On Duo Group Rings ${ }^{1}$

Weidong Gao
Center for Combinatorics, Nankai University
Tianjin, 300071, P.R. China
Email: gao@cfc.nankai.edu.cn
Yuanlin Li
Department of Mathematics, Brock University, St. Catharines,
Ontario, L2S 3A1, Canada
E-mail: yli@brocku.ca

Abstract

It is shown that if the group ring $R Q_{8}$ of the quaternion group Q_{8} of order 8 over an integral domain R is duo, then R is a field for the following cases: (1) char $R \neq 0$, and (2) char $R=0$, and $S \subseteq R \subseteq K_{S}$, where S is a ring of algebraic integers and K_{S} is its quotient field. Hence we confirm that the field \mathbb{Q} of rational numbers is the smallest integral domain R of characteristic zero such that $R Q_{8}$ is duo. A non-field integral domain R of characteristic zero for which $R Q_{8}$ is duo is also identified.

2000 Mathematics Subject Classification: 16S34, 16S99, 16U80
Keywords: Duo ring, Group ring, Reversible ring

1. Introduction

An associative ring R is called left (right) duo if every left (right) ideal is an ideal, and R is said to be duo if it is both left and right duo. R is defined to be reversible if $\alpha \beta=0$ implies $\beta \alpha=0$ for all $\alpha, \beta \in R$.

Let k be a commutative ring with identity and G be any group. Using the standard involution $*$ on the group ring $k G$, defined by $\left(\sum a_{i} g_{i}\right)^{*}=\sum a_{i} g_{i}^{-1}$ for all $a_{i} \in k$ and $g_{i} \in G$, we can easily see that the three duo conditions defined on $k G$ are equivalent.

It follows from a result of Marks [4] and a remark of Bell and the second author [1] that if the group ring $k G$ of an arbitrary group G over a commutative ring k is duo, then it is reversible. The question of when a reversible group ring $k G$ is duo was investigated and all duo group algebras $K G$ of torsion groups G over fields K were characterized in [1]. It was shown that such a group algebra is duo if and only if it is reversible (see [2, 3] for the discussion of the reversibility of group rings). It was also pointed out that a reversible group ring $k G$ is not necessarily duo; for example, the integral group ring $\mathbb{Z} Q_{8}$ of the quaternion group Q_{8} of order 8 is a reversible ring,

[^0]but not a duo ring [1, Example 1.1]. A natural question which arises is as follows:

Question 1.1. Is there any ring R between \mathbb{Z} and \mathbb{Q} (in addition to \mathbb{Q} the field of all rational numbers), such that $R Q_{8}$ is duo.

In this paper, we investigate a more general question of when an integral domain R is a field under the assumption that $R Q_{8}$ is duo. We give an affirmative answer to the question for many cases. Our main result is Theorem 2.4, showing that if R is an integral domain such that $R Q_{8}$ is duo, then R is a field for the following cases: (1) char $R \neq 0$, and (2) char $R=0$, and $S \subseteq R \subseteq K_{S}$, where S is a ring of algebraic integers and K_{S} is its quotient field. In particular, this shows that there does not exist any ring R between \mathbb{Z} and \mathbb{Q} (except for \mathbb{Q}) such that $R Q_{8}$ is duo. Thus, \mathbb{Q} is the smallest integral domain R (up to isomorphism) of characteristic zero for which the group ring $R Q_{8}$ is duo. It is also proved that there exists an integral domain R that is not a field for which $R Q_{8}$ is duo (Proposition 2.6). We remark that for a non-abelian torsion group G, if $R G$ is duo, then $R Q_{8}$ is always duo (Remark 2.8). So we will use the latter weaker assumption when it is required.

Throughout the paper, R and R_{K} denote an integral domain and its quotient field respectively. $\mathcal{U}(R)$ denotes the unit group of R and, as mentioned before, $Q_{8}=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a^{b}=a^{-1}\right\rangle$ denotes the quaternion group of order 8 . Our other notation is standard and follows that in [6].

2. Main Result

We begin with two lemmas which will be required later. The first lemma is a well known result in number theory and it is a consequence of $[5$, Theorem 5.14].

Lemma 2.1. $1+x^{2}+y^{2} \equiv 0(\bmod p)$ is solvable in \mathbb{Z} for every prime p.
Lemma 2.2. Let R be an integral domain such that $R Q_{8}$ is duo. If $1+x^{2}+$ $y^{2} \neq 0$ for some $x, y \in R$, then $1+x^{2}+y^{2}$ is invertible in R.

