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Abstract

In this paper we study sequence structure relations of RNA. As structures we consider RNA pseudoknot
structures with at most two mutually crossing bonds. These structures are folded by a novel, ab initio prediction
algorithm cross. After giving some background on RNA pseudoknot structures we present various, statistical results
on the mapping from RNA sequences of length 76 into 3-noncrossing RNA structures. We study properties, like
the fraction of pseudoknotted structures, dominant shapes, neutral walks, neutral neighbors and local connectivity,
which are of particular interest in the context of molecular evolution of RNA.

1 Background
Three decades ago Michael Waterman pioneered
the combinatorics and ab initio prediction of the
then rather exotic ribunucleic acid (RNA) secondary
structures [1–5]. The motivation for this work
was coming from a fundamental dichotomy repre-
sented by RNA. On the one hand RNA is described
by its primary sequence, a linear string composed
by the nucleotides A, G, U and C. The primary
sequence embodies the genotypic legislative. On
the other hand, RNA, being less structurally con-
strained than its chemical relative DNA, does fold
into 3D-structures, representing phenotypic execu-
tive. Therefore one molecule stands for both geno-
and phenotype.

A vast variety of RNA activities was found: the
discovery of catalytic RNAs, or ribozymes, in 1981
proved that RNA could catalyze reactions just as
proteins. RNA can act also as a messenger between
DNA and protein in form of transfer RNA. The re-
alization that RNA combines features of proteins

and DNA led to the ”RNA world” hypothesis for
the origin of life. The idea was that DNA and the
much more versatile proteins took over RNA’s func-
tions in the transition from the ”RNA-world” to the
“DNA/protein-world”.

Let us have a closer look at RNA phenotypes.
RNA molecules form “helical” structures by pairing
their nucleotides and thereby lowering their mini-
mum free energy (mfe). Originally, these bonds were
subject to strict combinatorial constraints, for in-
stance “noncrossing” in RNA secondary structures.
It is wellknown, however, that RNA structures are
far more complex than secondary structures. One
particularly prominent feature is the existence of
cross-serial dependencies [6], that is crossing arcs
or pseudoknots, see Fig. ??. In fact, RNA pseu-
doknots are “everywhere”. They occur in functional
RNA, like for instance RNAseP [7] as well as ribo-
somal RNA [8]. They are conserved in the catalytic
core of group I introns, in plant viral RNAs pseu-
doknots mimic tRNA structure and in in vitro RNA
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evolution [9] experiments have produced families of
RNA structures with pseudoknot motifs, when bind-
ing HIV-1 reverse transcriptase. Important mech-
anisms like ribosomal frame shifting [10] also in-
volve pseudoknot interactions. For prediction algo-
rithms the implications of cross-serial dependencies
are severe–they imply a higher level of formal lan-
guage: context-sensitive. In general, on this level
of formal languages it is not clear whether polyno-
mial time ab initio folding algorithms exist. Indeed,
Lyngso et.al. [11] showed that “reasonable” classes
of RNA pseudoknots require exponential time algo-
rithms. There exist however, polynomial time fold-
ing algorithms, capable of the energy based predic-
tion of certain pseudoknots: Rivas et.al. [12], Ue-
mura et.al. [?], Akutsu [13] and Lyngso [11].

In analogy to RNA secondary structures, in or-
der to analyze RNA structure with pseudoknots,
key combinatorial properties have to be identified.
Without such a specification one would arrive at an
impossibly large configuration space. It turned out
that the notion of k-noncrossing diagrams [14] is of
importance in order to arrive at such an output-
class. A diagram is a graph over the vertex set
[n] = {1, . . . , n} with vertex degrees less or equal
to one, represented by drawing its vertices in a hor-
izontal line and its arcs (i, j), where i < j, in the
upper half-plane. The vertices and arcs correspond
to nucleotides and Watson-Crick (A-U, G-C) and
(U-G) base pairs, respectively. A diagram is k-
noncrossing if it contains at most k − 1 mutually
crossing arcs. Diagrams have the following three
key parameters: the maximum number of mutually
crossing arcs, k− 1, the minimum arc-length, λ and
minimum stack-length, τ . The length of an arc (i, j)
is j− i and a stack of length τ is a sequence of “par-
allel” arcs of the form

