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Abstract

Hansen et. al. used the computer program AutoGraphiX to study the
differences between the Szeged index Sz(G) and the Wiener index W (G),
and between the revised Szeged index Sz∗(G) and the Wiener index for a
connected graph G. They conjectured that for a connected nonbipartite
graph G with n ≥ 5 vertices and girth g ≥ 5, Sz(G)−W (G) ≥ 2n− 5,

and moreover, the bound is best possible when the graph is composed
of a cycle C5 on 5 vertices and a tree T on n−4 vertices sharing a single
vertex. They also conjectured that for a connected nonbipartite graph
G with n ≥ 4 vertices, Sz∗(G) −W (G) ≥ n2+4n−6

4 , and moreover, the
bound is best possible when the graph is composed of a cycle C3 on 3
vertices and a tree T on n − 2 vertices sharing a single vertex. In this
paper, we not only give confirmative proofs to these two conjectures but
also characterize those graphs that achieve the two lower bounds.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the

readers to [3] for terminology and notation. Let G be a connected graph with vertex

set V (G) and edge set E(G). For u, v ∈ V (G), dG(u, v) denotes the distance between

u and v in G. The Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

This topological index has been extensively studied in the mathematical literature; see,

e.g., [10, 12]. Let e = uv be an edge of G, and define three sets as follows:

Nu(e) = {w ∈ V (G) : dG(u,w) < dG(v, w)},
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Nv(e) = {w ∈ V (G) : dG(v, w) < dG(u,w)},
N0(e) = {w ∈ V (G) : dG(u,w) = dG(v, w)}.

Thus, {Nu(e), Nv(e), N0(e)} is a partition of the vertices of G respect to e. The number

of vertices of Nu(e), Nv(e) and N0(e) are denoted by nu(e), nv(e) and n0(e), respectively.

Evidently, if n is the number of vertices of the graph G, then nu(e)+nv(e)+n0(e) = n.

If G is bipartite, then the equality n0(e) = 0 holds for all e ∈ E(G). Therefore, for

any edge e of a a bipartite graph, nu(e) + nv(e) = n.

A long time known property of the Wiener index is the formula [11,24]:

W (G) =
∑

e=uv∈E(G)

nu(e)nv(e), (1.1)

which is applicable for trees. Motivated the above formula, Gutman [9] introduced a

graph invariant, named as the Szeged index, defined by

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

where G is any graph, not necessarily connected. Evidently, the Szeged index is defined

as a proper extension of the formula 1.1 for the Wiener index of trees.

Randić [22] observed that the Szeged index does not take into account the contri-

butions of the vertices at equal distances from the endpoints of an edge, and so he

conceived a modified version of the Szeged index which is named as the revised Szeged

index. The revised Szeged index of a connected graph G is defined as

Sz∗(G) =
∑

e=uv∈E(G)

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)
.

Some properties and applications of the Szeged index and the revised Szeged index

have been reported in [2, 5, 14,17,20,21,25].

It is known that for a connected graph, Sz∗(G) ≥ Sz(G) ≥ W (G), and it is easy

to see that Sz∗(G) = Sz(G) = W (G) if G is a tree, which means m = n − 1. So,

one wants to know the differences between Sz(G) and W (G), and between Sz∗(G) and

W (G) for a connected graph with m ≥ n. In [6], Dobrynin and Gutman investigated

the structure of a connected graph G with the property of Sz(G) − W (G) ≥ 0 and

conjectured that Sz(G) = W (G) holds if and only if every block of G is a complete

graph. This conjecture was proved by the same authors in [7]. A simple proof for this

result is given by Khodashenas, Nadjafi-Arani, Ashrafi and Gutman in [15]. Especially

in [19], Nadjafi-Arani, Khodashenas and Ashrafi investigated the structure of a graph

G with Sz(G) − W (G) = n. Also in [18] they discussed graphs whose Szeged and

Wiener numbers differ by 4 and 5, and mentioned the conjecture that Sz(G)−W (G) ≥
2n − 5 for graphs in which at least one block is not a complete graph. Then in [16]

Sz(G)−W (G) was investigated in network by Klavzar and Nadjafi-Arani.
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AutoGraphiX has been used to study the relations involving invariants by several

graph theorists. We refer the reader to [1, 4, 8] for more details. In [13] Hansen et. al.

used the computer program AutoGraphiX and made the following conjectures:

Conjecture 1.1 Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n

edges. Then

Sz(G)−W (G) ≥ 4n− 8.