Proof. If R is finite, then R is a field, and thus the result holds. From now on we may assume that R is infinite.

For $x, y \in R$, let $L=\left(R Q_{8}\right)(1+x a+y b)$ be a left ideal. Since $R Q_{8}$ is duo, we know that L is also a right ideal. Thus,

$$
(1+x a+y b) a=\left(\sum_{i=0}^{3} a_{i} a^{i}+\sum_{j=4}^{7} a_{j} a^{j-4} b\right)(1+x a+y b) \in L
$$

where $a_{i} \in R$ for $i=0,1, \cdots, 7$, or

$$
\begin{equation*}
a+x a^{2}+y a^{3} b=\left(\sum_{i=0}^{3} a_{i} a^{i}+\sum_{j=4}^{7} a_{j} a^{j-4} b\right)(1+x a+y b) \tag{2.1}
\end{equation*}
$$

Simplifying and then comparing the coefficients of group elements on both sides of the above equation, we obtain the following system.

$$
\left\{\begin{array}{l}
a_{0}+x a_{3}+y a_{6}=0 \tag{2.2}\\
x a_{0}+a_{1}+y a_{7}=1 \\
x a_{1}+a_{2}+y a_{4}=x \\
x a_{2}+a_{3}+y a_{5}=0 \\
y a_{0}+a_{4}+x a_{5}=0 \\
y a_{1}+a_{5}+x a_{6}=0 \\
y a_{2}+a_{6}+x a_{7}=0 \\
y a_{3}+x a_{4}+a_{7}=y
\end{array}\right.
$$

It is not hard to see that the determinant of the coefficient matrix A of System (2.2) is as follows:
(2.3) $\operatorname{det}(A)=y^{8}-2 y^{4}-8 y^{4} x^{2}-2 y^{4} x^{4}-8 y^{2} x^{2}-8 y^{2} x^{4}-2 x^{4}+x^{8}+1$.

If $\operatorname{det}(A) \neq 0 \in R$, then solving System (2.2) in the quotient field of R, we obtain the following result.

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=\frac{1+x^{2}}{1+y^{2}+x^{2}} \\
& a_{2}=0 \\
& a_{3}=\frac{y^{2}}{1+y^{2}+x^{2}} \\
& a_{4}=\frac{y x}{1+y^{2}+x^{2}} \\
& a_{5}=-\frac{y}{1+y^{2}+x^{2}} \\
& a_{6}=-\frac{y x}{1+y^{2}+x^{2}} \\
& a_{7}=\frac{y}{1+y^{2}+x^{2}}
\end{aligned}
$$

In particular, if $\operatorname{det}(A) \neq 0$, then

$$
\begin{equation*}
\left(1+x^{2}+y^{2}\right) a_{1}=1+x^{2} \tag{2.4}
\end{equation*}
$$

We first prove that if $1+y_{0}^{2} \neq 0$ for some $y_{0} \in R$, then $1+y_{0}^{2}$ is invertible in R. Set $z=1+y_{0}^{2}$. Then z is a factor of $1+\left(y_{0}+w z\right)^{2}$ for all $w \in R$. Let $x=0$. Then $\operatorname{det}(A)=\left(y^{4}-1\right)^{2}$ and it has only finite zeros in R (in fact, it has at most 4 distinct zeros in R). Since R is infinite, its subset $S=\left\{y_{0}+w z \mid w \in R\right\}$ has infinite many elements, so we can always choose an element $y \in S$ such that $\operatorname{det}(A) \neq 0$. Now by $(2.4),\left(1+y^{2}\right) a_{1}=1$. Therefore, $1+y^{2}$ is invertible in R, and hence $z=1+y_{0}^{2}$ (as a factor of $1+y^{2}$) is also invertible in R.

Let $u=\left(1+x^{2}+y^{2}\right) \neq 0$ for some $x, y \in R$. Then as before, u is a factor of $1+(x+w u)^{2}+y^{2}$ for all $w \in R$. Note that for a fixed $y \in R, \operatorname{det}(A)$ has at most finite zeros in R. Since R is infinite, as before, we can choose an element $x_{1} \in\{x+w u \mid w \in R\}$ such that $1+x_{1}^{2} \neq 0$ and $\operatorname{det}(A) \neq 0$. Substituting x by x_{1} in (2.4), we have $\left(1+x_{1}^{2}+y^{2}\right) a_{1}=1+x_{1}^{2}$. Since
$1+x_{1}^{2} \neq 0$, by what we just proved, it must be invertible in R, and thus $1+x_{1}^{2}+y^{2}$ is also invertible in R. Since $1+x^{2}+y^{2}$ is a factor of the invertible element $1+x_{1}^{2}+y^{2}$, it is also invertible in R and we are done.

