The (revised) Szeged index and the Wiener index of a nonbipartite graph

Lily Chen, Xueliang Li, Mengmeng Liu
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, China
Email: lily60612@126.com, lxl@nankai.edu.cn, liumm05@163.com

Abstract

Hansen et. al. used the computer program AutoGraphiX to study the differences between the Szeged index $S z(G)$ and the Wiener index $W(G)$, and between the revised Szeged index $S z^{*}(G)$ and the Wiener index for a connected graph G. They conjectured that for a connected nonbipartite graph G with $n \geq 5$ vertices and girth $g \geq 5, S z(G)-W(G) \geq 2 n-5$, and moreover, the bound is best possible when the graph is composed of a cycle C_{5} on 5 vertices and a tree T on $n-4$ vertices sharing a single vertex. They also conjectured that for a connected nonbipartite graph G with $n \geq 4$ vertices, $S z^{*}(G)-W(G) \geq \frac{n^{2}+4 n-6}{4}$, and moreover, the bound is best possible when the graph is composed of a cycle C_{3} on 3 vertices and a tree T on $n-2$ vertices sharing a single vertex. In this paper, we not only give confirmative proofs to these two conjectures but also characterize those graphs that achieve the two lower bounds.

Keywords: Wiener index, Szeged index, revised Szeged index.
AMS subject classification 2010: 05C12, 05C35, 05C90, 92E10.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [3] for terminology and notation. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G), d_{G}(u, v)$ denotes the distance between u and v in G. The Wiener index of G is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v) .
$$

This topological index has been extensively studied in the mathematical literature; see, e.g., $[10,12]$. Let $e=u v$ be an edge of G, and define three sets as follows:

$$
N_{u}(e)=\left\{w \in V(G): d_{G}(u, w)<d_{G}(v, w)\right\}
$$

$$
\begin{aligned}
& N_{v}(e)=\left\{w \in V(G): d_{G}(v, w)<d_{G}(u, w)\right\}, \\
& N_{0}(e)=\left\{w \in V(G): d_{G}(u, w)=d_{G}(v, w)\right\} .
\end{aligned}
$$

Thus, $\left\{N_{u}(e), N_{v}(e), N_{0}(e)\right\}$ is a partition of the vertices of G respect to e. The number of vertices of $N_{u}(e), N_{v}(e)$ and $N_{0}(e)$ are denoted by $n_{u}(e), n_{v}(e)$ and $n_{0}(e)$, respectively. Evidently, if n is the number of vertices of the graph G, then $n_{u}(e)+n_{v}(e)+n_{0}(e)=n$.

If G is bipartite, then the equality $n_{0}(e)=0$ holds for all $e \in E(G)$. Therefore, for any edge e of a a bipartite graph, $n_{u}(e)+n_{v}(e)=n$.

A long time known property of the Wiener index is the formula [11,24]:

$$
\begin{equation*}
W(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e), \tag{1.1}
\end{equation*}
$$

which is applicable for trees. Motivated the above formula, Gutman [9] introduced a graph invariant, named as the Szeged index, defined by

$$
S z(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e) .
$$

where G is any graph, not necessarily connected. Evidently, the Szeged index is defined as a proper extension of the formula 1.1 for the Wiener index of trees.

Randić [22] observed that the Szeged index does not take into account the contributions of the vertices at equal distances from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named as the revised Szeged index. The revised Szeged index of a connected graph G is defined as

$$
S z^{*}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e)+\frac{n_{0}(e)}{2}\right)\left(n_{v}(e)+\frac{n_{0}(e)}{2}\right) .
$$

Some properties and applications of the Szeged index and the revised Szeged index have been reported in $[2,5,14,17,20,21,25]$.

It is known that for a connected graph, $S z^{*}(G) \geq S z(G) \geq W(G)$, and it is easy to see that $S z^{*}(G)=S z(G)=W(G)$ if G is a tree, which means $m=n-1$. So, one wants to know the differences between $S z(G)$ and $W(G)$, and between $S z^{*}(G)$ and $W(G)$ for a connected graph with $m \geq n$. In [6], Dobrynin and Gutman investigated the structure of a connected graph G with the property of $S z(G)-W(G) \geq 0$ and conjectured that $S z(G)=W(G)$ holds if and only if every block of G is a complete graph. This conjecture was proved by the same authors in [7]. A simple proof for this result is given by Khodashenas, Nadjafi-Arani, Ashrafi and Gutman in [15]. Especially in [19], Nadjafi-Arani, Khodashenas and Ashrafi investigated the structure of a graph G with $S z(G)-W(G)=n$. Also in [18] they discussed graphs whose Szeged and Wiener numbers differ by 4 and 5 , and mentioned the conjecture that $S z(G)-W(G) \geq$ $2 n-5$ for graphs in which at least one block is not a complete graph. Then in [16] $S z(G)-W(G)$ was investigated in network by Klavzar and Nadjafi-Arani.

AutoGraphiX has been used to study the relations involving invariants by several graph theorists. We refer the reader to [1, 4, 8] for more details. In [13] Hansen et. al. used the computer program AutoGraphiX and made the following conjectures:

Conjecture 1.1 Let G be a connected bipartite graph with $n \geq 4$ vertices and $m \geq n$ edges. Then

$$
S z(G)-W(G) \geq 4 n-8
$$

Moreover, the bound is best possible when the graph is composed of a cycle C_{4} on 4 vertices and a tree T on $n-3$ vertices sharing a single vertex.

Conjecture 1.2 Let G be a connected graph with $n \geq 5$ vertices with an odd cycle and girth $g \geq 5$. Then

$$
S z(G)-W(G) \geq 2 n-5
$$

Moreover, the bound is best possible when the graph is composed of a cycle C_{5} on 5 vertices and a tree T on $n-4$ vertices sharing a single vertex.

