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It is known that proper and q-proper hypergeometric identities can
be certified by checking a finite number, say n1, of initial values.
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polynomialmatrix,we give a newmethod to estimate n1. Examples
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previous results.
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1. Introduction

It was Zeilberger (1981, 1982) who first realized that it is possible to prove hypergeometric iden-
tities by numerical verifications. His original idea was to contend that one can verify an identity by
checking it for only a finite number of cases, say for n ≤ n1. Here we adopt the notion n1 as used
originally by Yen (1996a). Of course, for a given integer n, the identity is immediately verified, so
the question is to find an upper bound of n1. The existence of n1 had been established by Yen (1993,
1996a), in which she gave the first a priori estimates of n1 for hypergeometric identities. However her
estimates are too large to be practical-sized computations (Petkovsek et al., 1996). She also gave the
estimates of n1 for q-hypergeometric identities in (Yen, 1996b), whichwas later spectacularly reduced
by Zhang and Li (2003) and Zhang (2003). Our goal is to derive sharper bounds so that the verifications
become feasible compared with the previous estimations.
First of all, let us recall the definitions of hypergeometric terms and proper hypergeometric terms.

As usual, we denote the set of integers and rational numbers by Z andQ, respectively. Let K be a field
of characteristic zero. A function f from D ⊆ Z to K is called a hypergeometric term if there exists a
rational function r(x) of x over K such that f (n + 1)/f (n) = r(n) for all integers n ∈ D. Similarly, a
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bivariate function F from D ⊆ Z2 to K is called a (bivariate) hypergeometric term if F(n+ 1, k)/F(n, k)
and F(n, k+ 1)/F(n, k) are both bivariate rational functions over K . For our purpose, we focus on the
(bivariate) proper hypergeometric terms over Qwhich can be written in the form

F(n, k) = P(n, k)

uu∏
i=1
(ci)ain+bik

vv∏
i=1
(wi)uin+vik

xk,

where P(n, k) is a bivariate polynomial over Q, uu and vv are specific non-negative integers,
ai, bi, ui, vi ∈ Z, ci, wi, x ∈ Q and (a)k = a(a + 1) · · · (a + k − 1) denotes the raising factorial.
Moreover, we require that F(n, k) does not depend on other parameters.
Nowwe are ready to summarize the idea of estimating n1. Suppose thatwe aim to prove an identity

of the form∑
k

F(n, k) = f (n), n ≥ n0, (1)

where n0 is an integer, F(n, k) is a proper hypergeometric term over Q, and f (n) is a hypergeometric
term.
It is well known (e.g. Petkovsek et al. (1996)) that any proper hypergeometric term F(n, k) satisfies

a non-trivial telescoped recurrence:
L∑
i=0

ai(n)F(n+ i, k) = R(n, k+ 1)F(n, k+ 1)− R(n, k)F(n, k), (2)

where L is a non-negative integer, the ai(n)’s are (not all zero) polynomials depending only on n and
R(n, k) is a bivariate rational function over K . Suppose that F(n, k) has finitely supports, i.e., for each
n ∈ Z, there are only finitely many k ∈ Z such that F(n, k) 6= 0. Then summing over k on both sides
of (2), we obtain that S(n) =

∑
k F(n, k) satisfies a non-trivial linear recurrence with polynomial

coefficients ai(n):
L∑
i=0

ai(n)S(n+ i) = 0, n ≥ n0. (3)

If aL(n) 6= 0 when n > na, we have

S(n+ L) = −
1
aL(n)

L−1∑
i=0

ai(n)S(n+ i), for all n ≥ n′a = max{na + 1, n0}.

Then S(n) is completely determined by its initial values: S(n0), S(n0 + 1), . . . , S(n′a + L − 1). Once
proving that f (n) satisfies the same recurrence and S(n) agrees with f (n) on these initial values, we
immediately have S(n) = f (n) for all n ≥ n0.
To verify that f (n) and S(n) satisfy the same recurrence is to show that

∑L
i=0 ai(n)f (n+ i) = 0, or

equally

R(n) =
L∑
i=0

ai(n)
f (n+ i)
f (n)

= 0.