((i, j), (i + 1, j − 1), . . . , (i + (τ − 1), j − (τ − 1))),

see Fig. ??. We call an arc of length λ a λ-arc.
Biophysical constraints on the base pairings imply
that in all RNA structures λ is greater or equal
to four. We call diagrams with a minimum stack-
length τ , τ -canonical and if λ ≥ 4 we refer to di-
agrams as structures. To reiterate, in the simplest
case we have 2-noncrossing RNA structures, i.e. the
secondary structures in which no two arcs cross, see
Fig. ??. The noncrossing of arcs has far-reaching
consequences. It implies that RNA secondary struc-
tures form a context free language and allow for
the dynamic programming algorithms [15], predict-

ing the loop-based mfe secondary structure in O(n3)-
time and O(n2)-space.

Let us now, having some background on RNA
structures return to the RNA-world. Around
1990 Peter Schuster and his coworkers initiated a
paradigm shift. They began to study evolutionary
optimization and neutral evolution of RNA via the
relation between RNA genotypes and phenotypes.
The particular mapping from RNA sequences into
RNA secondary structures was obtained by the al-
gorithm ViennaRNA [16], an implementation of the
folding routine [17, 18], mentioned above. Two par-
ticularly prominent results of this line of work were
the existence of neutral networks, i.e. vast extended
networks composed by sequences folding into a given
secondary structure [19] and the Intersection The-
orem [19]. The latter guarentees for any two sec-
ondary structures the existence of at least one se-
quence which simultaneously satisfies all constraints
imposed by their Watson-Crick and G-U base pairs.
For the implication of the latter with respect to
molecular switches, see [20]. It became evident that
the “statistical” properties of this mapping played a
central role in the molecular evolution of RNA.

Two discoveries suggested that RNA might not
just be a stepping stone towards a DNA/protein
world. They show that RNA plays an active role
in vital cell processes. Large numbers of very small
RNAs of about 22 nucleotides in length, called
microRNAs (miRNAs), were discovered. They
were found in organisms as diverse as the worm
Caenorhabditis elegans and humans, and their par-
ticular relationship to certain intermediates in RNA
interference (RNAi). This findings have put RNA–
in particular noncoding RNA–into the spotlight. In
addition, RNA’s conformational versatility and cat-
alytic abilities have been identified in the context
of protein synthesis and RNA splicing and at more
and more paralles between RNA and protein are cur-
rently revealed [21].

In this paper sequence structure relations of RNA
pseudoknot structures will be studied. Let us briefly
overview what we know about the combinatorics of
our phenotypes, ultimatively allowing to enumerate
biophysically relevant pseudoknot structures [22].
The key result comes from a seemingly unrelated
field, the combinatorics of partitions. Chen et al.
proved in a seminal paper [23] a bijection between
walks in Weyl chambers and k-noncrossing parti-
tions. This bijection has recently been generalized
to tangled diagrams [24]. Now, a k-noncrossing di-
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agram is a special type of k-noncrossing tangle and
the relevance of Chen’s result lies in the fact that
the walks in question can be enumerated via the re-
flection principle. In fact, via the reflection princi-
ple it was possible to compute the generating func-
tion of k-noncrossing and k-noncrossing canonical
pseudoknot RNA [?, 14, 22]. Subsequent singularity
analysis, [?, 22] showed that the exponential growth
rates of canonical pseudoknot RNA are surprisingly
small, see Tab. 4.12. For instance, the number of
3-noncrossing, 3-canonical RNA structures with arc-
length greater of equal than four is asymptotically
given by

c n−5 2.0348n,

where c is some (exlicitly known) constant. This ex-
ponential growth rate is very close to Schuster et al.’s
finding [25] for 2-canonical RNA secondary struc-
tures with arc-length greater of equal than four