Moreover, the bound is best possible when the graph is composed of a cycle C4 on 4

vertices and a tree T on n− 3 vertices sharing a single vertex.

Conjecture 1.2 Let G be a connected graph with n ≥ 5 vertices with an odd cycle and

girth g ≥ 5. Then

Sz(G)−W (G) ≥ 2n− 5.

Moreover, the bound is best possible when the graph is composed of a cycle C5 on 5

vertices and a tree T on n− 4 vertices sharing a single vertex.

Conjecture 1.3 Let G be a connected graph with n ≥ 4 vertices and m ≥ n edges and

with an odd cycle. Then

Sz∗(G)−W (G) ≥ n2 + 4n− 6

4
.

Moreover, the bound is best possible when the graph is composed of a cycle C3 on 3

vertices and a tree T on n− 2 vertices sharing a single vertex.

In [5] we showed that Conjectures 1.1 is true. In this paper, we not only give

confirmative proofs to Conjectures 1.2 and 1.3 but also characterize those graphs that

achieve the two lower bounds. It should be point out that, apart from the graph

composed of a cycle C5 on 5 vertices and a tree T on n − 4 vertices sharing a single

vertex, we find another class of graphs such that the equality of Conjecture 1.2 also

holds, that is, the graph composed of a cycle C5 on 5 vertices and two trees rooted at

two adjacent vertices v1, v2 in the C5. We notice that the method used in the proof

of Conjecture 1.2 can also be used to prove the bipartite case, and therefore this gives

another proof to Conjecture 1.1 other than that in [5].

2 Preliminaries

We start this section with three definitions that are frequently used in our later proofs.

As usual, the symmetric difference S1∆S2 of two sets S1 and S2 is defined as (S1 ∪
S2) \ (S1 ∩ S2).
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Definition 2.1 Let P1, P2 be two paths of a graph G. The symmetric difference of P1

and P2, denoted by P1∆P2, is defined as the subgraph induced by the set E(P1)∆E(P2)

of edges.

Remark 1. If P1, P2 are two different paths from x to y, then P1∆P2 is the union

of some edge disjoint cycles. Note that P1∆P2 cannot contain isolated vertices as

components.

Definition 2.2 Let P be a shortest path between two vertices x and y in a graph G,

P ′ be another path from x to y in G. We call P ′ a second shortest path respect to P

between x and y, if P ′ 6= P , |P ′|−|P | is minimum, and if there are more than one path

satisfying the condition, we choose P ′ as a one with the most common vertices with P

in G.

Remark 2. If there are at least two shortest paths between x and y, we choose one

of them as P in Definition 2.2. Then, we choose a second shortest path P ′ to be one

of the rest shortest paths that has the most vertices in common with P .

Remark 3. Let P be a shortest path and P ′ a second shortest path respect to P

between x and y in G. Then P∆P ′ is a cycle. Otherwise, we can find a path that has

the same length with P ′, but has more common vertices with P .

Definition 2.3 A subgraph H of a graph G is called isometric if the distance between

every pair of vertices in H is the same as their distance in G.

In [23] Gutman gave another expression for the Szeged index:

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e) =
∑

e=uv∈E(G)

∑

{x,y}⊆V (G)

µx,y(e)

where µx,y(e), interpreted as the contribution of the vertex pair x and y to the product

nu(e)nv(e), is defined as follows:

µx,y(e) =





1, if





x ∈ Nu(e) and y ∈ Nv(e),

or

x ∈ Nv(e) and y ∈ Nu(e),

0, otherwise.