We note that if R is an integral domain such that $R Q_{8}$ is duo, then $R Q_{8}$ is reversible. It follows from [3, Theorem 2.5] that the characteristic of R is either 2 or 0 . In the latter case, by [3, Theorem 4.2] (see also [2, Theorem $3.1]$), we have $1+x^{2}+y^{2} \neq 0$, for all $x, y \in R$. As a consequence of the above lemma, we obtain

Corollary 2.3. Let R be an integral domain such that $R Q_{8}$ is duo. Then char $R=2$ or char $R=0$. In the latter case, we have $1+x^{2}+y^{2} \in \mathcal{U}(R)$, for all $x, y \in R$.

We are now ready to show our main result.
Theorem 2.4. Let R be an integral domain such that $R Q_{8}$ is duo. Then the following statements hold.
(1) If $\operatorname{char}(R) \neq 0$, then R must be a field.
(2) If S is a ring of algebraic integers with its quotient field K_{S} such that $S \subseteq R \subseteq K_{S}$, then $R=K_{S}$. In particular, if $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$, then $R=\mathbb{Q}$.

Proof. (1) We note that $\operatorname{char}(R)=2$ by Corollary 2.3. Let $\alpha \neq 0 \in R$ and $x=\alpha-1 \in R$. Then $1+x^{2}=(1+x)^{2}=\alpha^{2} \neq 0$. It follows from Lemma 2.2 that α^{2} is invertible in R and so is α. Therefore, R is a field.
(2) We need only show that $K_{S} \subseteq R$. To do this, it suffices to prove that every nonzero element $\alpha \in S$ is invertible in R. We first prove that if $0 \neq \alpha \in \mathbb{Z}$, then α is invertible in R. Let p be any prime. By Lemma 2.1, $p \mid 1+x^{2}+y^{2}$ for some integers $x, y \in \mathbb{Z}$. It follows from Corollary 2.3 that $1+x^{2}+y^{2}$, and thus p is invertible in R. Since every integer greater than 1 can be expressed as a product of primes, it follows that α is invertible in R.

We now turn to the general case when $0 \neq \alpha \in S$. By the definition of algebraic integers, there is a monic polynomial $f(x) \in \mathbb{Z}[x]$ such that $f(\alpha)=0$. Suppose that

$$
f(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}
$$

where all $c_{i} \in \mathbb{Z}$ and $c_{0} \neq 0$. Then

$$
\alpha^{n}+c_{n-1} \alpha^{n-1}+\cdots+c_{1} \alpha+c_{0}=0
$$

or

$$
\left(\alpha^{n-1}+c_{n-1} \alpha^{n-2}+\cdots+c_{1}\right) \alpha=-c_{0}
$$

As proved above, $-c_{0}$ is invertible in R, so α is also invertible in R. This completes the proof.

Corollary 2.5. Let R be an integral domain of char $R=0$ such that $R Q_{8}$ is duo, and let M be any maximal ideal of R. Then char $(R / M)=0$ and $(R / M) Q_{8}$ is duo.

Proof. Since M is a maximal idea of $R, R / M$ is a field. By Lemma 2.1 and Corollary 2.3, we know that every prime is invertible in R, so it is not in M. Therefore, char $(R / M)=0$. Again by Corollary 2.3 , we know that for any $x_{0}, y_{0} \in R, 1+x_{0}^{2}+y_{0}^{2}$ is invertible, so it is not in M. This shows that the equation $1+x^{2}+y^{2}=0$ has no solutions in R / M. By [1, Theorem 2.1], we conclude that $(R / M) Q_{8}$ is duo.

The following proposition shows that there exists an integral domain R which is not a field such that $R Q_{8}$ is duo.

Proposition 2.6. Let $S=\mathbb{Q}[x]$ be the polynomial ring over the rational field, and S_{P} be the localization of S at the maximal ideal $P=\langle x\rangle$. Then $R=S_{P}$ is a local integral domain of characteristic 0, but not a field, such that $R Q_{8}$ is duo.