1.4848 n−3/2 1.8444n. (1)

For the analysis presented here, we use the al-
gorithm cross [26], which which produces a trans-
parent output. This algorithm does not follow the
dynamic programming paradigm, generating the mfe
k-noncrossing τ -canonical structure via a combina-
tion of branch and bound, as well as dynamic pro-
gramming techniques. cross inductively constructs
k-noncrossing, τ -canonical RNA structures via mo-
tifs. Currently full loop-based energy models are de-
rived and implememted for k = 3 and τ ≥ 3. There-
fore cross finds the mfe RNA pseudoknot structure in
which there are at most two mutually crossing arcs,
which has minimum arc-length four and in which
each stack has size at least 3. While cross is an ex-
ponential time algorithm it allows to fold sequences
of length 100 within a few minutes.

2 Some basic facts
While it is beyond the scope of this paper to present
the algorithm cross in detail, we shall discuss some
basic properties of RNA pseudoknot structures. The
properties in question show that we can indeed as-
sign a unique, loop-based energy to an RNA pseudo-
knot structure. In addition, we show that an RNA
pseudoknot structure can be constructed via sim-
pler substructures. The latter are in fact the build-
ing blocks via which cross constructs the mfe RNA
pseudoknot structure.

2.1 Loops
We shall begin by introducing loops of 3-noncrossing
RNA structures. Loops are not only the basic build-
ing block for the mfe-evaluation but also of impor-
tance for the coarse grained notion of pseudoknot-
shapes, discussed in Subsection 3.2. Let ≺ denote
the following partial order over the arcs (written as
(i, j), i < j) of a k-noncrossing diagram

(i1, j2) ≺ (i2, j2) ⇐⇒ i2 < i1 ∧ j1 < j2 . (2)

Let α be an arc in the 3-noncrossing RNA structure,
S and denote by AS(α) the set of S-arcs that cross β.
Clearly we have β ∈ AS(α) if and only if α ∈ AS(β).
An arc α ∈ AS(β) is called a minimal, β-crossing arc
if there exists no α′ ∈ AS(β) such that α′ ≺ α.

Let [i, j] denotes the sequence (i, i + 1, . . . , j −
1, j). It is shown in [27] that any 3-noncrossing RNA
structure can be uniquely decomposed into the fol-
lowing four loop-types:

(1) a hairpin-loop is a pair

((i, j), [i + 1, j − 1])

where (i, j) is an arc.

(2) an interior-loop is a sequence

((i1, j1), [i1 + 1, i2 − 1], (i2, j2), [j2 + 1, j1 − 1]),

where (i2, j2) is nested in (i1, j1).

(3) a multi-loop, see Fig. ??, is a sequence

((i1, j1), [i1 + 1, ω1 − 1], Sτ1
ω1

, [τ1 + 1, ω2 − 1], Sτ2
ω2

, . . .)

where Sτh
ωh

denotes a pseudoknot structure over
[ωh, τh] (i.e. nested in (i1, j1)) and subject to the
following condition: if all Sτh

ωh
= (ωh, τh), i.e. all

substructures are simply arcs, for all h, then h ≥ 2.

(4) a pseudoknot-loop, see Fig. ??, consisting of
the following data:
(P1) a set of arcs

P = {(i1, j1), (i2, j2), . . . , (it, jt)} ,

where i1 = min{is} and jt = max{js}, such that
(i) the diagram induced by the arc-set P is irre-
ducible, i.e. the line-graph of P is connected and
(ii) for each (is, js) ∈ P there exists some arc β (not
necessarily contained in P ) such that (is, js) is min-
imal β-crossing.
(P2) all vertices i1 < r < jt, not contained in hair-
pin, interior- or multi-loops.
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2.2 Decomposition

In this section we give a result of [27] which shows
that each 3-noncrossing RNA structure can uniquely
be constructed by simpler substructures. Further-
more we show that each 3-noncrossing RNA struc-
ture has a unique loop decomposition–the basis of
our energy evaluation.