Conjecture 1.3 Let G be a connected graph with $n \geq 4$ vertices and $m \geq n$ edges and with an odd cycle. Then

$$
S z^{*}(G)-W(G) \geq \frac{n^{2}+4 n-6}{4}
$$

Moreover, the bound is best possible when the graph is composed of a cycle C_{3} on 3 vertices and a tree T on $n-2$ vertices sharing a single vertex.

In [5] we showed that Conjectures 1.1 is true. In this paper, we not only give confirmative proofs to Conjectures 1.2 and 1.3 but also characterize those graphs that achieve the two lower bounds. It should be point out that, apart from the graph composed of a cycle C_{5} on 5 vertices and a tree T on $n-4$ vertices sharing a single vertex, we find another class of graphs such that the equality of Conjecture 1.2 also holds, that is, the graph composed of a cycle C_{5} on 5 vertices and two trees rooted at two adjacent vertices v_{1}, v_{2} in the C_{5}. We notice that the method used in the proof of Conjecture 1.2 can also be used to prove the bipartite case, and therefore this gives another proof to Conjecture 1.1 other than that in [5].

2 Preliminaries

We start this section with three definitions that are frequently used in our later proofs.
As usual, the symmetric difference $S_{1} \Delta S_{2}$ of two sets S_{1} and S_{2} is defined as ($S_{1} \cup$ $\left.S_{2}\right) \backslash\left(S_{1} \cap S_{2}\right)$.

Definition 2.1 Let P_{1}, P_{2} be two paths of a graph G. The symmetric difference of P_{1} and P_{2}, denoted by $P_{1} \Delta P_{2}$, is defined as the subgraph induced by the set $E\left(P_{1}\right) \Delta E\left(P_{2}\right)$ of edges.

Remark 1. If P_{1}, P_{2} are two different paths from x to y, then $P_{1} \Delta P_{2}$ is the union of some edge disjoint cycles. Note that $P_{1} \Delta P_{2}$ cannot contain isolated vertices as components.

Definition 2.2 Let P be a shortest path between two vertices x and y in a graph G, P^{\prime} be another path from x to y in G. We call P^{\prime} a second shortest path respect to P between x and y, if $P^{\prime} \neq P,\left|P^{\prime}\right|-|P|$ is minimum, and if there are more than one path satisfying the condition, we choose P^{\prime} as a one with the most common vertices with P in G.

Remark 2. If there are at least two shortest paths between x and y, we choose one of them as P in Definition 2.2. Then, we choose a second shortest path P^{\prime} to be one of the rest shortest paths that has the most vertices in common with P.

Remark 3. Let P be a shortest path and P^{\prime} a second shortest path respect to P between x and y in G. Then $P \Delta P^{\prime}$ is a cycle. Otherwise, we can find a path that has the same length with P^{\prime}, but has more common vertices with P.

Definition 2.3 A subgraph H of a graph G is called isometric if the distance between every pair of vertices in H is the same as their distance in G.

In [23] Gutman gave another expression for the Szeged index:

$$
S z(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)=\sum_{e=u v \in E(G)} \sum_{\{x, y\} \subseteq V(G)} \mu_{x, y}(e)
$$

where $\mu_{x, y}(e)$, interpreted as the contribution of the vertex pair x and y to the product $n_{u}(e) n_{v}(e)$, is defined as follows:

$$
\mu_{x, y}(e)= \begin{cases}1, & \text { if }\left\{\begin{array}{l}
x \in N_{u}(e) \text { and } y \in N_{v}(e) \\
\text { or } \\
x \in N_{v}(e) \text { and } y \in N_{u}(e)
\end{array}\right. \\
0, & \text { otherwise }\end{cases}
$$

From above expressions, we know that

$$
\begin{aligned}
S z(G)-W(G) & =\sum_{\{x, y\} \subseteq V(G)} \sum_{e \in E(G)} \mu_{x, y}(e)-\sum_{\{x, y\} \subseteq V(G)} d_{G}(x, y) \\
& =\sum_{\{x, y\} \subseteq V(G)}\left(\sum_{e \in E(G)} \mu_{x, y}(e)-d_{G}(x, y)\right) .
\end{aligned}
$$

For convenience, let $\pi(x, y)=\sum_{e \in E(G)} \mu_{x, y}(e)-d_{G}(x, y)$.
Let G be a connected graph. For every pair $\{x, y\} \subseteq V(G)$, let P_{1} be a shortest path between x and y. We know that for all $e \in E\left(P_{1}\right), \mu_{x, y}(e)=1$, which means that $\pi(x, y) \geq 0$. Let P_{2} be a second shortest path respect to P_{1} between x and y (if there exists). Then we have $P_{1} \Delta P_{2}=C$, where C is a cycle. Let $P_{i}^{\prime}=P_{i} \cap C=x^{\prime} P_{i} y^{\prime}$, see Figure 1. If $E\left(P_{1}\right) \bigcap E\left(P_{2}\right)=\emptyset$, then $x^{\prime}=x, y^{\prime}=y$.

Figure 1
Now we have the following lemma.

Lemma 2.4 For every pair $\{x, y\} \subseteq V(G)$, and $C, x^{\prime}, y^{\prime}$ defined as above,
(1) if C is an even cycle, then $\pi(x, y) \geq d_{C}\left(x^{\prime}, y^{\prime}\right) \geq 1$;
(2) if C is an odd cycle and $d_{C}\left(x^{\prime}, y^{\prime}\right) \geq 2$, then $\pi(x, y) \geq 1$.