Proof. Clearly R is a local integral domain of characteristic 0 , but not a field (as x is not invertible in R).

We next make the following easy observations:
For all $z_{1}, \cdots, z_{r} \in R$, we have
(1) $z_{1}^{2}+\cdots+z_{r}^{2}=0$ if and only if $z_{1}=\cdots=z_{r}=0$.
(2) $z_{1}^{2}+\cdots+z_{r}^{2}$ is invertible in R if and only if at least one of $z_{i}, 1 \leq i \leq r$ is invertible in R

The first observation follows from the fact that R is totally real. To prove the second observation, without loss of generality we may assume that all z_{i} are in $\mathbb{Q}[x]$. Now $z_{1}^{2}+\cdots+z_{r}^{2}$ is invertible if and only if the constant term of $z_{1}^{2}+\cdots+z_{r}^{2}$ is not zero if and only if the constant term of at least one of z_{i} is not zero if and only if at least one of z_{i} is invertible.

We now show that $R Q_{8}$ is duo. To do so, it suffices to prove that every left principal ideal in $R Q_{8}$ is a right ideal. Let $\alpha=\sum_{i=0}^{3} x_{i} a^{i}+\sum_{j=4}^{7} x_{j} a^{j-4} b$ be any element in $R Q_{8}$ and $L=\left(R Q_{8}\right) \alpha$. We will prove that L is a right ideal. Clearly, it suffices to prove that both $\alpha a \in L$ and $\alpha b \in L$.

We first prove that $\alpha a \in L$. We need to show that there exists $\beta=$ $\sum_{i=0}^{3} a_{i} a^{i}+\sum_{j=4}^{7} a_{j} a^{j-4} b \in R Q_{8}$ such that $\alpha a=\beta \alpha$, or

$$
\left(\sum_{i=0}^{3} x_{i} a^{i}+\sum_{j=4}^{7} x_{j} a^{j-4} b\right) a=\left(\sum_{i=0}^{3} a_{i} a^{i}+\sum_{j=4}^{7} a_{j} a^{j-4} b\right)\left(\sum_{i=0}^{3} x_{i} a^{i}+\sum_{j=4}^{7} x_{j} a^{j-4} b\right) \in L .
$$

Simplifying and then comparing the coefficients of group elements on both sides of the above equation, we obtain the following system.

$$
\left\{\begin{array}{l}
x_{0} a_{0}+x_{3} a_{1}+x_{2} a_{2}+x_{1} a_{3}+x_{6} a_{4}+x_{7} a_{5}+x_{4} a_{6}+x_{5} a_{7}=x_{3} \tag{2.5}\\
x_{1} a_{0}+x_{0} a_{1}+x_{3} a_{2}+x_{2} a_{3}+x_{5} a_{4}+x_{6} a_{5}+x_{7} a_{6}+x_{4} a_{7}=x_{0} \\
x_{2} a_{0}+x_{1} a_{1}+x_{0} a_{2}+x_{3} a_{3}+x_{4} a_{4}+x_{5} a_{5}+x_{6} a_{6}+x_{7} a_{7}=x_{1} \\
x_{3} a_{0}+x_{2} a_{1}+x_{1} a_{2}+x_{0} a_{3}+x_{7} a_{4}+x_{4} a_{5}+x_{5} a_{6}+x_{6} a_{7}=x_{2} \\
x_{4} a_{0}+x_{7} a_{1}+x_{6} a_{2}+x_{5} a_{3}+x_{0} a_{4}+x_{1} a_{5}+x_{2} a_{6}+x_{3} a_{7}=x_{5} \\
x_{5} a_{0}+x_{4} a_{1}+x_{7} a_{2}+x_{6} a_{3}+x_{3} a_{4}+x_{0} a_{5}+x_{1} a_{6}+x_{2} a_{7}=x_{6} \\
x_{6} a_{0}+x_{5} a_{1}+x_{4} a_{2}+x_{7} a_{3}+x_{2} a_{4}+x_{3} a_{5}+x_{0} a_{6}+x_{1} a_{7}=x_{7} \\
x_{7} a_{0}+x_{6} a_{1}+x_{5} a_{2}+x_{4} a_{3}+x_{1} a_{4}+x_{2} a_{5}+x_{3} a_{6}+x_{0} a_{7}=x_{4}
\end{array}\right.
$$

Thus, $\alpha a \in L$ if and only if System (2.5) has a solution $\left(a_{0}, \cdots, a_{7}\right)$ in R. We distinguish two cases.