From above expressions, we know that

Sz(G)−W (G) =
∑

{x,y}⊆V (G)

∑

e∈E(G)

µx,y(e)−
∑

{x,y}⊆V (G)

dG(x, y)

=
∑

{x,y}⊆V (G)


 ∑

e∈E(G)

µx,y(e)− dG(x, y)


 .
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For convenience, let π(x, y) =
∑

e∈E(G) µx,y(e)− dG(x, y).

Let G be a connected graph. For every pair {x, y} ⊆ V (G), let P1 be a shortest

path between x and y. We know that for all e ∈ E(P1), µx,y(e) = 1, which means that

π(x, y) ≥ 0. Let P2 be a second shortest path respect to P1 between x and y (if there

exists). Then we have P1∆P2 = C, where C is a cycle. Let P ′
i = Pi

⋂
C = x′Piy

′, see

Figure 1. If E(P1)
⋂

E(P2) = ∅, then x′ = x, y′ = y.

r r r r
x yx′ y′P ′

1

P ′
2

Figure 1

Now we have the following lemma.

Lemma 2.4 For every pair {x, y} ⊆ V (G), and C, x′, y′ defined as above,

(1) if C is an even cycle, then π(x, y) ≥ dC(x′, y′) ≥ 1;

(2) if C is an odd cycle and dC(x′, y′) ≥ 2, then π(x, y) ≥ 1.

Proof. Firstly, we prove that for every v ∈ V (C), dC(x′, v) = dG(x′, v). If v ∈ P ′
1, it is

simply true; otherwise, we can find a shorter path between x′ and y′, and then we can

find a shorter path between x and y. If v ∈ P ′
2 and dC(x′, v) > dG(x′, v). Let P3 be a

shortest path between x′ and v in G, then the path xP2x
′P3vP2y

′P2y between x and y

is shorter than P2, a contradiction. For the same reason, we have dC(y′, v) = dG(y′, v)

for all v ∈ V (C). Similarly, it is easy to see that a shortest path from x (or y) to the

vertex v in P ′
2 is xP2x

′(yP2y
′) together with a shortest path from x′(y′) to v in C. So,

if an edge e = uv in E(C) makes µx′,y′(e) = 1, without loss of generality, assume that

x′ ∈ Nu(e), y
′ ∈ Nv(e), then we have x ∈ Nu(e), y ∈ Nv(e) hence µx,y(e) = 1.

(1) C is an even cycle.

We know that |E(P ′
2)| ≥ |E(P ′

1)|, let x′′(y′′) be the vertex in P ′
2 such that dC(x′, x′′) =

|C|
2

(dC(y′, y′′) = |C|
2

). Then the path between x′′ and y′′ in P ′
2 is denoted by Q1; see

Figure 2. For every e = uv in Q1, we have x′ ∈ Nu(e), y
′ ∈ Nv(e) or x′ ∈ Nv(e), y

′ ∈
Nu(e), that is µx′,y′(e) = 1, hence µx,y(e) = 1.

r r r r
x yx′ y′P ′

1

r ry′′ x′′
Q1

Figure 2: The dotted line is Q1.

(2) C is an odd cycle.
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Since |E(P ′
2)| ≥ |E(P ′

1)|, there are vertices x1, x2, y1, y2 in P ′
2 such that

dC(x′, x1) = dC(x′, x2), (2.1)

dC(y′, y1) = dC(y′, y2). (2.2)

Let dC(x1, y1) = min{ dC(xi, yj), i, j ∈ {1, 2}}, then the path between x1 and y1 in

P ′
2 is denoted by Q2. For every e = uv in Q2, x′ ∈ Nu(e), y

′ ∈ Nv(e) or x′ ∈ Nv(e), y
′ ∈

Nu(e), that is µx′,y′(e) = 1, hence µx,y(e) = 1.

r r r r
x yx′ y′P ′

1

Q2

r r r ry2

y1

x2

x1

Figure 3: The dotted line is Q2.