Proof. Firstly, we prove that for every $v \in V(C), d_{C}\left(x^{\prime}, v\right)=d_{G}\left(x^{\prime}, v\right)$. If $v \in P_{1}^{\prime}$, it is simply true; otherwise, we can find a shorter path between x^{\prime} and y^{\prime}, and then we can find a shorter path between x and y. If $v \in P_{2}^{\prime}$ and $d_{C}\left(x^{\prime}, v\right)>d_{G}\left(x^{\prime}, v\right)$. Let P_{3} be a shortest path between x^{\prime} and v in G, then the path $x P_{2} x^{\prime} P_{3} v P_{2} y^{\prime} P_{2} y$ between x and y is shorter than P_{2}, a contradiction. For the same reason, we have $d_{C}\left(y^{\prime}, v\right)=d_{G}\left(y^{\prime}, v\right)$ for all $v \in V(C)$. Similarly, it is easy to see that a shortest path from x (or y) to the vertex v in P_{2}^{\prime} is $x P_{2} x^{\prime}\left(y P_{2} y^{\prime}\right)$ together with a shortest path from $x^{\prime}\left(y^{\prime}\right)$ to v in C. So, if an edge $e=u v$ in $E(C)$ makes $\mu_{x^{\prime}, y^{\prime}}(e)=1$, without loss of generality, assume that $x^{\prime} \in N_{u}(e), y^{\prime} \in N_{v}(e)$, then we have $x \in N_{u}(e), y \in N_{v}(e)$ hence $\mu_{x, y}(e)=1$.
(1) C is an even cycle.

We know that $\left|E\left(P_{2}^{\prime}\right)\right| \geq\left|E\left(P_{1}^{\prime}\right)\right|$, let $x^{\prime \prime}\left(y^{\prime \prime}\right)$ be the vertex in P_{2}^{\prime} such that $d_{C}\left(x^{\prime}, x^{\prime \prime}\right)=$ $\frac{|C|}{2}\left(d_{C}\left(y^{\prime}, y^{\prime \prime}\right)=\frac{|C|}{2}\right)$. Then the path between $x^{\prime \prime}$ and $y^{\prime \prime}$ in P_{2}^{\prime} is denoted by Q_{1}; see Figure 2. For every $e=u v$ in Q_{1}, we have $x^{\prime} \in N_{u}(e), y^{\prime} \in N_{v}(e)$ or $x^{\prime} \in N_{v}(e), y^{\prime} \in$ $N_{u}(e)$, that is $\mu_{x^{\prime}, y^{\prime}}(e)=1$, hence $\mu_{x, y}(e)=1$.

Figure 2: The dotted line is Q_{1}.
(2) C is an odd cycle.

Since $\left|E\left(P_{2}^{\prime}\right)\right| \geq\left|E\left(P_{1}^{\prime}\right)\right|$, there are vertices $x_{1}, x_{2}, y_{1}, y_{2}$ in P_{2}^{\prime} such that

$$
\begin{array}{r}
d_{C}\left(x^{\prime}, x_{1}\right)=d_{C}\left(x^{\prime}, x_{2}\right), \\
d_{C}\left(y^{\prime}, y_{1}\right)=d_{C}\left(y^{\prime}, y_{2}\right) . \tag{2.2}
\end{array}
$$

Let $d_{C}\left(x_{1}, y_{1}\right)=\min \left\{d_{C}\left(x_{i}, y_{j}\right), i, j \in\{1,2\}\right\}$, then the path between x_{1} and y_{1} in P_{2}^{\prime} is denoted by Q_{2}. For every $e=u v$ in $Q_{2}, x^{\prime} \in N_{u}(e), y^{\prime} \in N_{v}(e)$ or $x^{\prime} \in N_{v}(e), y^{\prime} \in$ $N_{u}(e)$, that is $\mu_{x^{\prime}, y^{\prime}}(e)=1$, hence $\mu_{x, y}(e)=1$.

Figure 3: The dotted line is Q_{2}.
Next we show that $d_{C}\left(x_{1}, y_{1}\right) \geq 1$. From equations 2.1 and 2.2 , we have

$$
\begin{aligned}
& d_{C}\left(x^{\prime}, x_{1}\right)=d_{C}\left(x^{\prime}, y^{\prime}\right)+d_{C}\left(y^{\prime}, x_{1}\right)-1, \\
& d_{C}\left(y^{\prime}, y_{1}\right)=d_{C}\left(x^{\prime}, y^{\prime}\right)+d_{C}\left(x^{\prime}, y_{1}\right)-1 .
\end{aligned}
$$

If $d_{C}\left(x_{1}, y_{1}\right)=0$, that is $x_{1}=y_{1}$, then by adding the above two equations, we get

$$
d_{C}\left(x^{\prime}, y^{\prime}\right)=1,
$$

which contradicts the assumption $d_{C}\left(x^{\prime}, y^{\prime}\right) \geq 2$.
From the proof of Lemma 2.4, we also get the following lemma.
Lemma 2.5 For every pair $\{x, y\} \subseteq V(C)$, where C is an isometric cycle,
(1) if C is an even cycle, then $\pi(x, y) \geq d_{C}(x, y) \geq 1$;
(2) if C is an odd cycle and $d_{C}(x, y) \geq 2$, then $\pi(x, y) \geq 1$.

Proof. By the definition of isometric, for any two vertices $u, v \in V(C), d_{C}(u, v)=$ $d_{G}(u, v)$. It is obviously that $d_{C}(x, v)=d_{G}(x, v), d_{C}(y, v)=d_{G}(y, v)$, for every $v \in$ $V(C)$. So we obtain Lemma 2.5 by the similar method of Lemma 2.4.

