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Abstract

An edge-colored graph G is rainbow connected if every two vertices
are connected by a path whose edges have distinct colors. It is known
that deciding whether a given edge-colored graph is rainbow connected
is NP-complete. We will prove that it is still NP-complete even when
the edge-colored graph is a planar bipartite graph. A vertex-colored
graph is rainbow vertex-connected if every two vertices are connected
by a path whose internal vertices have distinct colors. It is known
that deciding whether a given vertex-colored graph is rainbow vertex-
connected is NP-complete. We will prove that it is still NP-complete
even when the vertex-colored graph is a line graph.
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1 Introduction

All graphs considered here are simple, finite and undirected. We follow
the notation and terminology of [20]. An edge-colored graph is rainbow con-
nected if every two vertices are connected by a path whose edges have distinct
colors (such paths are called rainbow path). Obviously, if G is rainbow con-
nected, then it is also connected. This concept of rainbow connection in
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graphs was introduced by Chartrand et al. in [5]. The rainbow connection
number of a connected graph G, denoted by rc(G), is the smallest number of
colors that are needed in order to make G rainbow connected. Observe that
diam(G) ≤ rc(G) ≤ n−1. It is easy to verify that rc(G) = 1 if and only if G
is a complete graph, that rc(G) = n− 1 if and only if G is a tree. Chartrand
et al. computed the precise rainbow connection numbers of several graph
classes including complete multipartite graphs ([5]). The rainbow connec-
tion number has been studied for further graph classes in [2, 8, 12, 13, 14]
and for graphs with fixed minimum degree in [2, 9, 18]. There are also some
results on the aspect of extremal graph theory, such as [19]. Very recently,
many results on the rainbow connection have been reported in a survey [16]
and a book [17] of Li and Sun.

Besides its theoretical interest as a natural combinatorial concept, rain-
bow connection has an interesting application for the secure transfer of clas-
sified information between agencies ([7]). While the information needs to be
protected, there must also be procedures that permit access between appro-
priate parties. This twofold issue can be addressed by assigning information
transfer paths between agencies which may have other agencies as interme-
diaries, while requiring a large enough number of passwords and firewalls
that is prohibitive to intruders, yet small enough to manage (that is, enough
that one or more paths between every pair of agencies have no password
repeated). An immediate question arises: what is the minimum number of
passwords or firewalls needed that allows one or more secure paths between
every two agencies such that the passwords along each path are distinct?

The complexity of determining the rainbow connection of a graph has
been studied in literature. It is proved that the computation of rc(G) is NP-
hard [3, 10]. In fact, it is already NP-complete to decide whether rc(G) = 2,
and in fact it is already NP-complete to decide whether a given edge-colored
(with an unbounded number of colors) graph is rainbow connected [3]. More
generally it has been shown in [10] that for any fixed k ≥ 2, deciding whether
rc(G) = k is NP-complete. Moreover, the authors in [11] proved that it is
still NP-complete even when the edge-colored graph is bipartite. Ananth and
Nasre [1] showed that for any fixed integer k ≥ 3, deciding whether rc(G) = k
is NP-complete, and they also showed that it is NP-hard to decide whether
src(G) ≤ k or not even when G is a bipartite graph. In this paper, we
will prove that it is still NP-complete to decide whether a given edge-colored
graph is rainbow connected even when the edge-colored graph is a planar
bipartite graph.

A vertex-colored graph is rainbow vertex-connected if every two vertices
are connected by a path whose internal vertices have distinct colors (such
paths are called vertex rainbow path). The rainbow vertex-connection of a
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connected graph G, denoted by rvc(G), is the smallest number of colors
that are needed in order to make G rainbow vertex-connected. An easy
observation is that if G is of order n then rvc(G) ≤ n− 2 and rvc(G) = 0 if
and only if G is a complete graph (a graph without coloring is also regarded
as a colored graph by 0 color). Notice that rvc(G) ≥ diam(G) − 1 with
equality if the diameter is 1 or 2. For rainbow connection and rainbow vertex-
connection, some examples are given to show that there is no upper bound
for one of the parameters in terms of the other in [9]. The rainbow vertex-
connection number has been studied for graphs with fixed minimum degree
in [9, 15]. In [6], Chen, Li and Shi studied the complexity of determining the
rainbow vertex-connection of a graph and proved that computing rvc(G) is
NP-hard. Moreover, they proved that it is already NP-complete to decide
whether rvc(G) = 2. They also proved that it is already NP-complete to
decide whether a given vertex-colored graph is rainbow vertex-connected.
In this paper, we will prove that it is still NP-complete to decide whether a
given vertex-colored graph is rainbow vertex-connected even when the vertex-
colored graph is a line graph.

2 Rainbow connection for planar graphs

Before proceeding, we list some related results as useful lemmas.