Next we show that dC(x1, y1) ≥ 1. From equations 2.1 and 2.2, we have

dC(x′, x1) = dC(x′, y′) + dC(y′, x1)− 1,

dC(y′, y1) = dC(x′, y′) + dC(x′, y1)− 1.

If dC(x1, y1) = 0, that is x1 = y1, then by adding the above two equations, we get

dC(x′, y′) = 1,

which contradicts the assumption dC(x′, y′) ≥ 2.

From the proof of Lemma 2.4, we also get the following lemma.

Lemma 2.5 For every pair {x, y} ⊆ V (C), where C is an isometric cycle,

(1) if C is an even cycle, then π(x, y) ≥ dC(x, y) ≥ 1;

(2) if C is an odd cycle and dC(x, y) ≥ 2, then π(x, y) ≥ 1.

Proof. By the definition of isometric, for any two vertices u, v ∈ V (C), dC(u, v) =

dG(u, v). It is obviously that dC(x, v) = dG(x, v), dC(y, v) = dG(y, v), for every v ∈
V (C). So we obtain Lemma 2.5 by the similar method of Lemma 2.4.

3 The proofs of Conjectures 1.1-1.2

Now, we give a confirmative proof to Conjecture 1.2 and get the following theorem:

Theorem 3.1 Let G be a connected nonbipartite graph on n ≥ 5 vertices and girth

g ≥ 5. Then

Sz(G)−W (G) ≥ 2n− 5.

Equality holds if and only if G is composed of a cycle C5 on 5 vertices, and one tree

rooted at a vertex of the C5 or two trees, respectively, rooted at two adjacent vertices of

the C5.
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Proof. Let C = v1v2 · · · vkv1 be a shortest odd cycle of G with length k, where k ≥ g ≥
5. It is obvious that C is an isometric cycle. We consider the pair {x, y} ⊆ V (G).

Case 1. {x, y} ⊆ V (C).

If dC(x, y) ≥ 2, then by Lemma 2.5 we have π(x, y) ≥ 1. Otherwise, π(x, y) ≥ 0.

Therefore, ∑

{x,y}⊆V (C)

π(x, y) ≥
(

k

2

)
− k.

Case 2. x ∈ V (C), y ∈ V (G)\V (C).

We will prove that for every y ∈ V (G)\V (C), there exist two vertices x1, x2 in C

such that π(x1, y) ≥ 1 and π(x2, y) ≥ 1.

Assume that vi is the vertex in C such that dG(vi, y) = minv∈V (C)dG(v, y), and P1

is a shortest path between vi and y. Let |E(P1)| = p1. It is obvious that P1 does not

contain any vertex in C.

Now we show that π(vi+2, y) ≥ 1. Since P2 = yP1vivi+1vi+2 is a path from y to vi+2,

p1 = dG(vi, y) ≤ dG(vi+2, y) ≤ p1 + 2.

Subcase 2.1. dG(vi+2, y) = p1 + 2.

In this case, P2 is a shortest path from y to vi+2. Let P3 be a second shortest path

respect to P2 between y and vi+2, C1 = P2 4 P3, C1 ∩ P2 ∩ P3 = {x′, y′}. By Lemma

2.4, π(vi+2, y) ≥ 1 except for the case that C1 is an odd cycle and dC1(x
′, y′) = 1. In

this case, the length of P3 is (p1 + 2) + |C1| − 2 = p1 + |C1|, which is not less than

p1 + k. Consider the path yP1vivi−1vi−2 · · · vi+2. It is a path between y and vi+2, and

its length is p1 + (k − 2) < p1 + k, contrary to the choice of P3.

Subcase 2.2. p1 ≤ dG(vi+2, y) < p1 + 2.