Case 1. $\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2} \neq 0$. It is not hard to check that the following is a solution of System (2.5) in the quotient field of R.

$$
\begin{align*}
& a_{0}=0 \\
& a_{1}=\frac{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}}{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}} \\
& a_{2}=0 \quad\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2} \\
& a_{3}=\frac{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}}{\left(x_{0}\right.} \\
& a_{4}=\frac{\left(x_{1}-x_{3}\right)\left(x_{4}-x_{6}\right)+\left(x_{0}-x_{2}\right)\left(x_{5}-x_{7}\right)}{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}} \tag{2.6}\\
& a_{5}=\frac{\left(x_{1}-x_{3}\right)\left(x_{5}-x_{7}\right)-\left(x_{0}-x_{2}\right)\left(x_{4}-x_{6}\right)}{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}} \\
& a_{6}=-\frac{\left(x_{1}-x_{3}\right)\left(x_{4}-x_{6}\right)+\left(x_{0}-x_{2}\right)\left(x_{5}-x_{7}\right)}{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}} \\
& a_{7}=-\frac{\left(x_{1}-x_{3}\right)\left(x_{5}-x_{7}\right)-\left(x_{0}-x_{2}\right)\left(x_{4}-x_{6}\right)}{\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}}
\end{align*}
$$

We verify only that (2.6) satisfies the first equation of System (2.5). The rest of verifications can be done similarly. Let $A=x_{0}-x_{2}, B=x_{1}-x_{3}, C=$ $x_{4}-x_{6}, D=x_{5}-x_{7}$, and $E=A^{2}+B^{2}+C^{2}+D^{2}$. Then $a_{4}=-a_{6}=\frac{B C+A D}{E}$ and $a_{5}=-a_{7}=\frac{B D-A C}{E}$. Substituting (2.6) into the left side of the first equation in System (2.5) and then simplifying, we obtain the following.

$$
\begin{aligned}
& \frac{1}{E}\left(x_{3}\left(A^{2}+B^{2}\right)+x_{1}\left(C^{2}+D^{2}\right)-\left(x_{4}-x_{6}\right)(B C+A D)-\left(x_{5}-x_{7}\right)(B D-A C)\right) \\
& =\frac{1}{E}\left(x_{3}\left(A^{2}+B^{2}\right)+x_{1}\left(C^{2}+D^{2}\right)-C(B C+A D)-D(B D-A C)\right) \\
& =\frac{1}{E}\left(x_{3}\left(A^{2}+B^{2}\right)+x_{1}\left(C^{2}+D^{2}\right)-B C^{2}-B D^{2}\right) \\
& =\frac{1}{E}\left(x_{3}\left(A^{2}+B^{2}\right)+\left(x_{1}-B\right)\left(C^{2}+D^{2}\right)=x_{3}\right.
\end{aligned}
$$

which is equal to the right side of the first equation in System (2.5). This completes our verification.

We claim that all a_{i} given in (2.6) are, in fact, in R. We need only check that $a_{i} \in R$ for $i \in\{1,3,4,5,6,7\}$. Since $\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-\right.$
$\left.x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2} \neq 0$, we know that at least one of $x_{0}-x_{2}, x_{1}-x_{3}, x_{4}-x_{6}$ and $x_{5}-x_{7}$ is not zero. If $x_{i}-x_{i+2} \neq 0$ for some $i \in\{0,1,4,5\}$, then $x_{i}-x_{i+2}=x^{n_{i}} u_{i}$, where $n_{i} \geq 0$ is an integer and u_{i} is invertible in R. Otherwise, write $x_{i}-x_{i+2}=x^{n_{i}} u_{i}$, where $u_{i}=0$ and $n_{i} \in \mathbb{Z}$ can be chosen as large as we want. Define $n=\min \left\{n_{0}, n_{1}, n_{4}, n_{5}\right\}=\min \left\{n_{i} \mid x_{i}-x_{i+2} \neq\right.$ $0\}$. Then $a_{4}=\frac{x^{n_{1}+n_{4}-2 n} u_{1} u_{4}+x^{n} 0+n_{5}-2 n u_{0} u_{5}}{\left(x^{n} 0^{-n} u_{0}\right)^{2}+\left(x^{n_{1}-n} u_{1}\right)^{2}+\left(x^{n_{4}-n} u_{4}\right)^{2}+\left(x^{n_{5}-n} u_{5}\right)^{2}}$. We note that at least one of $\left(x^{n_{i}-n} u_{i}\right)^{2}$ is invertible, so it follows from observation (2) that $\left(x^{n_{0}-n} u_{0}\right)^{2}+\left(x^{n_{1}-n} u_{1}\right)^{2}+\left(x^{n_{4}-n} u_{4}\right)^{2}+\left(x^{n_{5}-n} u_{5}\right)^{2}$ is invertible in R. Therefore, $a_{4} \in R$ and hence $a_{6}=-a_{4} \in R$. Similarly, we can prove that $a_{i} \in R$ for $i \in\{1,3,5,7\}$. This completes the proof of Case 1.