3 The proofs of Conjectures 1.1-1.2

Now, we give a confirmative proof to Conjecture 1.2 and get the following theorem:
Theorem 3.1 Let G be a connected nonbipartite graph on $n \geq 5$ vertices and girth $g \geq 5$. Then

$$
S z(G)-W(G) \geq 2 n-5
$$

Equality holds if and only if G is composed of a cycle C_{5} on 5 vertices, and one tree rooted at a vertex of the C_{5} or two trees, respectively, rooted at two adjacent vertices of the C_{5}.

Proof. Let $C=v_{1} v_{2} \cdots v_{k} v_{1}$ be a shortest odd cycle of G with length k, where $k \geq g \geq$ 5. It is obvious that C is an isometric cycle. We consider the pair $\{x, y\} \subseteq V(G)$.

Case 1. $\{x, y\} \subseteq V(C)$.
If $d_{C}(x, y) \geq 2$, then by Lemma 2.5 we have $\pi(x, y) \geq 1$. Otherwise, $\pi(x, y) \geq 0$. Therefore,

$$
\sum_{\{x, y\} \subseteq V(C)} \pi(x, y) \geq\binom{ k}{2}-k
$$

Case 2. $x \in V(C), y \in V(G) \backslash V(C)$.
We will prove that for every $y \in V(G) \backslash V(C)$, there exist two vertices x_{1}, x_{2} in C such that $\pi\left(x_{1}, y\right) \geq 1$ and $\pi\left(x_{2}, y\right) \geq 1$.

Assume that v_{i} is the vertex in C such that $d_{G}\left(v_{i}, y\right)=\min _{v \in V(C)} d_{G}(v, y)$, and P_{1} is a shortest path between v_{i} and y. Let $\left|E\left(P_{1}\right)\right|=p_{1}$. It is obvious that P_{1} does not contain any vertex in C.

Now we show that $\pi\left(v_{i+2}, y\right) \geq 1$. Since $P_{2}=y P_{1} v_{i} v_{i+1} v_{i+2}$ is a path from y to v_{i+2}, $p_{1}=d_{G}\left(v_{i}, y\right) \leq d_{G}\left(v_{i+2}, y\right) \leq p_{1}+2$.

Subcase 2.1. $d_{G}\left(v_{i+2}, y\right)=p_{1}+2$.
In this case, P_{2} is a shortest path from y to v_{i+2}. Let P_{3} be a second shortest path respect to P_{2} between y and $v_{i+2}, C_{1}=P_{2} \triangle P_{3}, C_{1} \cap P_{2} \cap P_{3}=\left\{x^{\prime}, y^{\prime}\right\}$. By Lemma 2.4, $\pi\left(v_{i+2}, y\right) \geq 1$ except for the case that C_{1} is an odd cycle and $d_{C_{1}}\left(x^{\prime}, y^{\prime}\right)=1$. In this case, the length of P_{3} is $\left(p_{1}+2\right)+\left|C_{1}\right|-2=p_{1}+\left|C_{1}\right|$, which is not less than $p_{1}+k$. Consider the path $y P_{1} v_{i} v_{i-1} v_{i-2} \cdots v_{i+2}$. It is a path between y and v_{i+2}, and its length is $p_{1}+(k-2)<p_{1}+k$, contrary to the choice of P_{3}.

Subcase 2.2. $p_{1} \leq d_{G}\left(v_{i+2}, y\right)<p_{1}+2$.
Let P_{2}^{\prime} be a shortest path from y to v_{i+2}, and P_{3}^{\prime} be a second shortest path respect to P_{2}^{\prime} between y and v_{i+2}. Let $C_{1}^{\prime}=P_{2}^{\prime} \triangle P_{3}^{\prime}, C_{1}^{\prime} \cap P_{2}^{\prime} \cap P_{3}^{\prime}=\left\{x^{\prime}, y^{\prime}\right\}$. If $P_{3}^{\prime}=P_{2}$, since $g \geq 5$ and $\left|E\left(P_{2}^{\prime}\right)\right| \geq\left|E\left(P_{1}\right)\right|$, then $d_{C_{1}^{\prime}}\left(x^{\prime}, y^{\prime}\right) \geq 2$, and by Lemma 2.4 we have $\pi\left(v_{i+2}, y\right) \geq 1$. If $P_{3}^{\prime} \neq P_{2}$, by Lemma 2.4, $\pi\left(v_{i+2}, y\right) \geq 1$ except for the case that C_{1}^{\prime} is an odd cycle and $d_{C_{1}^{\prime}}\left(x^{\prime}, y^{\prime}\right)=1$. But, this case cannot happen because the length of P_{3}^{\prime} is $\left|E\left(P_{2}^{\prime}\right)\right|+\left|C_{1}^{\prime}\right|-2 \geq p_{1}+\left|C_{1}^{\prime}\right|-2 \geq p_{1}+k-2 \geq p_{1}+3$, which is larger than the length of P_{2}, contrary to the choice of P_{3}^{\prime}.

No matter which cases happen, we always have $\pi\left(v_{i+2}, y\right) \geq 1$. Similarly, we have $\pi\left(v_{i-2}, y\right) \geq 1$. Because $k \geq 5, v_{i-2}$ is different from v_{i+2}. For all the remaining vertices in $C, \pi\left(v_{j}, y\right) \geq 0$ for $j \neq i-2, i+2$. Then, for a fixed $y \in V(G) \backslash V(C)$, we get that $\sum_{x \in V(C)} \pi(x, y) \geq 2$. Therefore,

$$
\sum_{x \in V(C), y \in V(G) \backslash V(C)} \pi(x, y) \geq 2(n-k) .
$$

Case 3. $x, y \in V(G) \backslash V(C)$.