Notice that R(n) is a rational function of n, as f (n) is hypergeometric. Suppose that the degree of the
numerator polynomial of R(n) is less than or equal to nf . Then R(n) is identical to 0 if and only if
R(n) = 0 holds for n = n0, n0 + 1, . . . , n0 + nf , which can be verified by checking that S(n) = f (n)
for n = n0, . . . , n0 + nf + L.
Now let n1 = max{n′a + L− 1, n0 + nf + L}, then we can safely claim that identity (1) holds for all

n ≥ n0 if and only if it holds for n = n0, . . . , n1.
Among the above three numbers L, na and nf , na is the most difficult to estimate and in most cases

the largest. Yen used the followingmethod to estimate na. First use Sister Celine’smethod (Fasenmyer,
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1945) to obtain a system of linear equations in some unknowns related to the ai(n)’s, then apply
Cramer’s rule to the system formally and thus get estimates for the degree d and the largest absolute
valuem of the coefficients of ai(n) (usually called the height), finally takemd as na by Proposition 3.6
in Yen (1996a).
Different from Yen’s method, we use the techniques given by Mohammed and Zeilberger (2005)

rather than Sister Celine’s method. The resulting system of linear equations is directly in the
unknowns a0(n), . . . , aL(n) and is of smaller size. In addition, we dig out more information from the
concrete linear equations so that the estimates for the height become more accurate. This method
sharply reduces the estimates of n1 for hypergeometric identities, and is also applicable to the
q-hypergeometric cases.
Now we take a simple example to illustrate our method. Let us consider the identity∑

k

k
(
n
k

)
= n2n−1, n ≥ 0.

By the Theorem in Mohammed and Zeilberger (2005), there exist polynomials a0(n), a1(n), x0(n),
x1(n) such that

a0(n)F(n, k)+ a1(n)F(n+ 1, k)− G(n, k+ 1)+ G(n, k) = 0, n ≥ 0,

where G(n, k) = (x0(n) + x1(n)k)
( n
k−1

)
. Simplifying the above equation and equating to zero the

coefficients of each power of k, we get the following system of linear equations after eliminating the
common factor−(n+ 1) in the third equation.

[ 1 0 0 −2
n+ 1 n+ 1 2 −n
0 0 1 1

]
·

a0(n)a1(n)
x0(n)
x1(n)

 = 0.
By Cramer’s rule, we know that

[a0(n), a1(n), x0(n), x1(n)]T

=

[∣∣∣∣∣ 2 0 0
n n+ 1 2
−1 0 1

∣∣∣∣∣ ,
∣∣∣∣∣ 1 2 0
n+ 1 n 2
0 −1 1

∣∣∣∣∣ ,
∣∣∣∣∣ 1 0 2
n+ 1 n+ 1 n
0 0 −1

∣∣∣∣∣ ,
∣∣∣∣∣ 1 0 0
n+ 1 n+ 1 2
0 0 1

∣∣∣∣∣
]T

is a non-trivial solution to the above system. Instead of computing these determinants, we estimate
their degrees and heights using only the degree and the height of each entry. Theorem 4 tells us that
deg(ai(n)) ≤ 1, i = 0, 1 and their heights are less than or equal to 5 (in fact a0(n) = 2n + 2 and
a1(n) = −n). Noting that the ai(n)’s are polynomialswith integer coefficients, Lemma1will guarantee
that taking na = 5 is large enough. Noting further that nf = 2 and L = 1, we finally get n1 = 6.
This article is organized as follows. We first prove some basic properties on the degree and the

height of polynomials and polynomial determinants. Next we provide an algorithm for computing
the upper bounds on the degree and the height of the polynomial solution to a system of linear
equations. Then we describe the new method of estimating n1 for hypergeometric identities. Finally,
the q-analogue is discussed.

2. The degree and the height of polynomials

For polynomials with integer coefficients, we have the following lemma by the polynomial
remainder theorem.

Lemma 1. Let P(x) = anxn + an−1xn−1 + · · · + atxt ∈ Z[x] be a polynomial in x and n ≥ t, at 6= 0. If x0
is a non-zero integer root of P(x), then x0|at . Consequently, for any integer x > |at |, P(x) 6= 0.
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Recall that the largest absolute value of the coefficients of a polynomial P is called the height of P ,
denoted by |P|. Then Lemma 1 states that wemay take na = |aL(n)| provided that aL(n) ∈ Z[n]. On the
other hand, the estimate of nf depends on the degrees of the ai(n)’s. Therefore, we firstly introduce
some properties of the degree and the height of polynomials. We denote the degree of a polynomial
P(x) by deg(P) and define deg(0) = −∞.

Lemma 2. Let K be a field of characteristic zero and P1, P2, . . . , Pn ∈ K [x] be polynomials in x with
degrees d1, d2, . . . , dn, respectively. Then

(1) deg(P1 + P2 + · · · + Pn) ≤ max{d1, d2, . . . , dn};
(2) deg(P1P2 · · · Pn) = d1 + d2 + · · · + dn.

Suppose further that K is a subfield of C, the field of complex numbers, and the heights of P1, . . . , Pn are
h1, . . . , hn, respectively. Then

(3) |P1 + P2 + · · · + Pn| ≤ h1 + h2 + · · · + hn;
(4) |P1P2 · · · Pn| ≤

∏n−1
i=1 (min{

∑i
j=1 dj, di+1} + 1) ·

∏n
i=1 hi.