Lemma 1 ([3]) The following problem is NP-complete: Given an edge-colored
graph G, check whether the given coloring makes G rainbow connected.

By subdividing each edge of a given edge-colored graph G exactly once,
one can get a bipartite graph G′. Then color the edges of G′ as follows: Let
e′ and e′′ be the two edges of G′ produced by subdividing at the edge e of G.
Then color the edge e′ with the same color of e and color the edge e′′ with a
new color, such that all the new colors of the edges e′′ are distinct. In this
way, Li and Li proved the following result from the problem in Lemma 1.

Lemma 2 ([11]) Given an edge-colored bipartite graph G, checking whether
the given coloring makes G rainbow connected is NP-complete.

A plane graph is a planar graph together with an embedding of the graph
in the plane. From the Jordan Closed Curve Theorem, we know that a cycle
C in a plane graph separates the plane into two regions, the interior of C
and the exterior of C. We prove the following result.

Theorem 1 Given an edge-colored planar graph G, checking whether the
given coloring makes G rainbow connected is NP-complete.
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Proof. By Lemma 1, it will suffice by showing a polynomial reduction from
the problem in Lemma 1.

Given a graph G = (V, E) and an edge-coloring c of G, we will construct
an edge-colored planar graph G′ such that G is rainbow connected if and
only if G′ is rainbow connected.
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Figure 1: The graph constructed in Theorem 1 for some crossing wi.

For one drawing of a given graph, by moving edges slightly, we can ensure
that no three edges have a common crossing and no two edges cross more
than once. Given a such drawing of G in the plane with k crossings, denoted
by wi, where i = 1, 2, . . . , k. Let wi be formed by two edges xiyi and uivi.
First, we assume that there is at most one crossing on each edge.

We construct an edge-colored graph G′ as follows. The graph G′ =
(V ′, E ′) is obtained from G by replacing each crossing wi with one 3× 3-grid
with vertex set {di, gi, hi, `i, ri, si, ti, pi, qi}, as shown in Figure 1. There-
fore, we have V ′ = V ∪{di, gi, hi, `i, ri, si, ti, pi, qi : 1 ≤ i ≤ k}, E ′ = E ∪
{xidi, yiti, uihi, viqi, digi, gihi, hi`i, giri, disi, `iri, risi, `iti, ripi, siqi, piqi,
piti : 1 ≤ i ≤ k} \ E0, where E0 denotes the set of edges which form the
crossings. From our construction, we know that G′ is planar. In the fol-
lowing, we define an edge-coloring c′ of G′: c′(e) = c(e) for each e ∈ E;
c′(xidi) = c′(disi) = c′(siqi) = c′(gihi) = c(xiyi), c′(viqi) = c′(piti) = c(uivi),
c′(digi) = c′(piqi) = ci1, c′(giri) = c′(hi`i) = ci2, c′(ri`i) = ci3, c′(ripi) =
c′(`iti) = c′(risi) = ci4, c′(uihi) = c′(tiyi) = ci5, where cij are the new colors
for 1 ≤ i ≤ k and 1 ≤ j ≤ 5.
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Suppose that coloring c′ makes G′ rainbow connected. For any two ver-
tices u, v ∈ V , there is a rainbow path P ′ connected u and v. If P ′ does not
pass any grid, then P ′ is also a rainbow path joining u and v in G under
the coloring c. Otherwise, suppose that P ′ passes some grid. We give the
following claim.

Claim. If the rainbow path P ′ enters to a grid from vertex xi (or yi),
then it must go out from yi (or xi).

Notice that xidigiri`itiyi is a rainbow path enters to the grid from xi to
yi. From the definition of c′, one can easily check that there has no rainbow
path from xi (or yi) to ui and vi, which just go through this grid.

Similarly, one also can prove that if the rainbow path P ′ enters to a grid
from vertex ui (or vi), then it must go out from vi (or ui). Denote by P ′(xi, yi)
(P ′(ui, vi)) the subpath joining vertices xi and yi (ui and vi) in path P ′ and
let P ′′ be the path obtained from P ′ by deleting P ′(xi, yi) (P ′(ui, vi)) and
adding the edge xiyi (uivi). Applying this operation for each grid appeared
in path P ′ yields one path P of G, which is also a rainbow path in G under
the coloring c. It follows that the coloring c makes G rainbow connected.

To prove the other direction, suppose that the coloring c makes G rainbow
connected. Let u and v be a pair of vertices in G′. We will find a rainbow
path joining u and v in G′ under the coloring c′ and then obtain that c′ makes
G′ rainbow connected.

Case 1. u, v ∈ V .
If there is a rainbow path joining u and v without going through any

crossing, then this path is also a rainbow path joining u and v in G′ under
the coloring c′. Now let P be the rainbow path joining u and v and some
crossing wi lies on P . Without loss of generality, suppose P = u . . . xiyi . . . v.
Then the new path P ′ obtained from P by replacing the edge xiyi with path
xidigiri`itiyi is the required rainbow path joining u and v in G′.

