R.

Proof. If R is finite, then R is a field, and thus the result holds. From now
on we may assume that R is infinite.

For x, y ∈ R, let L = (RQ8)(1 + xa + yb) be a left ideal. Since RQ8 is
duo, we know that L is also a right ideal. Thus,

(1 + xa + yb)a = (
3∑

i=0

aia
i +

7∑
j=4

aja
j−4b)(1 + xa + yb) ∈ L,

where ai ∈ R for i = 0, 1, · · · , 7, or

(2.1) a + xa2 + ya3b = (
3∑

i=0

aia
i +

7∑
j=4

aja
j−4b)(1 + xa + yb)
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Simplifying and then comparing the coefficients of group elements on both
sides of the above equation, we obtain the following system.

(2.2)



a0 + xa3 + ya6 = 0
xa0 + a1 + ya7 = 1
xa1 + a2 + ya4 = x
xa2 + a3 + ya5 = 0
ya0 + a4 + xa5 = 0
ya1 + a5 + xa6 = 0
ya2 + a6 + xa7 = 0
ya3 + xa4 + a7 = y

It is not hard to see that the determinant of the coefficient matrix A of
System (2.2) is as follows:

(2.3) det(A) = y8 − 2y4 − 8y4x2 − 2y4x4 − 8y2x2 − 8y2x4 − 2x4 + x8 + 1.

If det(A) 6= 0 ∈ R, then solving System (2.2) in the quotient field of R,
we obtain the following result.

a0 = 0
a1 = 1+x2

1+y2+x2

a2 = 0
a3 = y2

1+y2+x2

a4 = yx
1+y2+x2

a5 = − y
1+y2+x2

a6 = − yx
1+y2+x2

a7 = y
1+y2+x2

In particular, if det(A) 6= 0, then

(2.4) (1 + x2 + y2)a1 = 1 + x2.

We first prove that if 1+ y2
0 6= 0 for some y0 ∈ R, then 1+ y2

0 is invertible
in R. Set z = 1 + y2

0. Then z is a factor of 1 + (y0 + wz)2 for all w ∈ R.
Let x = 0. Then det(A) = (y4 − 1)2 and it has only finite zeros in R (in
fact, it has at most 4 distinct zeros in R). Since R is infinite, its subset
S = {y0 + wz| w ∈ R} has infinite many elements, so we can always choose
an element y ∈ S such that det(A) 6= 0. Now by (2.4), (1 + y2)a1 = 1.
Therefore, 1 + y2 is invertible in R, and hence z = 1 + y2

0 (as a factor of
1 + y2) is also invertible in R.

Let u = (1 + x2 + y2) 6= 0 for some x, y ∈ R. Then as before, u is a factor
of 1 + (x + wu)2 + y2 for all w ∈ R. Note that for a fixed y ∈ R, det(A)
has at most finite zeros in R. Since R is infinite, as before, we can choose
an element x1 ∈ {x + wu| w ∈ R} such that 1 + x2

1 6= 0 and det(A) 6= 0.
Substituting x by x1 in (2.4), we have (1 + x2

1 + y2)a1 = 1 + x2
1. Since
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1 + x2
1 6= 0, by what we just proved, it must be invertible in R, and thus

1+x2
1+y2 is also invertible in R. Since 1+x2+y2 is a factor of the invertible

element 1 + x2
1 + y2, it is also invertible in R and we are done. �

We note that if R is an integral domain such that RQ8 is duo, then RQ8

is reversible. It follows from [3, Theorem 2.5] that the characteristic of R is
either 2 or 0. In the latter case, by [3, Theorem 4.2] (see also [2, Theorem
3.1]), we have 1 + x2 + y2 6= 0, for all x, y ∈ R. As a consequence of the
above lemma, we obtain

Corollary 2.3. Let R be an integral domain such that RQ8 is duo. Then
char R = 2 or char R = 0. In the latter case, we have 1 + x2 + y2 ∈ U(R),
for all x, y ∈ R.

We are now ready to show our main result.

Theorem 2.4. Let R be an integral domain such that RQ8 is duo. Then
the following statements hold.

(1) If char(R) 6= 0, then R must be a field.
(2) If S is a ring of algebraic integers with its quotient field KS such

that S ⊆ R ⊆ KS, then R = KS. In particular, if Z ⊆ R ⊆ Q, then
R = Q.

Proof. (1) We note that char(R) = 2 by Corollary 2.3. Let α 6= 0 ∈ R and
x = α − 1 ∈ R. Then 1 + x2 = (1 + x)2 = α2 6= 0. It follows from Lemma
2.2 that α2 is invertible in R and so is α. Therefore, R is a field.

(2) We need only show that KS ⊆ R. To do this, it suffices to prove
that every nonzero element α ∈ S is invertible in R. We first prove that if
0 6= α ∈ Z, then α is invertible in R. Let p be any prime. By Lemma 2.1,
p|1 + x2 + y2 for some integers x, y ∈ Z. It follows from Corollary 2.3 that
1 + x2 + y2, and thus p is invertible in R. Since every integer greater than 1
can be expressed as a product of primes, it follows that α is invertible in R.