Let P ′
2 be a shortest path from y to vi+2, and P ′

3 be a second shortest path respect

to P ′
2 between y and vi+2. Let C ′

1 = P ′
2 4 P ′

3, C ′
1 ∩ P ′

2 ∩ P ′
3 = {x′, y′}. If P ′

3 = P2,

since g ≥ 5 and |E(P ′
2)| ≥ |E(P1)|, then dC′1(x

′, y′) ≥ 2, and by Lemma 2.4 we have

π(vi+2, y) ≥ 1. If P ′
3 6= P2, by Lemma 2.4, π(vi+2, y) ≥ 1 except for the case that C ′

1 is

an odd cycle and dC′1(x
′, y′) = 1. But, this case cannot happen because the length of

P ′
3 is |E(P ′

2)|+ |C ′
1| − 2 ≥ p1 + |C ′

1| − 2 ≥ p1 + k− 2 ≥ p1 + 3, which is larger than the

length of P2, contrary to the choice of P ′
3.

No matter which cases happen, we always have π(vi+2, y) ≥ 1. Similarly, we have

π(vi−2, y) ≥ 1. Because k ≥ 5, vi−2 is different from vi+2. For all the remaining vertices

in C, π(vj, y) ≥ 0 for j 6= i − 2, i + 2. Then, for a fixed y ∈ V (G)\V (C), we get that∑
x∈V (C) π(x, y) ≥ 2. Therefore,

∑

x∈V (C),y∈V (G)\V (C)

π(x, y) ≥ 2(n− k).

Case 3. x, y ∈ V (G)\V (C).
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In this case, π(x, y) ≥ 0.

From the above cases, we have

Sz(G)−W (G)

=
∑

{x,y}⊆V (G)

π(x, y)

=
∑

{x,y}⊆V (C)

π(x, y) +
∑

x∈V (C)
y∈V (G)\V (C)

π(x, y) +
∑

{x,y}⊆V (G)\V (C)

π(x, y)

≥
(

k

2

)
− k + 2(n− k)

= 2n +
1

2
k(k − 7)

≥ 2n− 5.

for k ≥ 5.

From the above inequalities, we see that equality holds if and only if k = g = 5,

π(x, y) = 1 for all the nonadjacent pairs {x, y} in C, and there are exactly two vertices

v1, v2 in C such that π(v1, y) = 1, π(v2, y) = 1 for all y ∈ V (G)\V (C), and π(x, y) = 0

for every pair {x, y} ⊆ V (G)\V (C).

We first claim that if the equality holds, then G is unicyclic. Suppose that C is the

set of all cycles except the shortest cycle C. Let C ′ be a shortest cycle of C, then C ′ is

an isometric cycle.

If C ′ is an even cycle, and there exists a pair of vertices {x, y} ⊆ V (C ′)\V (C),

then by Lemma 2.5, π(x, y) ≥ 1, a contradiction. So there is only one vertex x ∈
V (C ′)\V (C). Let vi, vj be the neighbors of x in C ′. Then vix, xvj together with

a shortest path between vi and vj in C is the cycle C ′. Since the length of C is

5, dC(vi, vj) ≤ 2. This implies that the length of C ′ is at most 4, contrary to the

assumption that g ≥ 5.

If C ′ is an odd cycle, and there exists a pair of nonadjacent vertices {x, y} ⊆
V (C ′)\V (C). Then by Lemma 2.5, π(x, y) ≥ 1, a contradiction. If there are only two

adjacent vertices x, y on V (C ′)\V (C), and let vi be the neighbor of x in C and vj the

neighbor of y in C, then vixyvj together with a shortest path between vi and vj in

C is the cycle C ′. Since the length of C is 5 and g ≥ 5, dC(vi, vj) = 2. By Lemma

2.5, µvi,vj
(xy) = 1, and so π(vi, vj) ≥ 2, a contradiction. If there is only one vertex

x ∈ V (C ′)\V (C), and let vi, vj be the neighbors of x in C ′, then vix, xvj together

with a shortest path between vi and vj in C is the cycle C ′. Since the length of C

is 5, dC(vi, vj) ≤ 2. This implies that the length of C ′ is at most 4, contrary to the

assumption that g ≥ 5.