Case 2. $\left(x_{0}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{4}-x_{6}\right)^{2}+\left(x_{5}-x_{7}\right)^{2}=0 . \quad$ By observation (1), we now have $x_{0}=x_{2}, x_{1}=x_{3}, x_{4}=x_{6}$, and $x_{5}=x_{7}$, so $\alpha=\left(x_{0}+x_{1} a+x_{4} b+x_{5} a b\right)\left(1+a^{2}\right)$ is a central element in $R Q_{8}$, and hence $\alpha a=a \alpha \in L$.

We have just proved that $\alpha a \in L$. Since elements a and b are symmetric in Q_{8}, by using a symmetric argument we can easily show that $\alpha b \in L$. Therefore, L is an ideal, and thus $R Q_{8}$ is duo.

Remark 2.7. We note that the ring R in Proposition 2.6 is a principal local integral domain such that $R Q_{8}$ is duo. However, for any prime $p, \mathbb{Z}_{(p)}$ the localization of \mathbb{Z} at the ideal generated by p, is a principal local integral domain, but $\mathbb{Z}_{(p)} Q_{8}$ is not duo.

Let G be a non-abelian torsion group and R be a commutative ring with identity. If $R G$ is duo, then as mentioned before, $R G$ is reversible, so it follows from [3] that $G=Q_{8} \times E_{2} \times E_{2}^{\prime}$ is a Hamiltonian group, where E_{2} is an elementary abelian 2 -group, and E_{2}^{\prime} is an abelian group all of whose elements are of odd order. Since $R G=\left(R Q_{8}\right)\left(E_{2} \times E_{2}^{\prime}\right)$ can be regarded as a group ring over the ring $R Q_{8}$, the coefficient ring $R Q_{8}$ is an homomorphic image of $R G$ under the standard augmentation mapping [6]. As a homomorphic image of a duo ring $R G, R Q_{8}$ is clearly duo.

Remark 2.8. Let G be a non-abelian torsion group and R be a commutative ring with identity. If $R G$ is duo, then $R Q_{8}$ is also duo.

We note that it follows from Theorem 2.4 and [1, Theorem 3.1] that if R is an integral domain with $\operatorname{char}(R) \neq 0$, then $R Q_{8}$ is duo if and only if R is a field of $\operatorname{char}(R)=2$ and $1+x+x^{2} \in \mathcal{U}(R)$ for all $x \in R$. If $\operatorname{char}(R)=0$, a necessary condition for $R Q_{8}$ to be duo is given in Corollary 2.3, i.e. $1+x^{2}+y^{2} \in \mathcal{U}(R)$ for all $x, y \in R$. We are not aware of any example of an integral domain R of $\operatorname{char}(R)=0$ satisfying this necessary condition for which $R Q_{8}$ is not duo. We close this paper by proposing the following question.

Question 2.9. Assume that R is an integral domain of $\operatorname{char}(R)=0$ such that $1+x^{2}+y^{2} \in \mathcal{U}(R)$ for all $x, y \in R$. Is $R Q_{8}$ duo?

References

[1] H. Bell and Y. Li, Duo group rings, J. Pure Appl. Algebra, 209 (2007), 833-838.
[2] M. Gutan and A. Kisielewicz, Reversible group rings, J. Algebra 279 (2004), 280-291.
[3] Y. Li and M.M. Parmenter, Reversible group rings over commutative rings, Comm. Algebra 35 (2007), 4096-4104.
[4] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311 318.
[5] I. Niven, H.S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, Fifth edition, John Wiley \& Sons, Inc., New York, 1991.
[6] C. Polcino Milies and S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.

[^0]: ${ }^{1}$ The first author was supported in part by the Natural Science Foundation of China and the second author was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