We now turn to the general case when 0 6= α ∈ S. By the definition
of algebraic integers, there is a monic polynomial f(x) ∈ Z[x] such that
f(α) = 0. Suppose that

f(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0,

where all ci ∈ Z and c0 6= 0. Then

αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0,

or

(αn−1 + cn−1α
n−2 + · · ·+ c1)α = −c0.

As proved above, −c0 is invertible in R, so α is also invertible in R. This
completes the proof. �
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Corollary 2.5. Let R be an integral domain of char R = 0 such that RQ8

is duo, and let M be any maximal ideal of R. Then char (R/M) = 0 and
(R/M)Q8 is duo.

Proof. Since M is a maximal idea of R, R/M is a field. By Lemma 2.1 and
Corollary 2.3, we know that every prime is invertible in R, so it is not in M .
Therefore, char (R/M) = 0. Again by Corollary 2.3, we know that for any
x0, y0 ∈ R, 1 + x2

0 + y2
0 is invertible, so it is not in M . This shows that the

equation 1 + x2 + y2 = 0 has no solutions in R/M . By [1, Theorem 2.1], we
conclude that (R/M)Q8 is duo. �

The following proposition shows that there exists an integral domain R
which is not a field such that RQ8 is duo.

Proposition 2.6. Let S = Q[x] be the polynomial ring over the rational
field, and SP be the localization of S at the maximal ideal P = 〈x〉. Then
R = SP is a local integral domain of characteristic 0, but not a field, such
that RQ8 is duo.

Proof. Clearly R is a local integral domain of characteristic 0, but not a field
(as x is not invertible in R).

We next make the following easy observations:
For all z1, · · · , zr ∈ R, we have
(1) z2

1 + · · ·+ z2
r = 0 if and only if z1 = · · · = zr = 0.

(2) z2
1 + · · ·+z2

r is invertible in R if and only if at least one of zi, 1 ≤ i ≤ r
is invertible in R

The first observation follows from the fact that R is totally real. To prove
the second observation, without loss of generality we may assume that all zi

are in Q[x]. Now z2
1 + · · ·+ z2

r is invertible if and only if the constant term
of z2

1 + · · ·+ z2
r is not zero if and only if the constant term of at least one of

zi is not zero if and only if at least one of zi is invertible.

We now show that RQ8 is duo. To do so, it suffices to prove that every left
principal ideal in RQ8 is a right ideal. Let α =

∑3
i=0 xia

i +
∑7

j=4 xja
j−4b

be any element in RQ8 and L = (RQ8)α. We will prove that L is a right
ideal. Clearly, it suffices to prove that both αa ∈ L and αb ∈ L.

We first prove that αa ∈ L. We need to show that there exists β =∑3
i=0 aia

i +
∑7

j=4 aja
j−4b ∈ RQ8 such that αa = βα, or

(
3∑

i=0

xia
i+

7∑
j=4

xja
j−4b)a = (

3∑
i=0

aia
i+

7∑
j=4

aja
j−4b)(

3∑
i=0

xia
i+

7∑
j=4

xja
j−4b) ∈ L.

Simplifying and then comparing the coefficients of group elements on both
sides of the above equation, we obtain the following system.
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(2.5)



x0a0 + x3a1 + x2a2 + x1a3 + x6a4 + x7a5 + x4a6 + x5a7 = x3

x1a0 + x0a1 + x3a2 + x2a3 + x5a4 + x6a5 + x7a6 + x4a7 = x0

x2a0 + x1a1 + x0a2 + x3a3 + x4a4 + x5a5 + x6a6 + x7a7 = x1

x3a0 + x2a1 + x1a2 + x0a3 + x7a4 + x4a5 + x5a6 + x6a7 = x2

x4a0 + x7a1 + x6a2 + x5a3 + x0a4 + x1a5 + x2a6 + x3a7 = x5

x5a0 + x4a1 + x7a2 + x6a3 + x3a4 + x0a5 + x1a6 + x2a7 = x6

x6a0 + x5a1 + x4a2 + x7a3 + x2a4 + x3a5 + x0a6 + x1a7 = x7

x7a0 + x6a1 + x5a2 + x4a3 + x1a4 + x2a5 + x3a6 + x0a7 = x4

Thus, αa ∈ L if and only if System (2.5) has a solution (a0, · · · , a7) in R.
We distinguish two cases.

Case 1. (x0 − x2)2 + (x1 − x3)2 + (x4 − x6)2 + (x5 − x7)2 6= 0. It is not
hard to check that the following is a solution of System (2.5) in the quotient
field of R.