So, we have that G is a unicyclic graph with the only cycle C of length 5. Let

C = v1v2 · · · v5v1, Ti be the component of E(G)\E(C) that contains the vertex vi(1 ≤
i ≤ 5).
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If there are at least three nontrivial Tis, say Ti, Tj, Tk, then there is a pair of ver-

tices, say {vi, vj} which are not adjacent. If x ∈ V (Ti)\{vi}, y ∈ V (Tj)\{vj}, then

{x, y} ⊆ V (G)\V (C). Since dC(vi, vj) = 2, by Lemma 2.4, π(x, y) ≥ 1, a contradiction.

Therefore, there are at most two nontrivial Tis, say Ti, Tj. If vi, vj are not adjacent,

similarly we can find {x, y} ⊆ V (G)\V (C) satisfying π(x, y) ≥ 1, a contradiction.

Thus, vi, vj must be adjacent. In this case, for any x ∈ V (Ti)\{vi}, y ∈ V (Tj)\{vj},
π(x, y) = 0, and for any x ∈ V (Ti)\{vi}, π(x, vi−2) = 1, π(x, vi+2) = 1, and π(x, vk) = 0

for k 6= i − 2, i + 2. y ∈ V (Tj)\{vj} is similar to the x case. By calculation, we have

Sz(G)−W (G) = 2n− 5. If there is only one nontrivial Ti, we also can calculate that

G satisfies Sz(G)−W (G) = 2n− 5.

Here we notice that by the above same way, we can give another proof to Conjecture

1.1, and get the following result:

Theorem 3.2 Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n

edges. Then

Sz(G)−W (G) ≥ 4n− 8.

Equality holds if and only if G is composed of a cycle C4 on 4 vertices and a tree T on

n− 3 vertices sharing a single vertex.

Proof. Let C be a shortest cycle of G, and assume that C = v1v2 · · · vgv1. Simply, C is

an isometric cycle. We consider the pair {x, y} ⊆ V (G).

Case 1. {x, y} ⊆ V (C).

By Lemma 2.5, π(x, y) ≥ dC(x, y). Thus, if xy is an edge of G, then π(x, y) ≥ 1.

Otherwise, π(x, y) ≥ 2. Therefore,

∑

{x,y}⊆V (C)

π(x, y) ≥ g + 2

((
g

2

)
− g

)
.

Case 2. x ∈ V (C), y ∈ V (G)\V (C).

Assume that vi is a vertex in C such that dG(vi, y) = minv∈V (C)dG(v, y), and P1 is a

shortest path between vi and y. Then P1 does not contain any vertex in C; otherwise,

if vj ∈ P1, then dG(vj, y) < dG(vi, y), contrary to the choice of vi.

If there is only one path between y and vi, then π(y, vi) = 0 and vi is a cut vertex.

For any other vertex vj in C, the path from y to vj must go through vi, and thus,

µvi,vj
(e) = µy,vj

(e) for e ∈ E(C). From Lemma 2.5, we have that if vivj is an edge of

C, then π(y, vj) ≥ 1. If dC(vi, vj) ≥ 2, then π(y, vj) ≥ 2. Therefore,
∑

x∈V (C)

π(x, y) ≥ 2 + 2(g − 3) = 2g − 4 ≥ g.

If there are at least two paths between y and vi, then, since G is a bipartite graph,

by Lemma 2.4 π(y, vi) ≥ 1. And for each vj ∈ V (C)\{vi}, there are at least two paths
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from y to vj, so π(y, vj) ≥ 1. Therefore,

∑

x∈V (C)

π(x, y) ≥ g.

Case 3. x ∈ V (G)\V (C), y ∈ V (G)\V (C).

In this case, π(x, y) ≥ 0.