The building blocks of RNA pseudoknot struc-
tures are obtained in two steps. First one considers
motifs and then one builds their shadows. In order to
understand motifs we recall the notion of a core [?].
A k-noncrossing core is a k-noncrossing diagram in
which all stacks have size one. The core of a struc-
ture S, denoted by c(S), is obtained by identifying
all S-stacks with a single arc, keeping the unpaired
nucleotides and finally relabeling the diagram, see
Fig. ??. A 〈k, τ〉-motif, m, is a 〈k, τ〉-diagram over
[n], having the following properties
(M1) m has a nonnesting core
(M2) all m-arcs are contained in stacks of length ex-
actly τ ≥ 3 and length λ ≥ 4.
A m-shadow, denoted by m, is a k-noncrossing dia-
gram obtained by successively increasing the stacks
of m from top to bottom.

Theorem. Suppose k ≥ 2, τ ≥ 3.
(a) Any k-noncrossing, τ -canonical RNA structure
corresponds to an unique sequence of shadows.
(b) Any 〈3, τ〉-structure has an unique loop-
decomposition.

In Fig. ?? we show how these decompositions
work.

3 Minimum free energy RNA pseudo-
knot structures

In this section we give some statistics on pseudo-
knotted RNA structures as a function of the se-
quence length. In order to put our findings into con-
text we consider the following two variants of cross:
first, cross3, which generates the 3-noncrossing, 3-
canonical mfe structure and second, cross4, which
produces the 3-noncrossing, 4-canonical mfe struc-
ture.

3.1 The fraction of pseudoknots

In this section we compute the fraction of RNA
structures with pseudoknot-loops within all struc-
tures for cross3 and cross4. Fig. ?? displays the frac-
tion of structures with pseudoknots as a function of

sequence length.

3.2 Pseudoknot-shapes
Next we study which are the dominant pseudoknot
“shapes” as the sequence length n increases. for this
purpose we introduce some suitable notion of shape
based on the notion of k-noncrossing cores [?]. The
shape of a structure S, is a subset of c(S)-arcs, in-
duced by all arcs either contained in pseudoknot-
loops or arcs contained in multi-loops which con-
tain nested pseudoknot-loops. In other words, the
pseudoknot-shape contains all pseudoknot arcs and
all arcs affecting the energy of pseudoknot-loops, see
Fig. ??. In Fig. ?? we display for cross3 and cross4
the dominant types for increasing n.

3.3 Stack-statistics in pseudoknot RNA
It is wellknown that large stacks contribute to a low
mfe of a structure. In this section we relate the
distribution of stacks in random structures to the
distribution of stacks in mfe-pseudoknot structures
generated by cross. This provides insight in what
particular spectrum of pseudoknot structures cross
produces. In order to assure generic findings we con-
sider the variants of cross3 and cross4.

Let us first discuss the distribution of stacks in
random pseudoknot structures. The naive approach
would be to generate a random structure and count
the number of stacks. However, it is at present time
not known how to construct a random pseudoknot
structure with uniform probability, whence we have
to employ a different strategy. The key idea [28] is
to consider the bivariate generating function

Tk,τ (x, u) =
∑

n≥0

∑

0≤t≤n
2

Tk,τ (n, t)utxn (3)

where Tk,τ (n, t) denotes the number of k-
noncrossing, τ -canonical pseudoknot structures hav-
ing exactly t stacks. Interestingly Tk,τ (x, u) can be
computed using the cores introduced in Section 3.2.
The stack-distribution is now given by

P(Xn
k,τ = t) = Tk,τ (n, t)/Tk,τ (n) (4)

and via singularity analysis one can show that this
distribution becomes asymptotically normal with
mean µk,τ and variance σ2

k,τ given by

µk,τ = −γ′k,τ (0)
γk,τ (0)