Proof. The first three assertions are obvious, we thereby only prove the fourth.
First, let us consider the case of n = 2. Suppose that P1 =

∑d1
i=0 aix

i and P2 =
∑d2
j=0 bjx

j. Then
P1P2 =

∑d1+d2
k=0 ckxk with ck =

∑
i+j=k aibj. Noting that in the expression of ck, the number of terms in

the summation is not greater thanmin{d1, d2}+1, we have, for each k, |ck| ≤ (min{d1, d2} + 1) h1h2.
Thus,

|P1P2| = max
0≤k≤d1+d2

{|ck|} ≤ (min{d1, d2} + 1) h1h2.

The conclusion follows immediately by induction on n. �

Denote byH the right-hand side of the inequality in assertion (4) of Lemma 2. Note thatH depends
on the order of Pi’s degrees, while |P1P2 · · · Pn| is free of that order. With d1, . . . , dn fixed, for any
permutation π of {1, 2, . . . , n}, let Hπ = Dπ ·

∏n
i=1 hi, where

Dπ =
n−1∏
i=1

(
min

{ i∑
j=1

dπ(j), dπ(i+1)

}
+ 1

)
.

Clearly, the minimum of Hπ among all the permutations will be large enough to be an upper bound
of |P1P2 · · · Pn|. The following lemma tells how to obtain the minimum.

Lemma 3. Given non-negative integers d1, . . . , dn, Dπ is minimal when dπ(1) ≥ dπ(2) ≥ · · · ≥ dπ(n).

Proof. Suppose that there exist two consecutive terms di and di+1 with di < di+1. Consider the
identical permutation 1 and the transposition τ = (i, i + 1). By definition, we have D1 =

∏n−1
j=1 bj,

where

b1 = min{d1, d2} + 1,
...

bi−1 = min{d1 + d2 + · · · + di−1, di} + 1,
bi = min{d1 + d2 + · · · + di, di+1} + 1,
...

bn−1 = min{d1 + d2 + · · · + dn−1, dn} + 1.

Similarly, we have Dτ =
∏n−1
j=1 b

′

j with b
′

j = bj except for the following two terms:

b′i−1 = min{d1 + d2 + · · · + di−1, di+1} + 1,

b′i = min{d1 + d2 + · · · + di−1 + di+1, di} + 1 = di + 1.
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There are three cases:
Case 1. If d1 + d2 + · · · + di−1 ≤ di < di+1, then

bi−1 = b′i−1 = d1 + d2 + · · · + di−1 + 1

and

bi ≥ min{di, di+1} + 1 = di + 1 = b′i.

Thus we have D1 ≥ Dτ .
Case 2. If di < d1 + d2 + · · · + di−1 ≤ di+1, then bi−1 = b′i = di + 1 and

bi ≥ min{d1 + d2 + · · · + di−1, di+1} + 1 = b′i−1.

We also have D1 ≥ Dτ .
Case 3. If di < di+1 < d1 + d2 + · · · + di−1, then

bi−1 = b′i = di + 1 and bi = b′i−1 = di+1 + 1,

implying that D1 = Dτ .
Summarizing, Dπ will not increase if we exchange two consecutive ascend terms. Therefore, Dπ is

minimal when dπ(1) ≥ dπ(2) ≥ · · · ≥ dπ(n). �

As a simple example, let P1(x) = x + 1, P2(x) = x2 + 2, P3(x) = x3 + 1. Then d1 = 1, d2 = 2,
d3 = 3 and hence D123 = D213 = 8, D132 = D312 = D321 = D231 = 6. We see that D321 is minimal in
the set {Dπ }.
Denote the minimum of Hπ by minh(P1, . . . , Pn), where π runs over all permutations. Combining

Lemmas 2 and 3, we derive upper bounds on the degree and the height of a determinantwhose entries
are polynomials.

Theorem 4. Let K be a field of characteristic zero and M = [pij(x)]n×n be a matrix whose entries
are polynomials in K [x]. Then det(M) is also a polynomial in K [x]. Denote the set of permutations of
{1, 2, . . . , n} by Sn. Then the degree of det(M) is bounded by

deg(det(M)) ≤ max{d1,π(1) + d2,π(2) + · · · + dn,π(n) |π ∈ Sn} , D(M), (4)

where di,j = deg(pij(x)). Suppose further that K ⊆ C. Then the height of det(M) is bounded by

| det(M)| ≤
∑
π∈Sn

minh
(
p1,π(1)(x), p2,π(2)(x), . . . , pn,π(n)(x)

)
, H(M). (5)

For example, let

M = [pij(x)]3×3 =

[ 1 0 −2
x+ 1 −x 2
0 1 1

]
.

We have

max{d1,π(1) + d2,π(2) + d3,π(3) |π ∈ S3} = 1,∑
π∈S3

minh
(
p1,π(1)(x), p2,π(2)(x), p3,π(3)(x)

)
= 5.