From the above cases, we have

Sz(G)−W (G)

=
∑

{x,y}⊆V (G)

π(x, y)

=
∑

{x,y}⊆V (C)

π(x, y) +
∑

x∈V (C)
y∈V (G)\V (C)

π(x, y) +
∑

{x,y}⊆V (G)\V (C)

π(x, y)

≥ g + 2(

(
g

2

)
− g) + g(n− g)

= g(n− 2)

≥ 4n− 8.

From the above inequalities, one can see that if equality holds, then g = 4, and

π(x, y) = 1 for all the adjacent pairs {x, y} ⊆ V (C), π(x, y) = 2 for all the nonadjacent

pairs {x, y} ⊆ V (C) and π(x, y) = 0 for every pair {x, y} ⊆ V (G)\V (C).

Now we show that if equality holds, then G is a unicyclic graph. Suppose that C is

the set of all cycles except the shortest cycle C. Let C ′ is a shortest cycle of C. Then

C ′ is an isometric cycle. Since G is bipartite, C ′ is an even cycle. If there exists a pair

of vertices {x, y} ⊆ V (C ′)\V (C), then by Lemma 2.5, π(x, y) = 1, a contradiction.

So there is only one vertex x ∈ V (C ′)\V (C). Let vi, vj be the neighbors of x in C ′.
Then vix, xvj together with a shortest path between vi and vj in C is the cycle C ′.
Since the length of C is 4, dC(vi, vj) = 2. This implies that the length of C ′ is 4,

µvi,vj
(xvi) = µvi,vj

(xvj) = 1. Thus, π(vi, vj) ≥ 4, a contradiction. Therefore, G is

unicyclic.

Let Ti be the component of E(G)\E(C) that contains the vertex vi(1 ≤ i ≤ 4).

If there are at least two nontrivial Tis, say Ti, Tj, then {x, y} ⊆ V (G)\V (C), where

x ∈ V (Ti)\{vi}, y ∈ V (Tj)\{vj}. There are at least two paths between x and y, by

Lemma 2.4, π(x, y) ≥ 1, a contradiction. Therefore, there is only one nontrivial Ti. In

this case, we can calculate that G satisfies Sz(G) −W (G) = 4n − 8. Hence, equality

holds if and only if G is the graph composed of a cycle on 4 vertices, C4, and a tree T

on n− 3 vertices sharing a single vertex.

Remark 4. It could be seen that the above proof of Theorem 3.2 or Conjecture 1.1 is

different from that in our another paper [5]. There we first considered a 2-connected
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graph G which has the property Sz(G)−W (G) ≥ 4n− 8, and then proved Conjecture

1.1 for any connected graph.

4 The proof of Conjecture 1.3

In this section, we give a proof to Conjecture 1.3. At first we need the following

Lemmas.

Lemma 4.1 ( [23]) For a connected graph G with at least two vertices,

Sz(G) ≥ W (G),

with equality if and only if each block of G is a complete graph.

Lemma 4.2 Let G be a connected graph with n ≥ 4 vertices and m ≥ n edges and with

an odd cycle. Then for every vertex u ∈ V (G), there exists an edge e = v1v2 ∈ E(G)

such that u ∈ N0(e), that is,
∑

e∈E(G) n0(e) ≥ n.

Proof. Suppose that there is a vertex u ∈ V (G) such that for every e = xy ∈ E(G), we

have dG(u, x) 6= dG(u, y). Let d = maxz∈V (G)dG(u, z), N i(u) = {v ∈ V (G)|dG(u, v) =

i}, 1 ≤ i ≤ d. By the assumption, we know that there is no edge in N i(u) for every

i, that is, N i(u) is an independent set. Set X = {u} ∪ ⋃
1≤i≤d,i is even N i(u), Y =⋃

1≤i≤d,i is odd N i(u). Then G = G[X,Y ] is a bipartite graph with partite sets X and

Y . But, G is a connected graph with an odd cycle, a contradiction. Hence, for every

vertex u ∈ V (G), there exists an edge e = v1v2 ∈ E(G) such that u ∈ N0(e), and so

we have
∑

e∈E(G) n0(e) ≥ n.