In this case, $\pi(x, y) \geq 0$.
From the above cases, we have

$$
\begin{aligned}
&=\sum_{\{x, y\} \subseteq V(G)}^{S z(G)-W(G)} \pi(x, y) \\
&= \sum_{\{x, y\} \subseteq V(C)} \pi(x, y)+\sum_{\substack{x \in V(C) \\
y \in V(G) \backslash V(C)}} \pi(x, y)+\sum_{\{x, y\} \subseteq V(G) \backslash V(C)} \pi(x, y) \\
& \geq\binom{ k}{2}-k+2(n-k) \\
&=2 n+\frac{1}{2} k(k-7) \\
& \geq 2 n-5 .
\end{aligned}
$$

for $k \geq 5$.
From the above inequalities, we see that equality holds if and only if $k=g=5$, $\pi(x, y)=1$ for all the nonadjacent pairs $\{x, y\}$ in C, and there are exactly two vertices v_{1}, v_{2} in C such that $\pi\left(v_{1}, y\right)=1, \pi\left(v_{2}, y\right)=1$ for all $y \in V(G) \backslash V(C)$, and $\pi(x, y)=0$ for every pair $\{x, y\} \subseteq V(G) \backslash V(C)$.

We first claim that if the equality holds, then G is unicyclic. Suppose that \mathcal{C} is the set of all cycles except the shortest cycle C. Let C^{\prime} be a shortest cycle of \mathcal{C}, then C^{\prime} is an isometric cycle.

If C^{\prime} is an even cycle, and there exists a pair of vertices $\{x, y\} \subseteq V\left(C^{\prime}\right) \backslash V(C)$, then by Lemma 2.5, $\pi(x, y) \geq 1$, a contradiction. So there is only one vertex $x \in$ $V\left(C^{\prime}\right) \backslash V(C)$. Let v_{i}, v_{j} be the neighbors of x in C^{\prime}. Then $v_{i} x, x v_{j}$ together with a shortest path between v_{i} and v_{j} in C is the cycle C^{\prime}. Since the length of C is $5, d_{C}\left(v_{i}, v_{j}\right) \leq 2$. This implies that the length of C^{\prime} is at most 4 , contrary to the assumption that $g \geq 5$.

If C^{\prime} is an odd cycle, and there exists a pair of nonadjacent vertices $\{x, y\} \subseteq$ $V\left(C^{\prime}\right) \backslash V(C)$. Then by Lemma $2.5, \pi(x, y) \geq 1$, a contradiction. If there are only two adjacent vertices x, y on $V\left(C^{\prime}\right) \backslash V(C)$, and let v_{i} be the neighbor of x in C and v_{j} the neighbor of y in C, then $v_{i} x y v_{j}$ together with a shortest path between v_{i} and v_{j} in C is the cycle C^{\prime}. Since the length of C is 5 and $g \geq 5, d_{C}\left(v_{i}, v_{j}\right)=2$. By Lemma $2.5, \mu_{v_{i}, v_{j}}(x y)=1$, and so $\pi\left(v_{i}, v_{j}\right) \geq 2$, a contradiction. If there is only one vertex $x \in V\left(C^{\prime}\right) \backslash V(C)$, and let v_{i}, v_{j} be the neighbors of x in C^{\prime}, then $v_{i} x, x v_{j}$ together with a shortest path between v_{i} and v_{j} in C is the cycle C^{\prime}. Since the length of C is $5, d_{C}\left(v_{i}, v_{j}\right) \leq 2$. This implies that the length of C^{\prime} is at most 4 , contrary to the assumption that $g \geq 5$.

So, we have that G is a unicyclic graph with the only cycle C of length 5 . Let $C=v_{1} v_{2} \cdots v_{5} v_{1}, T_{i}$ be the component of $E(G) \backslash E(C)$ that contains the vertex $v_{i}(1 \leq$ $i \leq 5)$.

If there are at least three nontrivial $T_{i} \mathrm{~s}$, say T_{i}, T_{j}, T_{k}, then there is a pair of vertices, say $\left\{v_{i}, v_{j}\right\}$ which are not adjacent. If $x \in V\left(T_{i}\right) \backslash\left\{v_{i}\right\}, y \in V\left(T_{j}\right) \backslash\left\{v_{j}\right\}$, then $\{x, y\} \subseteq V(G) \backslash V(C)$. Since $d_{C}\left(v_{i}, v_{j}\right)=2$, by Lemma 2.4, $\pi(x, y) \geq 1$, a contradiction. Therefore, there are at most two nontrivial $T_{i} \mathrm{~s}$, say T_{i}, T_{j}. If v_{i}, v_{j} are not adjacent, similarly we can find $\{x, y\} \subseteq V(G) \backslash V(C)$ satisfying $\pi(x, y) \geq 1$, a contradiction. Thus, v_{i}, v_{j} must be adjacent. In this case, for any $x \in V\left(T_{i}\right) \backslash\left\{v_{i}\right\}, y \in V\left(T_{j}\right) \backslash\left\{v_{j}\right\}$, $\pi(x, y)=0$, and for any $x \in V\left(T_{i}\right) \backslash\left\{v_{i}\right\}, \pi\left(x, v_{i-2}\right)=1, \pi\left(x, v_{i+2}\right)=1$, and $\pi\left(x, v_{k}\right)=0$ for $k \neq i-2, i+2 . y \in V\left(T_{j}\right) \backslash\left\{v_{j}\right\}$ is similar to the x case. By calculation, we have $S z(G)-W(G)=2 n-5$. If there is only one nontrivial T_{i}, we also can calculate that G satisfies $S z(G)-W(G)=2 n-5$.