In fact, we have det(M) = −3x − 4, whose degree and height are 1 and 4, respectively. Clearly,
inequalities (4) and (5) hold.
Note that D(M) depends only on the degrees of the entries and H(M) depends on the degrees

and the heights of the entries. Therefore, we need only play with numbers to obtain these two upper
bounds, which makes the computation faster than calculating det(M) explicitly. However, since we
need to run over all permutations in the computation, it becomes slow when the order ofM is large.
To get rid of that, we may consider a larger degree bound

D ′(M) =
n∑
i=1

max{di,1, . . . , di,n}.
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3. The degree-height bound algorithm

Let D be an integral domain andM ∈ Dl×m an l×m (l < m) matrix of rank ρ. We refine Yen’s idea
in Yen (1996a) to find a non-trivial solution to the system of linear equationsMx = 0, where x is the
column vector [x1, x2, . . . , xm]T.

1. Permute the rows and columns of M , so that the submatrix M̃ formed by the first ρ rows and the
first ρ columns is of rank ρ. Meanwhile, permute the unknowns xj’s accordingly to the column
permutation. Denote the new system byM ′x′ = 0.

2. Let y be the column vector formed by the first ρ rows of the (ρ + 1)th column of M ′ and let
x̃ = [x′1, . . . , x

′
ρ]
T. We now consider the inhomogeneous linear system M̃x̃ = −y.

3. Let M̃i be the matrix obtained by replacing the ith column of M̃ with−y. By Cramer’s rule, we have
that

[det M̃1/ det M̃, det M̃2/ det M̃, . . . , det M̃ρ/ det M̃]T

is a solution to M̃x̃ = −y. Hence,

[det M̃1, det M̃2, . . . , det M̃ρ, det M̃, 0, . . . , 0]T

is a non-trivial solution toM ′x′ = 0.
4. Corresponding to the column permutation in step 1, rearrange the elements of x′. Then we finally
obtain a non-trivial solution to the systemMx = 0.

From the above construction, we see that each entry of the solution is the determinant of a ρ × ρ
submatrix of M up to a sign. Thus, when M is a polynomial matrix, the degrees and the heights of
these determinants are bounded by Theorem 4. From the definition ofD andH , we immediately get
the following two lemmas, which enable us to avoid testing all ρ × ρ submatrices ofM .

Lemma 5. Let K be a field of characteristic zero and A = [pij(n)] a square matrix whose entries are non-
zero polynomials in K [n]. Then for any square submatrix A′ of A, we haveD(A′) ≤ D(A). Suppose further
that pij(x) ∈ Z[x] for all i, j. ThenH(A′) ≤ H(A).

Lemma 6. Let K be a field of characteristic zero and A = [pij(n)], A′ = [p′ij(n)] be two square matrices of
the same order whose entries are polynomials in K [n]. Suppose that deg(p′ij) ≤ deg(pij) for all i, j. Then
D(A′) ≤ D(A). Suppose further that K ⊆ C and |p′ij| ≤ |pij| for all i, j. ThenH(A′) ≤ H(A).

Lemma 5 converts the computation of ρ × ρ submatrices to l × l submatrices and enables us to
avoid computing the rank ρ, which is equivalent to solving the system. Proper use of Lemma 6 further
reduces the computation to one special l×lmatrix. To this end,we define two kinds of transformations
on a matrix.

Definition 7. Let K be a field of characteristic zero and A = [pij(n)] be a matrix whose entries are
polynomials in K [n].
A 0-1 augment is the transformation of replacing each zero entry of Awith 1. The resulting matrix

is denoted by A.
Suppose that K ⊆ C. A DH augment is the transformation as follows: Choose a column, say the kth

column, of thematrix A, replace those entries pij(n) that satisfy |pij| < |pik| or deg(pij) < deg(pik)with
hnd where h = max{|pij|, |pik|} and d = max{deg(pij), deg(pik)}, and finally delete the kth column
from A. The resulting matrix is denoted by Â.

Now we are ready to present the degree-height bound algorithm (DHB algorithm in short).
Input: An l×m (l < m) matrixM = [pij(n)]whose entries are polynomials in Z[n].
Output: Two integers da and ha.

1. Repeat DH augment onM and setM = M̂ untilM becomes an l× l square matrix.
2. Do 0-1 augment onM and setM = M .
3. Return da = D(M), ha = H(M).
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Remark 8. Notice that the DH augment involves the selection of a special column. To obtain smaller
bounds, wemay take an as small as possible column, e.g., the one withminimum height sum or degree
sum.

The following theorem shows that da and ha are upper bounds on the degree and the height of a
non-trivial solution to the systemMx = 0.