(5)
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σ2
k,τ =

(
γ′k,τ (0)
γk,τ (0)

)2

− γ′′k,τ (0)
γk,τ (0)

. (6)

where γk,τ (u) is the unique dominant singularity pa-
rameterized by u = es. In Tab. 4.12 we display the
values µk,τ and σ2

k,τ for k = 2, 3, 4 and τ = 3, . . . , 7.
In Fig. ?? we present the stack distributions of crossk

and cross+5
k , respectively, obtained by folding 3000

structures by randomly selecting sequences. In ad-
dition we display also in Fig. ?? the stack distri-
bution of random 3-noncrossing and 4-noncrossing
structures obtained from Tab. 4.12

4 Neutrality and local connectivity
Tab. 4.12 contains nontrivial information about
the mapping from RNA sequences into their k-
noncrossing, canonical structures. To be precise,
Tab. 4.12, in combination with central limit theo-
rems for the number of arcs in k-noncrossing RNA
structures [29, 30] allow us to conclude that there
exist exponentially many k-noncrossing canonical
structures with exponentially large preimages. In-
deed, according to Tab. 4.12 the exponential growth
rate of the number of k-noncrossing canonical struc-
tures, 3 ≤ k ≤ 9 is strictly smaller than four–the
growth rate of the space of all sequences over the
natural alphabet. The central limit theorems for the
number of arcs of k-noncrossing, canonical pseudo-
knot structures show a mean of 0.4 n and a vari-
ance of XXX. We conclude from this that sequence
to structure maps in pseudoknot RNA structures
cannot be trivial, since the preimages of particu-
lar structures have exponential growth rates strictly
smaller than four. As a result the number of canon-
ical pseudoknot structures grows exponentially. Ac-
cordingly, a sequence to structure map in pseudo-
knot RNA necessarily generates exponentially many
canonical structures.

In light of this, the interesting question then be-
comes how the set of sequences folding into a given
structure is “organized” in sequence space. The
analysis presented in this section is analogous to the
investigations for RNA secondary structures [?, 31]
and can be viewed as a basic protocol of local statis-
tics of a gentotype-phenotype map. The only excep-
tion is Subsection 4.3, which elaborates on the novel
concept of local connectivity [32]. Exhaustive com-
putations of the set of all sequences over the natural
alphabet with fixed pseudoknot structure for n > 40
is at present time impossible. In order to put the

genericity of our results into context, we perform the
analysis for crossk where k = 3, 4 as well as cross+k
(5% increased pseudoknot loop-penalty).

4.1 Neutral walks
Let us consider a fixed RNA structure, S. Let fur-
thermore C[S] denote the set of S-compatible se-
quences, consisting of all sequences that have at any
two paired positions one of the 6 nucleotide pairs

(A,U), (U,A), (G,U), (U,G), (G,C), (C,G).

The structure S motivates to consider a new adja-
cency relation within C[S]. Indeed, we may reorga-
nize a sequence (x1, . . . , xn) into the pair

(
(u1, . . . , unu), (p1, . . . , pnp)

)
, (7)

where the uj denote the unpaired nucleotides and
the pj = (xi, xk) all base pairs, respectively, see Fig-
ure ??. We can then view vu = (u1, . . . , unu

) and
vp = (p1, . . . , pnp) as elements of the formal cubes
Qnu

4 and Q
np

6 , implying the new adjacency relation
for elements of C[S].

Accordingly, there are two types of compatible
neighbors in sequence space: u- and p-neighbors: a
u-neighbor has Hamming distance one and differs
exactly by a point mutation at an unpaired posi-
tion. Analogously a p-neighbor differs by a compat-
ible base pair-mutation, see Figures ??. Note how-
ever, that a p-neighbor has either Hamming distance
one ((G,C) 7→ (G,U))) or Hamming distance two
((G,C) 7→ (C,G))). We call a u- or a p-neighbor,
y, a compatible neighbor. If y is contained in the
neutral network we refer to y as a neutral neigh-
bor. This gives rise to consider the compatible- and
neutral distance, denoted by C(v, v′) and N(v, v′).
These are the minimum length of a C[S]-path and
path in the neutral network between v and v′, re-
spectively.