Now we turn to solving Conjecture 1.3 and get the following result:

Theorem 4.3 Let G be a connected nonbipartite graph with n ≥ 4 vertices. Then

Sz∗(G)−W (G) ≥ n2 + 4n− 6

4
.

Equality holds if and only if G is composed of a cycle C3 on 3 vertices and a tree T on

n− 2 vertices sharing a single vertex.

Proof. By using nu(e) + nv(e) + n0(e) = n for every e ∈ E(G), we have

Sz∗(G)−W (G)

=
∑

e=uv∈E(G)

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)
−W (G)

=
∑

e=uv∈E(G)

nu(e)nv(e) +
∑

e=uv∈E(G)

(
n0(e)

2
(n− n0(e)) +

n2
0(e)

4

)
−W (G)

= Sz(G)−W (G) +
∑

e=uv∈E(G)

(
n0(e)

2
n− n2

0(e)

4

)
.
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Let n0 =
∑

e=uv∈E(G)

(
n0(e)

2
n− n2

0(e)

4

)
. If there are two edges e′, e′′ such that n0(e

′) ≥

n0(e
′′), and put n′0(e

′) = n0(e
′) + 1, n′0(e

′′) = n0(e
′′)− 1, n′0(e) = n0(e) for other edges,

then

n′0 − n0

=
∑

e=uv∈E(G)

(
n′0(e)

2
n− n′20 (e)

4

)
−

∑

e=uv∈E(G)

(
n0(e)

2
n− n2

0(e)

4

)

=
n0(e

′′)− n0(e
′)− 1

2
< 0.

Let C be a shortest odd cycle of G with length g, and V (C) = {v1, v2, · · · , vg},
E(C) = {e1, e2, · · · , eg}. Then C is isometric. For every edge e = uv ∈ E(C), there

is a vertex x ∈ V (C) such that dG(x, u) = dC(x, u) = dC(x, v) = dG(x, v). Therefore,

n0(e) ≥ 1 for every e ∈ E(C). If there are two edges e′, e′′ such that n0(e
′) ≥ n0(e

′′),
we could do the operation as above, which makes n0 smaller. Thus, n0 attains its

minimum when n0(ei) = 1 except for n0(e1), n0(e) = 0 for all the remaining edges. By

Lemma 4.2,
∑

e∈E(G) n0(e) ≥ n, and so n0(e1) ≥ n− g + 1. Hence,

n0 ≥ n

2

∑

e=uv∈E(G)

n0(e)− 1

4

∑

e=uv∈E(G)

n2
0(e)

≥ n

2
n− 1

4

(
(g − 1) + (n− (g − 1))2

)

≥ n2

2
− 1

4

(
2 + (n− 2)2

)

=
n2 + 4n− 6

4
.

From the above inequalities, we can see that equality holds if and only if g = 3,

Sz(G) = W (G) and n0(e1) = n − 2, n0(e2) = 1, n0(e3) = 1, n0(e) = 0 for all the

remaining edges.

Now we conclude that G is unicyclic. Suppose that G is not unicyclic. By Lemma

4.1, we know there is a block H different from C which is a complete graph of order

at least three. Then, n0(e) ≥ 1 for every e ∈ E(H), a contradiction.

Let Ti be the component of E(G)\E(C) that contains the vertex vi(1 ≤ i ≤ 3).

If there are at least two nontrivial Tis, say T1, T2, then n0(v2v3) = |V (T1)| ≥
2, n0(v1v3) = |V (T2)| ≥ 2, a contradiction. Therefore, there is only one nontrivial

Ti. In this case, we can calculate that G satisfies Sz∗(G) −W (G) = n2+4n−6
4

. Hence,

equality holds if and only if G is the graph composed of a cycle on 3 vertices, C3, and

a tree T on n− 2 vertices sharing a single vertex.
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