Theorem 9. Suppose that M = [pij(n)] is a matrix whose entries are polynomials in Z[n]. Let da
and ha be the integers obtained by the DHB algorithm. Then there exists a non-trivial solution x =
[x1(n), x2(n), . . . , xm(n)]T to the system Mx = 0 satisfying deg(xi(n)) ≤ da and |xi(n)| ≤ ha for all
i = 1, 2, . . . ,m.

Proof. For convenience, we denote the resultingmatrices after step 1 and step 2 in the DHB algorithm
by M1 and M2, respectively. Let A be any l × m (l < m) matrix whose entries are polynomials in n.
From the definition of DH augment, for each square submatrix B = [pij(n)] of A, there exists a square
submatrix C = [qij(n)] of Â such that deg(pij) ≤ deg(qij) and |pij| ≤ |qij|. By Lemma 6, we have
D(B) ≤ D(C) andH(B) ≤ H(C). Repeating the discussion, we derive that for each square submatrix
B ofM , there exists a square submatrix C ofM1 such thatD(B) ≤ D(C) andH(B) ≤ H(C). One more
step shows that this also holds forM2.
Nowby Lemma5, for each square submatrixC ofM2, wehaveD(C) ≤ D(M2) andH(C) ≤ H(M2).

Therefore, for each square submatrix B ofM , we finally have

D(B) ≤ D(M2) and H(B) ≤ H(M2).

Since there exists a non-trivial solution to the systemMx = 0 represented by the determinants of
submatrices ofM up to a sign, the theorem follows. �

Sometimes we may need only the bound on part of the unknowns, say xj’s, j ∈ S ⊆ {1, 2, . . . ,m}.
Then in the DHB algorithm we may use the following partial DH augment instead: Choose a column,
say the kth (k ∈ S) column, of the matrix A, replace those entries pij(n) (j ∈ S) that satisfy |pij| < |pik|
or deg(pij) < deg(pik) with h · nd where h = max{|pij|, |pik|} and d = max{deg(pij), deg(pik)}, delete
the kth column from A, and finally also denote the resulting matrix by Â. Consequently, we call the
resulting algorithm the partial DHB algorithm.
Notice that da and ha obtained by the partial DHB algorithm are the upper bounds for the degree

and the height of the xj’s with j ∈ S which is a part of a non-trivial solution to the systemMx = 0. It
can be proved by the same discussion as in Theorem 9.

4. Estimating n1 for hypergeometric identities

Weadopt the notation inMohammed and Zeilberger (2005) towrite a proper hypergeometric term
over Q as

F(n, k) = POL(n, k) · H(n, k), (6)

with POL(n, k) being a polynomial in n and k, and

H(n, k) =

A∏
j=1
(a′′j )a′jn+ajk

B∏
j=1
(b′′j )b′jn−bjk

C∏
j=1
(c ′′j )c′j n+cjk

D∏
j=1
(d′′j )d′jn−djk

zk,

where aj, a′j, bj, b
′

j, cj, c
′

j , dj, d
′

j are non-negative integers, and z, a
′′

j , b
′′

j , c
′′

j , d
′′

j ∈ Q.
Let

L = max

{
A∑
j=1

aj +
D∑
j=1

dj,
B∑
j=1

bj +
C∑
j=1

cj

}
. (7)
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Mohammed and Zeilberger (2005) showed that there exist polynomials e0(n), . . . , eL(n) in n and a
rational function R(n, k) such that G(n, k) = R(n, k)F(n, k) satisfies

L∑
i=0

ei(n)F(n+ i, k) = G(n, k+ 1)− G(n, k). (8)

More precisely, let

H(n, k) =

A∏
j=1
(a′′j )a′jn+ajk

B∏
j=1
(b′′j )b′jn−bjk

C∏
j=1
(c ′′j )c′j (n+L)+cjk

D∏
j=1
(d′′j )d′j(n+L)−djk

zk, (9)

u(k) = z
A∏
j=1

(a′jn+ ajk+ a
′′

j )aj

D∏
j=1

(d′j(n+ L)− djk+ d
′′

j − dj)dj , (10)

v(k) =
B∏
j=1

(b′jn− bjk+ b
′′

j − bj)bj
C∏
j=1

(c ′j (n+ L)+ cjk+ c
′′

j )cj . (11)

Let further

h(k) =
L∑
i=0

ei(n)POL(n+ i, k) ·
H(n+ i, k)

H(n, k)
(12)

and X(k) =
∑m
i=0 xi(n)k

i, where m = deg h − max{deg u, deg v}, xi(n) and ei(n) are unknown
polynomial expressions in n that have to be determined. Note that h(k) is a polynomial in k. Then
there is a non-trivial solution e0(n), . . . , eL(n), x0(n), . . . , xm(n) to the equation

u(k)X(k+ 1)− v(k− 1)X(k)− h(k) = 0. (13)