Here we notice that by the above same way, we can give another proof to Conjecture 1.1, and get the following result:

Theorem 3.2 Let G be a connected bipartite graph with $n \geq 4$ vertices and $m \geq n$ edges. Then

$$
S z(G)-W(G) \geq 4 n-8
$$

Equality holds if and only if G is composed of a cycle C_{4} on 4 vertices and a tree T on $n-3$ vertices sharing a single vertex.

Proof. Let C be a shortest cycle of G, and assume that $C=v_{1} v_{2} \cdots v_{g} v_{1}$. Simply, C is an isometric cycle. We consider the pair $\{x, y\} \subseteq V(G)$.

Case 1. $\{x, y\} \subseteq V(C)$.
By Lemma 2.5, $\pi(x, y) \geq d_{C}(x, y)$. Thus, if $x y$ is an edge of G, then $\pi(x, y) \geq 1$. Otherwise, $\pi(x, y) \geq 2$. Therefore,

$$
\sum_{\{x, y\} \subseteq V(C)} \pi(x, y) \geq g+2\left(\binom{g}{2}-g\right) .
$$

Case 2. $x \in V(C), y \in V(G) \backslash V(C)$.
Assume that v_{i} is a vertex in C such that $d_{G}\left(v_{i}, y\right)=\min _{v \in V(C)} d_{G}(v, y)$, and P_{1} is a shortest path between v_{i} and y. Then P_{1} does not contain any vertex in C; otherwise, if $v_{j} \in P_{1}$, then $d_{G}\left(v_{j}, y\right)<d_{G}\left(v_{i}, y\right)$, contrary to the choice of v_{i}.

If there is only one path between y and v_{i}, then $\pi\left(y, v_{i}\right)=0$ and v_{i} is a cut vertex. For any other vertex v_{j} in C, the path from y to v_{j} must go through v_{i}, and thus, $\mu_{v_{i}, v_{j}}(e)=\mu_{y, v_{j}}(e)$ for $e \in E(C)$. From Lemma 2.5, we have that if $v_{i} v_{j}$ is an edge of C, then $\pi\left(y, v_{j}\right) \geq 1$. If $d_{C}\left(v_{i}, v_{j}\right) \geq 2$, then $\pi\left(y, v_{j}\right) \geq 2$. Therefore,

$$
\sum_{x \in V(C)} \pi(x, y) \geq 2+2(g-3)=2 g-4 \geq g .
$$

If there are at least two paths between y and v_{i}, then, since G is a bipartite graph, by Lemma $2.4 \pi\left(y, v_{i}\right) \geq 1$. And for each $v_{j} \in V(C) \backslash\left\{v_{i}\right\}$, there are at least two paths
from y to v_{j}, so $\pi\left(y, v_{j}\right) \geq 1$. Therefore,

$$
\sum_{x \in V(C)} \pi(x, y) \geq g
$$

Case 3. $x \in V(G) \backslash V(C), y \in V(G) \backslash V(C)$.
In this case, $\pi(x, y) \geq 0$.
From the above cases, we have

$$
\begin{aligned}
& S z(G)-W(G) \\
&= \sum_{\{x, y\} \subseteq V(G)} \pi(x, y) \\
&=\sum_{\{x, y\} \subseteq V(C)} \pi(x, y)+\sum_{\substack{x \in V(C) \\
y \in V(G) \backslash V(C)}} \pi(x, y)+\sum_{\{x, y\} \subseteq V(G) \backslash V(C)} \pi(x, y) \\
& \geq g+2\left(\binom{g}{2}-g\right)+g(n-g) \\
&= g(n-2) \\
& \geq 4 n-8 .
\end{aligned}
$$

From the above inequalities, one can see that if equality holds, then $g=4$, and $\pi(x, y)=1$ for all the adjacent pairs $\{x, y\} \subseteq V(C), \pi(x, y)=2$ for all the nonadjacent pairs $\{x, y\} \subseteq V(C)$ and $\pi(x, y)=0$ for every pair $\{x, y\} \subseteq V(G) \backslash V(C)$.

Now we show that if equality holds, then G is a unicyclic graph. Suppose that \mathcal{C} is the set of all cycles except the shortest cycle C. Let C^{\prime} is a shortest cycle of \mathcal{C}. Then C^{\prime} is an isometric cycle. Since G is bipartite, C^{\prime} is an even cycle. If there exists a pair of vertices $\{x, y\} \subseteq V\left(C^{\prime}\right) \backslash V(C)$, then by Lemma $2.5, \pi(x, y)=1$, a contradiction. So there is only one vertex $x \in V\left(C^{\prime}\right) \backslash V(C)$. Let v_{i}, v_{j} be the neighbors of x in C^{\prime}. Then $v_{i} x, x v_{j}$ together with a shortest path between v_{i} and v_{j} in C is the cycle C^{\prime}. Since the length of C is $4, d_{C}\left(v_{i}, v_{j}\right)=2$. This implies that the length of C^{\prime} is 4 , $\mu_{v_{i}, v_{j}}\left(x v_{i}\right)=\mu_{v_{i}, v_{j}}\left(x v_{j}\right)=1$. Thus, $\pi\left(v_{i}, v_{j}\right) \geq 4$, a contradiction. Therefore, G is unicyclic.