Our basic experiment is as follows: We select a
(random) sequence, v and fold it into the structure
S(v). We then proceed inductively: assume vi is con-
structed. We randomly select some neutral (compat-
ible) neighbor of vi, denoted by vi+1, subject to the
condition dH(v, vi+1) > dH(v, vi), where dH(x, y)
denotes the Hamming distance. If no such neighbor
exists we choose some vi+1 6= vi with the property
dH(v, vi+1) = dH(v, vi). If all neutral vi-neighbors
satisfy dH(v, vi+1) < dH(v, vi) we stop and output
the integer dH(v, vi). In Fig. ?? we give several data
on neutral walks for n = 76:
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4.2 Neutral neighbors

The neutral walk data of Subsection 4.1 are in ac-
cordance with the findings for RNA secondary struc-
tures. One can easily neutrally traverse sequence
space, suggesting the picture of a vast connected
network of neutral sequences. We can furthermore
conclude that our findings are robust since they hold
for all version of cross. The next question is to ob-
tain data on the actual number of neutral neighbors
during these walks, which we display in Fig. ?? for
our reference structures.

4.3 Local connectivity

The connectivity of a network or subgraph, Γn, of
an n-cube does not imply that a small Hamming
distance of two of its vertices guarantees a small dis-
tance in Γn. For neutral sequences this means that
two neutral sequences with Hamming distance less
than four, are possibly connected via a neutral path
of much greater length. Intuitively speaking, if Γn is
locally connected then the small Hamming distance
does imply a Γn-distance scaled by at most a factor
of ∆ > 0. Local connectivity does naturally arise
for random induced subgraphs of n-cubes, i.e. where
we select sequences with independent probability λn.
Then Γn is locally connected if and only if almost
surely (a.s.)

(†) ∃∆ > 0; dΓn(v, v′) ≤ ∆ dQn
2
(v, v′),

provided v, v′ are in Γn. We immediately observe
that, trivially, for any finite n such a ∆ exists. How-
ever, the key point is that (†) employs the notion
“almost surely”, i.e. it holds for arbitrary n. Ran-
dom graph theory [32] shows that on the one hand,
for λn smaller than nδ/

√
n, where δ > 0 is arbi-

trarily small, there exists a.s. no finite ∆ satisfying
(†). On the other hand, for λn larger or equal than
nδ/

√
n, there exists a.s. some finite ∆ satisfying (†).

Accordingly, there exists a threshold value for local
connectivity.

Suppose we are given a structure S and sequence
v, contained in its neutral network. Observing that
local connectivity refers to the two n-cubes Qnu

4

and Q
np

6 induced by S, see Fig. ??, we consider
the set of sequences in compatible distance two,
C2 = |{v′ | C(v, v′) = 2}|. We the proceed setting

DS(v) = |{v′ | C(v, v′) = 2, N(v, v′) = 4}|C−1
2

(8)

and call DS(v) the degree of local connectivity of S
at v. In other words, DS(v) is the fraction of locally
connected vertices of the compatible distance two
neighbors of v, that can be obtained via a neutral
path of length at most four.

It is apparent that local connectivity is vital for
molecular evolution and any type of evolutionary op-
timization. It has been shown in [32] that local con-
nectivity is a prerequisite for preserving any type of
sequence specific information. We perform the fol-
lowing experiment: along a neutral walk, see Subsec-
tion 4.1, we compute DS(vi) and in Fig. ?? we dis-
play the distribuation of DS of XXX neutral walks.

Conclusions
Acknowledgements
The thank absolutely noone.
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Figures
4.4 Figure 3–a 3-noncrossing pseudoknot structure
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Figure 1: Pseudoknot structure.