Moreover, Eq. (8) holds for G(n, k) = v(k− 1)X(k)H(n, k).
The results of Mohammed and Zeilberger do not ensure that e0(n), . . . , eL(n) are not all zeros,

however, this bad situation rarely happens and can be prejudged. Suppose that e0(n), . . . , eL(n) are
all zeros, then h(k) = 0 but X(k) 6= 0. By (13), we have

v(k− 1)
u(k)

=
X(k+ 1)
X(k)

. (14)

It iswell known that the rational functionv(k−1)/u(k)has a uniqueGopser–Petkovšek representation
(Petkovšek, 1992) (GP representation, in short):

v(k− 1)
u(k)

=
a(k)
b(k)

c(k+ 1)
c(k)

.

In most cases, a(k)/b(k) 6= 1, which implies that Eq. (14) does not hold. Under this situation, wemust
have that e0(n), . . . , eL(n) are non-trivial, i.e., not all zeros.
Up to now, we have already L. The rest task is to estimate na and nf .
Notice that Eq. (13) is actually a system of linear equations in the unknowns e0(n), . . . , eL(n) and

x0(n), . . . , xm(n), which can be written as Mx = 0. By multiplying the common denominators, we
may assume that each entry of M is a polynomial in Z[n]. Thus there exists a non-trivial solution
whose elements are all polynomials in Z[n]. Now apply the partial DHB algorithm to the matrix M .
The output integers da and ha are the upper bounds of the degrees and the heights of the ei(n)’s.
Now suppose that F(n, k) has finitely supports. Summing over k on both sides of Eq. (8) leads to a

recurrence satisfied by S(n) =
∑
k F(n, k):

L∑
i=0

ei(n)S(n+ i) = 0. (15)
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Let eL′(n) be the last non-zero polynomial reading from e0 to eL. Since eL′(n) is a polynomial with
integer coefficients, we have eL′(n) 6= 0 for n > ha by Lemma 1. Therefore, we can take na = ha.
Finally, nf is given by an upper bound of the degree of the numerator polynomial of

R(n) =
L∑
i=0

ei(n)
f (n+ i)
f (n)

.

Let D(n) be the common denominator of f (n + i)/f (n) for i = 0, . . . , L. Then the degree of the
numerator polynomial of R(n) is bounded by the largest degree of ei(n) (bounded by da computed
above) plus the largest degree of f (n+ i)/f (n) · D(n) for i = 0, . . . , L.
In conclusion, we get the following algorithm on estimating n1 for proper hypergeometric

identities.
Input: A proper hypergeometric term F(n, k) over Q with finitely supports, a hypergeometric term
f (n), and n0.
Output: An integer n1 such that

∑
k F(n, k) = f (n) holds for n ≥ n0 if and only if it holds for

n = n0, . . . , n1.

1. Write F(n, k) in the form of (6).
2. Compute L by (7).
3. Compute H(n, k), u(k), v(k) and h(k) by (9)–(12).
4. Compute the GP representation of

v(k− 1)
u(k)

=
a(k)
b(k)

c(k+ 1)
c(k)

.

If a(k)/b(k) = 1, the algorithm fails. Otherwise continue the following procedures.
5. Equate to zero the coefficient of each power of k in (13) to get a system of linear equationsMx = 0
in the unknowns ei(n), 0 ≤ i ≤ L and xj(n), 0 ≤ j ≤ m.

6. Apply the partial DHB algorithm toM to get da and ha.
7. Compute the common denominator D(n) of f (n + i)/f (n), i = 0, . . . , L and then find the largest
degree df of f (n+ i)/f (n) · D(n). Set nf = da + df .

8. Return n1 = max{n′a + L− 1, n0 + nf + L}, where n
′
a = max{ha + 1, n0}.

Let us look at two examples.

Example 10. Estimate n1 for the identity∑
k

(
n
k

)
= 2n, ∀n ≥ 0. (16)

First write the summand F(n, k) =
(n
k

)
in the form of (6):

F(n, k) =
(1)n

(1)n−k(1)k
.

A straightforward computation gives that L = 1, u(k) = n − k + 1 and v(k) = k + 1. Since the GP
representation of v(k − 1)/u(k) is k/(n − k + 1) 6= 1, we are ensured that e0(n), e1(n) are not both
zeros. Now Eq. (13) becomes

(e0(n)− 2x0(n))k+ (n+ 1)(x0(n)− e0(n)− e1(n)) = 0.

Equating the coefficients of each power of k to 0 yields[
1 0 −2
−1 −1 1

]
·

[e0(n)
e1(n)
x0(n)

]
= 0.