Let T_{i} be the component of $E(G) \backslash E(C)$ that contains the vertex $v_{i}(1 \leq i \leq 4)$.
If there are at least two nontrivial $T_{i} \mathrm{~s}$, say T_{i}, T_{j}, then $\{x, y\} \subseteq V(G) \backslash V(C)$, where $x \in V\left(T_{i}\right) \backslash\left\{v_{i}\right\}, y \in V\left(T_{j}\right) \backslash\left\{v_{j}\right\}$. There are at least two paths between x and y, by Lemma 2.4, $\pi(x, y) \geq 1$, a contradiction. Therefore, there is only one nontrivial T_{i}. In this case, we can calculate that G satisfies $S z(G)-W(G)=4 n-8$. Hence, equality holds if and only if G is the graph composed of a cycle on 4 vertices, C_{4}, and a tree T on $n-3$ vertices sharing a single vertex.

Remark 4. It could be seen that the above proof of Theorem 3.2 or Conjecture 1.1 is different from that in our another paper [5]. There we first considered a 2-connected
graph G which has the property $S z(G)-W(G) \geq 4 n-8$, and then proved Conjecture 1.1 for any connected graph.

4 The proof of Conjecture 1.3

In this section, we give a proof to Conjecture 1.3. At first we need the following Lemmas.

Lemma 4.1 ([23]) For a connected graph G with at least two vertices,

$$
S z(G) \geq W(G)
$$

with equality if and only if each block of G is a complete graph.
Lemma 4.2 Let G be a connected graph with $n \geq 4$ vertices and $m \geq n$ edges and with an odd cycle. Then for every vertex $u \in V(G)$, there exists an edge $e=v_{1} v_{2} \in E(G)$ such that $u \in N_{0}(e)$, that is, $\sum_{e \in E(G)} n_{0}(e) \geq n$.

Proof. Suppose that there is a vertex $u \in V(G)$ such that for every $e=x y \in E(G)$, we have $d_{G}(u, x) \neq d_{G}(u, y)$. Let $d=\max _{z \in V(G)} d_{G}(u, z), N^{i}(u)=\left\{v \in V(G) \mid d_{G}(u, v)=\right.$ $i\}, 1 \leq i \leq d$. By the assumption, we know that there is no edge in $N^{i}(u)$ for every i, that is, $N^{i}(u)$ is an independent set. Set $X=\{u\} \cup \bigcup_{1 \leq i \leq d, i}$ is even $N^{i}(u), Y=$ $\bigcup_{1 \leq i \leq d, i}$ is odd $N^{i}(u)$. Then $G=G[X, Y]$ is a bipartite graph with partite sets X and Y. But, G is a connected graph with an odd cycle, a contradiction. Hence, for every vertex $u \in V(G)$, there exists an edge $e=v_{1} v_{2} \in E(G)$ such that $u \in N_{0}(e)$, and so we have $\sum_{e \in E(G)} n_{0}(e) \geq n$.

Now we turn to solving Conjecture 1.3 and get the following result:
Theorem 4.3 Let G be a connected nonbipartite graph with $n \geq 4$ vertices. Then

$$
S z^{*}(G)-W(G) \geq \frac{n^{2}+4 n-6}{4}
$$

Equality holds if and only if G is composed of a cycle C_{3} on 3 vertices and a tree T on $n-2$ vertices sharing a single vertex.

Proof. By using $n_{u}(e)+n_{v}(e)+n_{0}(e)=n$ for every $e \in E(G)$, we have

$$
\begin{aligned}
& S z^{*}(G)-W(G) \\
= & \sum_{e=u v \in E(G)}\left(n_{u}(e)+\frac{n_{0}(e)}{2}\right)\left(n_{v}(e)+\frac{n_{0}(e)}{2}\right)-W(G) \\
= & \sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)+\sum_{e=u v \in E(G)}\left(\frac{n_{0}(e)}{2}\left(n-n_{0}(e)\right)+\frac{n_{0}^{2}(e)}{4}\right)-W(G) \\
= & S z(G)-W(G)+\sum_{e=u v \in E(G)}\left(\frac{n_{0}(e)}{2} n-\frac{n_{0}^{2}(e)}{4}\right) .
\end{aligned}
$$

Let $n_{0}=\sum_{e=u v \in E(G)}\left(\frac{n_{0}(e)}{2} n-\frac{n_{0}^{2}(e)}{4}\right)$. If there are two edges $e^{\prime}, e^{\prime \prime}$ such that $n_{0}\left(e^{\prime}\right) \geq$ $n_{0}\left(e^{\prime \prime}\right)$, and put $n_{0}^{\prime}\left(e^{\prime}\right)=n_{0}\left(e^{\prime}\right)+1, n_{0}^{\prime}\left(e^{\prime \prime}\right)=n_{0}\left(e^{\prime \prime}\right)-1, n_{0}^{\prime}(e)=n_{0}(e)$ for other edges, then

$$
\begin{aligned}
& n_{0}^{\prime}-n_{0} \\
= & \sum_{e=u v \in E(G)}\left(\frac{n_{0}^{\prime}(e)}{2} n-\frac{n_{0}^{\prime 2}(e)}{4}\right)-\sum_{e=u v \in E(G)}\left(\frac{n_{0}(e)}{2} n-\frac{n_{0}^{2}(e)}{4}\right) \\
= & \frac{n_{0}\left(e^{\prime \prime}\right)-n_{0}\left(e^{\prime}\right)-1}{2} \\
< & 0 .
\end{aligned}
$$