(2.6)

a0 = 0
a1 = (x0−x2)2+(x1−x3)2

(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

a2 = 0
a3 = (x4−x6)2+(x5−x7)2

(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

a4 = (x1−x3)(x4−x6)+(x0−x2)(x5−x7)
(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

a5 = (x1−x3)(x5−x7)−(x0−x2)(x4−x6)
(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

a6 = − (x1−x3)(x4−x6)+(x0−x2)(x5−x7)
(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

a7 = − (x1−x3)(x5−x7)−(x0−x2)(x4−x6)
(x0−x2)2+(x1−x3)2+(x4−x6)2+(x5−x7)2

We verify only that (2.6) satisfies the first equation of System (2.5). The
rest of verifications can be done similarly. Let A = x0−x2, B = x1−x3, C =
x4−x6, D = x5−x7, and E = A2+B2+C2+D2. Then a4 = −a6 = BC+AD

E

and a5 = −a7 = BD−AC
E . Substituting (2.6) into the left side of the first

equation in System (2.5) and then simplifying, we obtain the following.

1
E (x3(A2 + B2) + x1(C2 + D2)− (x4 − x6)(BC + AD)− (x5 − x7)(BD −AC))
= 1

E (x3(A2 + B2) + x1(C2 + D2)− C(BC + AD)−D(BD −AC))
= 1

E (x3(A2 + B2) + x1(C2 + D2)−BC2 −BD2)
= 1

E (x3(A2 + B2) + (x1 −B)(C2 + D2) = x3,

which is equal to the right side of the first equation in System (2.5). This
completes our verification.

We claim that all ai given in (2.6) are, in fact, in R. We need only check
that ai ∈ R for i ∈ {1, 3, 4, 5, 6, 7}. Since (x0 − x2)2 + (x1 − x3)2 + (x4 −
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x6)2 + (x5 − x7)2 6= 0, we know that at least one of x0 − x2, x1 − x3, x4 − x6

and x5 − x7 is not zero. If xi − xi+2 6= 0 for some i ∈ {0, 1, 4, 5}, then
xi − xi+2 = xniui, where ni ≥ 0 is an integer and ui is invertible in R.
Otherwise, write xi − xi+2 = xniui, where ui = 0 and ni ∈ Z can be chosen
as large as we want. Define n = min{n0, n1, n4, n5} = min{ni|xi − xi+2 6=
0}. Then a4 = xn1+n4−2nu1u4+xn0+n5−2nu0u5

(xn0−nu0)2+(xn1−nu1)2+(xn4−nu4)2+(xn5−nu5)2
. We note that

at least one of (xni−nui)2 is invertible, so it follows from observation (2)
that (xn0−nu0)2 + (xn1−nu1)2 + (xn4−nu4)2 + (xn5−nu5)2 is invertible in R.
Therefore, a4 ∈ R and hence a6 = −a4 ∈ R. Similarly, we can prove that
ai ∈ R for i ∈ {1, 3, 5, 7}. This completes the proof of Case 1.

Case 2. (x0 − x2)2 + (x1 − x3)2 + (x4 − x6)2 + (x5 − x7)2 = 0. By
observation (1), we now have x0 = x2, x1 = x3, x4 = x6, and x5 = x7, so
α = (x0 + x1a + x4b + x5ab)(1 + a2) is a central element in RQ8, and hence
αa = aα ∈ L.

We have just proved that αa ∈ L. Since elements a and b are symmetric
in Q8, by using a symmetric argument we can easily show that αb ∈ L.
Therefore, L is an ideal, and thus RQ8 is duo. �

Remark 2.7. We note that the ring R in Proposition 2.6 is a principal
local integral domain such that RQ8 is duo. However, for any prime p, Z(p)

the localization of Z at the ideal generated by p, is a principal local integral
domain, but Z(p)Q8 is not duo.

Let G be a non-abelian torsion group and R be a commutative ring with
identity. If RG is duo, then as mentioned before, RG is reversible, so it
follows from [3] that G = Q8 × E2 × E′

2 is a Hamiltonian group, where
E2 is an elementary abelian 2-group, and E′

2 is an abelian group all of
whose elements are of odd order. Since RG = (RQ8)(E2 × E′

2) can be
regarded as a group ring over the ring RQ8, the coefficient ring RQ8 is an
homomorphic image of RG under the standard augmentation mapping [6].
As a homomorphic image of a duo ring RG, RQ8 is clearly duo.

Remark 2.8. Let G be a non-abelian torsion group and R be a commutative
ring with identity. If RG is duo, then RQ8 is also duo.

We note that it follows from Theorem 2.4 and [1, Theorem 3.1] that if
R is an integral domain with char(R) 6= 0, then RQ8 is duo if and only
if R is a field of char(R) = 2 and 1 + x + x2 ∈ U(R) for all x ∈ R. If
char(R) = 0, a necessary condition for RQ8 to be duo is given in Corollary
2.3, i.e. 1+x2+y2 ∈ U(R) for all x, y ∈ R. We are not aware of any example
of an integral domain R of char(R) = 0 satisfying this necessary condition
for which RQ8 is not duo. We close this paper by proposing the following
question.

Question 2.9. Assume that R is an integral domain of char(R) = 0 such
that 1 + x2 + y2 ∈ U(R) for all x, y ∈ R. Is RQ8 duo?
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