By the partial DHB algorithm inwhichwe choose the second column in theDHaugment,we get da = 0
and ha = 3. Noting that 2n+j/2n = 2j for j = 0, 1, we have df = 0. Finally, n1 = max{4, 1} = 4. It is a
trivial task for a computer to check the four initial values.
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Example 11. Estimate n1 for∑
k

(
n
k

)2
=

(
2n
n

)
. (17)

In this case we arrive at the following homogeneous linear system
n2 + 2n+ 1 n2 + 2n+ 1 n2 + 2n+ 1 −1 −1 −1
4n2 + 10n+ 6 2n2 + 4n+ 2 0 −2 n 2n+ 2
6n2 + 18n+ 13 n2 + 2n+ 1 0 0 2n+ 3 −n2 + 3

2n+ 3 0 0 0 0 −n− 1
1 0 0 0 0 0

 ·

e0(n)
e1(n)
e2(n)
x0(n)
x1(n)
x2(n)

 = 0.

By the partial DHB algorithm in which the third column is chosen for the DH augment, we get
da = 6 and n′a = 12 089 + 1 = 12 090. Moreover, we have df = 2. Therefore n1 = max{n

′
a + L −

1, n0 + da + df + L} = 12 091. Notice that it is still a hard task for a computer to check all this initial
values.

Note that for the above two examples, the bounds given by Yen (1993) were 1011 and 10115
respectively.

5. Estimating n1 for q-hypergeometric identities

In this section, K is a field of characteristic zero and q is transcendental over K . A function f
from D ⊆ Z to the rational function field K(q) is called a q-hypergeometric term if there exists a
rational function r(x) of x over K(q) such that f (n + 1)/f (n) = r(qn) for all integers n ∈ D. A
bivariate function F from D ⊆ Z2 to K(q) is called a (bivariate) q-hypergeometric term if there are
bivariate rational functions r(x, y) and s(x, y) over K(q) such that F(n+ 1, k)/F(n, k) = r(qn, qk) and
F(n, k + 1)/F(n, k) = s(qn, qk). Analogous to the ordinary case, we focus on the (bivariate) q-proper
hypergeometric termswhich can be written in the form

F(n, k) = P(qn, qk)

uu∏
i=1
[ci]ain+bik

vv∏
i=1
[wi]uin+vik

qJk(k−1)/2zk,

where P(qn, qk) is a bivariate Laurent polynomial in qn, qk over K(q), uu and vv are specific non-
negative integers, ai, bi, ui, vi, J ∈ Z, ci, wi, z ∈ K(q) and [a]k = (1 − a)(1 − aq) · · · (1 − aqk−1)
denotes the q-shifted factorial.
Estimating n1 for q-hypergeometric identities can be done just as the q-analogue of the ordinary

case. In this case, we have a linear recurrence of the form
L∑
i=0

ai(qn, q)S(n+ i) = 0, n ≥ n0,

where the ai(qn, q)’s are polynomials in qn and q over K . The following lemma shows that na can be
set to be the degree of aL(qn, q) in q.

Lemma 12 (Yen (1996b)). Let P(qn, q) be a non-zero polynomial in qn and q over K . Suppose that the
degree of P(qn, q) in q is m. Then P(qn, q) 6= 0 for all n ≥ m+ 1.

Write a q-proper hypergeometric term F(n, k) in the form

F(n, k) = POL(n, k)

A∏
j=1
[a′′j ]a′jn+ajk

B∏
j=1
[b′′j ]b′jn−bjk

C∏
j=1
[c ′′j ]c′j n+cjk

D∏
j=1
[d′′j ]d′jn−djk

qJk(k−1)/2zk, (18)
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where POL(n, k) is a Laurent polynomial in qn and qk over K(q), aj, a′j, bj, b
′

j, cj, c
′

j , dj, d
′

j are non-
negative integers, z, a′′j , b

′′

j , c
′′

j , d
′′

j ∈ K(q) and J ∈ Z. Mohammed and Zeilberger (2005) also provided
the q-Theoremwhich states that F(n, k) has a telescoped recurrence

L∑
i=0

ei(qn, q)F(n+ i, k) = G(n, k+ 1)− G(n, k) (19)

of order

L = max

{
J +

A∑
j=1

a2j ,
C∑
j=1

c2j

}
+max

{
−J +

D∑
j=1

d2j ,
B∑
j=1

b2j

}
. (20)

Moreover, the coefficients e0(qn, q), . . . , eL(qn, q) and some extra unknowns x−m1(q
n, q), . . . ,

xm2(q
n, q) satisfy a system of linear equations Mx = 0, where the entries of M are polynomials in

qn and q.
Different from the ordinary case, in the q-case, we need the degree bound in q of the ei’s for the

estimation of na by Lemma 12, and their degree bound in qn for the estimation of nf , while the height
does not make sense in this case. So we are now in place to introduce the counterpart of the augment
and DHB algorithm for the q-case.