Case 2. u, v ∈ {di, gi, hi, `i, ri, si, ti, pi, qi : 1 ≤ i ≤ k}, i.e., u and v
belong to the same grid.

In this case, one can easily find a rainbow path connecting u and v from
the definition of c′.

Case 3. u ∈ V , v ∈ {di, gi, hi, `i, ri, si, ti, pi, qi : 1 ≤ i ≤ k}.
It is easy to find the required rainbow path for the case u = ui or u = yi.

Now suppose u /∈ {ui, vi}. Since there exists a rainbow path P ′ joining u and
ui (or yi) in G′ by Case 1, attaching the rainbow path between ui (or yi)
and v to P ′ yields the required rainbow path connecting u and v.

Case 4. u and v belong to different grids.
From the above cases, the proof of this case is obviously.
In any case, there exists one rainbow path connecting u and v in G′ under

the coloring c′.
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Notice that this reduction is indeed a polynomial reduction, since each
graph has at most

(
n
2

)
crossings and for each crossing, we introduce nine

vertices, fourteen edges and five new colors in the construction of the graph
G′.

Suppose there are more than one crossings on some edge e, we can add
one vertex with degree two between any two distinct crossings on the same
edge and then assign color c(e) and a new color c1 to the two new edges.
Since each graph has at most

(
n
2

)
crossings, we may introduce at most

(
n
2

)
new vertices and

(
n
2

)
new colors. Similarly, we can complete the polynomial

reduction. ¤

Using the similar proof method of Lemma 2, we can get the following
consequence easily.

Theorem 2 Given an edge-colored planar bipartite graph G, checking whether
the given coloring makes G rainbow connected is NP-complete.

3 Rainbow vertex-connection for line graphs

In [6], the complexity of determining the rainbow vertex-connection of a
graph has been studied. The following result was proved.

Lemma 3 ([6]) The following problem is NP-complete: given a vertex-colored
graph G, check whether the given coloring makes G rainbow vertex-connected.

We will prove that it is still NP-complete to decide whether a given vertex-
colored graph is rainbow connected even when the vertex-colored graph is a
line graph.

Theorem 3 The following problem is NP-complete: given a vertex-colored
line graph G, check whether the given coloring makes G rainbow vertex-
connected.

Proof. By Lemma 1, it will suffice to show a polynomial reduction from the
problem in Lemma 1.

Given a graph G = (V, E) and an edge-coloring c of G. We want to
construct a line graph G′ with a vertex coloring such that G′ is rainbow
vertex-connected if and only if G is rainbow connected.

Let G = (V, E) and suppose V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.
Let G0 = (V0, E0) be a new graph, which is obtained from G by attaching a
pendant vertex ui to vi for each 1 ≤ i ≤ n. Thus, V0 = V ∪ {u1, u2, . . . , un}
and E0 = E ∪ {e′i = uivi : 1 ≤ i ≤ n}. Let G′ be the line graph of G0 and
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then V (G′) = E0. Now we define a vertex coloring c′ of G′ as follows: for
each 1 ≤ i ≤ n, c′(ei) = c(ei) and c′(e′i) = c0, where c0 is a new color we
introduced.

Suppose G is rainbow connected under the edge coloring c. Then we will
check that there exists one vertex rainbow path between every pair of vertices
in G′ under the vertex coloring c′. Consider the pair of e′i and e′j for i 6= j.
Let vi0vi1 . . . vik+1

be the rainbow path between vi and vj in G, where vi0 = vi

and vik+1
= vj. Denote by eit = vitvit+1 for 0 ≤ t ≤ k. Thus, we have that

edges ei0 , ei1 , . . . , eik have distinct colors. By the definition of c′, the colors
of vertices ei0 , ei1 , . . . , eik in G′ are all distinct. Thus, e′iei0ei1 . . . eike

′
j is a

required vertex rainbow path. Similarly, for the pair e′i and ej, and the pair
ei and ej, we can find vertex rainbow paths in G′, respectively.

Now suppose G′ is rainbow vertex-connected under the vertex coloring c′,
then we will check that there exists one rainbow path between any pair of ver-
tices in G under the coloring c. For each pair e′i and e′j, where 1 ≤ i 6= j ≤ n,
there exists one vertex rainbow path e′iei0ei1 . . . eik+1

e′j, i.e., ei0 , ei1 , . . . , eik+1

has distinct colors. Observe that in G, one of the end vertices of ei0 is vi and
one of the end vertices of eik+1

is vj. Thus, there indeed exists one rainbow
path connecting vi and vj.

The proof is thus complete.
¤
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