Figure 1–k-noncrossing diagrams

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) (b)

Figure 2: k-noncrossing diagrams: we display a 4-noncrossing, arc-length λ ≥ 4 and σ ≥ 1 (upper) and 3-noncrossing,
λ ≥ 4 and σ ≥ 2 (lower) diagram.
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3’end

5’end
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Figure 3: Secondary structure

4.5 Figure 2–a secondary structure
4.6 Figure 4–standard loops
4.7 Figure 5–pseudoknot loops
4.8 Figure 6–Cores
4.9 Figure 7–decomposition
4.10 Figure 7–PK-shapes
4.11 Figure 8–stack distribution
4.12 Figure 11–neutral neighbors

Tables
Table 1 - Exponential growth rates of k-noncrossing, τ -canonical RNA structures
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Figure 4: standard loop
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Figure 5: pseudoknot loop

k 3 4 5 6 7 8 9

τ = 3 2.0348 2.2644 2.4432 2.5932 2.7243 2.8414 2.9480

τ = 4 1.7898 1.9370 2.0488 2.1407 2.2198 2.2896 2.3523

τ = 5 1.6465 1.7532 1.8330 1.8979 1.9532 2.0016 2.0449

τ = 6 1.5515 1.6345 1.6960 1.7457 1.7877 1.8243 1.8569

τ = 7 1.4834 1.5510 1.6008 1.6408 1.6745 1.7038 1.7297

τ = 8 1.4319 1.4888 1.5305 1.5639 1.5919 1.6162 1.6376

τ = 9 1.3915 1.4405 1.4763 1.5049 1.5288 1.5494 1.5677

Exponential growth rates of 〈k, 4, σ〉-structures where σ ≥ 3.

Table 2 - Mean and variance of the number of stacks in pseudoknot RNA
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1 2 k+5k+3 k k+5k+3j j21 k

Figure 6: Cores

1 10 20 30 40 50

Figure 7: decomposiiton

k = 2 k = 3 k = 4
µ σ2 µ σ2 µ σ2

τ = 3 0.090323 0.0189975 0.115473 0.0086760 0.123509 0.0076977
τ = 4 0.071677 0.0131316 0.086554 0.0055685 0.091737 0.0049917
τ = 5 0.059591 0.0098165 0.069467 0.0039688 0.073166 0.0035769
τ = 6 0.051092 0.0077233 0.058149 0.0026885 0.060964 0.0027313
τ = 7 0.044774 0.0062991 0.050083 0.0017584 0.052319 0.0021788

Normal limit distributions of the random variable Xn
k,τ , for different k and τ . We list mean (µ) and

variance (σ2).
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s =4 s =5

Figure 9: The red curve is experiment, and blue curve is from theory.

13



y
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Figure 10: Neutral fraction distribution of sequences random sequences
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A B

C D

Figure 11: A. Neutral fraction distribution of sequences in tRNA path:B. Neutral fraction distribution of sequences
in a hairpin sequence path: C. Neutral fraction distribution of sequences in a interior sequence path: D. Neutral
fraction distribution of sequences in a hloop sequence path
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Figure 12: Distance distribution of
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Figure 13: Black.Peudoknot fraction distribution of σ = 3 Red.Peudoknot fraction distribution of σ = 4
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Figure 14: Deriving the two subcubes Qnu
4 and Q

np

6 : a structure gives rise to rearrange its compatible sequences
into unpaired and paired segment. The former is a sequence over the original alphabet A, U, G, C and for the latter
we derive a sequence over the alphabet of base pairs, (A,U), (U,A), (G,U), (U,G), (G,C), (C,G) .

Figure 15: Compatible neighbors in sequence space: diagram representation of an RNA structure (upper right) and
its induced compatible neighbors in sequence space (lower left). Note that each base pair gives rise to 5 compatible
neighbors exactly one of which is in Hammimg distance one.
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