Definition 13. Let A = [pij(x)] be a matrix whose entries are polynomials in K [x].
A degree augment is the transformation as follows: Choose a column, say the kth column, of the

matrix A, replace those entries pij that satisfy deg(pij) < deg(pik) with xd where d = deg(pik), and
finally delete the kth column from A. The resulting matrix is denoted by Â.

q-DB Algorithm
Input: An l×m (l < m) matrixM = [pij(qn, q)]whose entries are polynomials in qn and q.
Output: Two integers na and da.

1. Let M ′ = M , regard the entries of M ′ as polynomials in q, then repeat degree augment on M ′ and
setM ′ = M̂ ′ untilM ′ becomes an l× l square matrix. Denote the resulting matrix byMq.

2. LetM ′ = M , regard the entries ofM ′ as polynomials in qn, then repeat degree augment onM ′ and
setM ′ = M̂ ′ untilM ′ becomes an l× l square matrix. Denote the resulting matrix byMqn .

3. Do 0-1 augment onMq andMqn respectively, and setMq = Mq,Mqn = Mqn .
4. Return na = D(Mq), da = D(Mqn).

The counterpart of Theorem9 for the q-case, which guarantees that the output na and da are degree
bounds in q and qn, can be deduced in a thorough similar way. So is the partial q-DB algorithm, the
counterpart of partial DHB algorithm.
Now we give the following algorithm to estimate n1 for the q-case.

Input: A q-proper hypergeometric term F(n, k)with finitely supports, a q-hypergeometric term f (n),
and n0.
Output: An integer n1 such that

∑
k F(n, k) = f (n) holds for n ≥ n0 if and only if it holds for

n = n0, . . . , n1.

1. Write F(n, k) in the form of (18).
2. Compute L by (20).
3. Compute H(n, k), u(qk), v(qk) and h(qk) as in Mohammed and Zeilberger (2005).
4. Compute the q-analogue of the GP representation (Koornwinder, 1993) of

v(qk−1)
u(qk)

=
a(qk)
b(qk)

c(qk+1)
c(qk)

.

If a(qk)/b(qk) = 1, the algorithm fails. Otherwise continue the following procedures.
5. By the Eq. (19), get a system of linear equationsMx = 0 in the unknowns ei(qn, q), 0 ≤ i ≤ L and
xj(qn, q),−m1 ≤ j ≤ m2.
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6. Apply the partial q-DB algorithm on the ei’s toM to get the bounds na and da.
7. Compute the common denominator D(qn) of f (n+ i)/f (n), i = 0, . . . , L and then find the largest
degree df of f (n+ i)/f (n) · D(qn). Set nf = da + df .

8. Return n1 = max{n′a + L− 1, n0 + nf + L}, where n
′
a = max{na + 1, n0}.

Here are some examples.

Example 14. Estimate n1 for a finite version of Jacobi’s triple product identity (Andrews, 1976)

∑
k

[
2n
n+ k

]
q(
k
2)zk = (−z−1q; q)n(−z; q)n, n ≥ 0.

The summand can be expressed in the form of

F(n, k) =
[1]2n

[1]n+k[1]n−k
qk(k−1)/2zk.

By the corresponding equation of (19), we get the following homogeneous linear system:
qqn 0 zqn + 1 0

−q
(
1+ q2q2n

)
−q(q3q4n − q2q2n − qq2n + 1) −z − q2qn q (zqqn + 1)

qqn 0 0 −z − qqn



×

 e0(q
n, q)

e1(qn, q)
x−1(qn, q)
x0(qn, q)

 = 0.
Applying the partial q-DB algorithm in which we choose the second column for the degree augment,
we get na = 5 and da = 6. Thus n′a = na + 1 = 6. Furthermore, since f (n + 1)/f (n) =
(1+ z−1qn+1)(1+ zqn), we get df = 2. Finally, we derive that n1 = 9.
Note that in this example, na = 5 < 6 = nf .

Example 15. Compute n1 for the q-Chu-Vandermonde identity (cf. Gasper and Rahman (2004))

∑
k

qk
2
[
n
k

]2
=

[
2n
n

]
, n ≥ 0.

By the corresponding equation of (19), we get a system of linear equationsMx = 0, whereM is a 5
by 6 matrix. Applying the partial q-DB algorithm, we get n′a = na + 1 = 24 and da = 13. Simplifying
f (n+ i)/f (n) leads to df = 6. Finally, we derive that n1 = 25.

Example 16. Estimate n1 for a finite form of Euler’s pentagonal number theorem due to L. J. Rogers
(e.g. Andrews (1976))

∑
k

(−1)k(q; q)nqk(3k−1)/2

(q; q)n+k(q; q)n−k
= 1, n ≥ 0.

The algorithm returns n1 = 42.

For the above three examples, the bounds given by Zhang (2003) are 74, 191, 209, respectively.
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