Let C be a shortest odd cycle of G with length g, and $V(C)=\left\{v_{1}, v_{2}, \cdots, v_{g}\right\}$, $E(C)=\left\{e_{1}, e_{2}, \cdots, e_{g}\right\}$. Then C is isometric. For every edge $e=u v \in E(C)$, there is a vertex $x \in V(C)$ such that $d_{G}(x, u)=d_{C}(x, u)=d_{C}(x, v)=d_{G}(x, v)$. Therefore, $n_{0}(e) \geq 1$ for every $e \in E(C)$. If there are two edges $e^{\prime}, e^{\prime \prime}$ such that $n_{0}\left(e^{\prime}\right) \geq n_{0}\left(e^{\prime \prime}\right)$, we could do the operation as above, which makes n_{0} smaller. Thus, n_{0} attains its minimum when $n_{0}\left(e_{i}\right)=1$ except for $n_{0}\left(e_{1}\right), n_{0}(e)=0$ for all the remaining edges. By Lemma 4.2, $\sum_{e \in E(G)} n_{0}(e) \geq n$, and so $n_{0}\left(e_{1}\right) \geq n-g+1$. Hence,

$$
\begin{aligned}
n_{0} & \geq \frac{n}{2} \sum_{e=u v \in E(G)} n_{0}(e)-\frac{1}{4} \sum_{e=u v \in E(G)} n_{0}^{2}(e) \\
& \geq \frac{n}{2} n-\frac{1}{4}\left((g-1)+(n-(g-1))^{2}\right) \\
& \geq \frac{n^{2}}{2}-\frac{1}{4}\left(2+(n-2)^{2}\right) \\
& =\frac{n^{2}+4 n-6}{4} .
\end{aligned}
$$

From the above inequalities, we can see that equality holds if and only if $g=3$, $S z(G)=W(G)$ and $n_{0}\left(e_{1}\right)=n-2, n_{0}\left(e_{2}\right)=1, n_{0}\left(e_{3}\right)=1, n_{0}(e)=0$ for all the remaining edges.

Now we conclude that G is unicyclic. Suppose that G is not unicyclic. By Lemma 4.1, we know there is a block H different from C which is a complete graph of order at least three. Then, $n_{0}(e) \geq 1$ for every $e \in E(H)$, a contradiction.

Let T_{i} be the component of $E(G) \backslash E(C)$ that contains the vertex $v_{i}(1 \leq i \leq 3)$.
If there are at least two nontrivial $T_{i} \mathrm{~s}$, say T_{1}, T_{2}, then $n_{0}\left(v_{2} v_{3}\right)=\left|V\left(T_{1}\right)\right| \geq$ $2, n_{0}\left(v_{1} v_{3}\right)=\left|V\left(T_{2}\right)\right| \geq 2$, a contradiction. Therefore, there is only one nontrivial T_{i}. In this case, we can calculate that G satisfies $S z^{*}(G)-W(G)=\frac{n^{2}+4 n-6}{4}$. Hence, equality holds if and only if G is the graph composed of a cycle on 3 vertices, C_{3}, and a tree T on $n-2$ vertices sharing a single vertex.

Acknowledgement: The authors are very grateful to the referees' comments and suggestions, which helped to improve the presentation of the paper.

References

[1] M. Aouchiche, G. Caporossi, P. Hansen and M. Laffay, AutoGraphiX: a survey, Electronic Notes Discrete Math. 22(2005), 515-520.
[2] M. Aouchiche, P. Hansen, On a conjecture about the Szeged index, European J. Combin. 31(2010), 1662-1666.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1. The AutoGraphiX system, Discrete Math, 212(2000), 29-44.
[5] L. Chen, X. Li, M. Liu, I. Gutman, On a relation between the Szeged and the Wiener indices of bipartite graphs, Trans. Comb. 1(4)(2012), 43-49.
[6] A. Dobrynin, I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publ. Inst. Math. (Beograd) 56(1994), 18-22.
[7] A. Dobrynin, I. Gutman, Solving a problem connected with distances in graphs, Graph Theory Notes New York 28(1995), 21-23.
[8] Z. Du, A. Ilic, On AGX conjectures regarding average eccentricity, MATCH Commun. Math. Comput. Chem. 69(2013), 579-587.
[9] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes of New York 27(1994), 9-15.
[10] I. Gutman, S. Klavžar, B. Mohar (Eds), Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem. 35(1997), 1-259.
[11] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[12] I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A(1993), 651-661.
[13] P. Hansen et. al., Computers and conjectures in chemical graph theory, Plenary talk in the International Conference on Mathematical Chemistry, August 4-7, 2010, Xiamen, China.
[14] A. Ilic, Note on PI and Szeged indices, Math. Comput. Model. 52(2010), 15701576.
[15] H. Khodashenas, M.J. Nadjafi-Arani, A.R. Ashrafi, I. Gutman, A new proof of the Szeged-Wiener theorem, Kragujevac J. Math. 35(2011), 165-172.
[16] S. Klavzar, M.J. Nadjafi-Arani, Wiener index versus Szeged index in networks, Discrete Appl. Math. 161(2013), 1150-1153.
[17] X. Li, M. Liu, Bicyclic graphs with maximal revised Szeged index, Discrete Appl. Math., in press. doi 10.1016/j.dam.2013.04.002.
[18] M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Modelling 55(2012), 1644-1648.
[19] M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discrete Math. 311(2011), 2233-2237.
[20] T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math. 158(2010), 1936-1944.
[21] T. Pisanski, J. Žerovnik, Edge-contributions of some topological indices and arboreality of molecular graphs, Ars Math. Contemp. 2(2009), 49-58.
[22] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49(2002), 483-496.
[23] S. Simić, I. Gutman, V. Baltić, Some graphs with extremal Szeged index, Math. Slovaca 50(2000), 1-15.
[24] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69(1947), 17-20.
[25] R. Xing, B. Zhou, On the revised Szeged index, Discrete Appl. Math. 159(2011), 69-78.

