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Abstract. Andrews and Paule introduced broken k-diamond partitions by using
MacMahon’s partition analysis. Recently, Fu found a generalization which he called k

dots bracelet partitions and investigated some congruences for this kind of partitions.
In this paper, by finding congruence relations between the generating function for 5
dots bracelet partitions and that for 5-regular partitions, we get some new congruences
modulo 2 for the 5 dots bracelet partition function. Moreover, for a given prime p,
we study arithmetic properties modulo p of k dots bracelet partitions.

1. Introduction

Andrews and Paule [1] studied broken k-diamond partitions by using MacMahon’s
partition analysis, and gave the generating function for ∆k(n) which denotes the num-
ber of broken k-diamond partitions of n:

∞∑
n=0

∆k(n)qn =
(−q; q)∞

(q; q)2∞(−q2k+1; q2k+1)∞
.

They [1] proved the following arithmetic theorem for ∆1(n).

Theorem 1.1. [1, Theorem 5] For n ≥ 0,

∆1(2n + 1) ≡ 0 (mod 3).

Meanwhile, they posed some conjectures related to ∆2(n). Arithmetic properties of
broken k-diamond partitions have been the subject of many studies, see, for example
[3, 7, 9–12, 14, 17]. Recently, Fu [4] found a combinatorial proof of Theorem 1.1 and
introduced a generalization of broken k-diamond partitions which he called k dots
bracelet partitions. The generating function for the number of this kind of partitions
of n, denoted by Bk(n), is given by

∞∑
n=0

Bk(n)qn =
(−q; q)∞

(q; q)k−1∞ (−qk; qk)∞
, k ≥ 3.

Fu [4] proved the following congruences for Bk(n).
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Theorem 1.2. [4, Theorem 3.3] For n > 0, k ≥ 3, if k = pr is a prime power, we
have

Bk(2n + 1) ≡ 0 (mod p).

Theorem 1.3. [4, Theorem 3.5] For any k ≥ 3, s an integer between 1 and p − 1
such that 12s + 1 is a quadratic nonresidue modulo p, and any n ≥ 0, if p | k for some
prime p ≥ 5 say k = pm, then we have

Bk(pn + s) ≡ 0 (mod p).

Theorem 1.4. [4, Theorem 3.6] For n ≥ 0, k ≥ 3 even, say k = 2ml, where l is odd,
we have

Bk(2n + 1) ≡ 0 (mod 2m).

Later, Radu and Sellers [13] found some new congruences for Bk(n).

Theorem 1.5. [13, Theorem 1.4] For all n ≥ 0,

B5(10n + 7) ≡ 0 (mod 52),

B7(14n + 11) ≡ 0 (mod 72), and

B11(22n + 21) ≡ 0 (mod 112).

In this paper, we continue to study arithmetic properties of k dots bracelet parti-
tions. First, we recall two kinds of partitions which are used in this paper.

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n. Let p(n) denote the number of partitions of n. We have

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

If ` is a positive integer, then a partition is called an `-regular partition if there is
no part divisible by `. Let b`(n) denote the number of `-regular partitions of n. The
generating function for b`(n) is given by

∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

.

In section 2, in view of an identity given by Ramanujan [16] and a congruence
given by Hirschhorn and Sellers [8], we obtain two congruences modulo 2 for B5(n).
Meanwhile, by finding a congruence relation between B5(n) and b5(n), we derive many
infinite families of congruences modulo 2 for B5(n). In section 3, for a given prime p, by
means of the p-dissection identity for f(−q) given by the authors [6] and three classical
congruences for p(n) given by Ramanujan [15,16], we deduce more congruences modulo
p for Bk(n).

As usual, we follow the standard q-series notation [5]

(a; q)∞ =
∞∏

k=0

(1− aqk) and (a1, a2, . . . , am; q)∞ =
m∏

j=1

(aj; q)∞, |q| < 1.
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The Legendre symbol is defined as

(
a

p

)
:=





1, if a is a quadratic residue modulo p and a 6≡ 0 (mod p),
−1, if a is a quadratic non-residue modulo p,
0, if a ≡ 0 (mod p).

Let f(a, b) be Ramanujan’s general theta function given by

f(a, b) =
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 , |ab| < 1.

In light of Jacobi’s triple product identity [2, Theorem 1.3.3]

∞∑
n=−∞

znqn2

= (−zq,−q/z, q2; q2)∞, |q| < 1,

a special case of f(a, b) is stated as follows:

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞.

2. Congruences Modulo 2 for B5(n)

We recall Ramanujan’s identity [16, p. 212]

(q; q)∞ =
(q10, q15, q25; q25)∞

(q5, q20; q25)∞
− q(q25; q25)∞ − q2 (q5, q20, q25; q25)∞

(q10, q15; q25)∞
. (2.1)

For convenience, set

a(q) =
(q10, q15; q25)∞
(q5, q20; q25)∞

and b(q) =
(q5, q20; q25)∞
(q10, q15; q25)∞

=
1

a(q)
.

Then we rewrite (2.1) as

(q; q)∞ = (q25; q25)∞
(
a(q)− q − q2b(q)

)
. (2.2)

In addition, Hirschhorn and Sellers [8] showed that

∞∑
n=0

b5(2n)qn ≡ (q2; q2)∞ (mod 2). (2.3)

By means of (2.2) and (2.3), we derive the following results.

Theorem 2.1. For n ≥ 0, we have

B5(10n + 6) ≡ 0 (mod 2),

B5(10n + 8) ≡ 0 (mod 2).

Proof. We show that
∞∑

n=0

B5(n)qn =
(−q; q)∞

(q; q)4∞(−q5; q5)∞
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=
(q2; q2)∞(q5; q5)∞
(q; q)5∞(q10; q10)∞

≡ (q2; q2)∞(q5; q5)∞
(q4; q4)∞(q10; q10)∞(q; q)∞

(mod 2)

≡ 1

(q2; q2)∞(q10; q10)∞

(q5; q5)∞
(q; q)∞

(mod 2)

=
1

(q2; q2)∞(q10; q10)∞
·
∞∑

n=0

b5(n)qn.

Then
∞∑

n=0

B5(2n)qn ≡ 1

(q; q)∞(q5; q5)∞
·
∞∑

n=0

b5(2n)qn (mod 2)

≡ (q2; q2)∞
(q; q)∞(q5; q5)∞

(mod 2) by (2.3)

≡ (q; q)∞
(q5; q5)∞

(mod 2).

According to (2.2), it follows that
∞∑

n=0

B5(2n)qn ≡ (q25; q25)∞
(q5; q5)∞

(
a(q)− q − q2b(q)

)
(mod 2). (2.4)

Therefore, we get

B5(2(5n + 3)) = B5(10n + 6) ≡ 0 (mod 2),

B5(2(5n + 4)) = B5(10n + 8) ≡ 0 (mod 2).

¤

Lemma 2.2. For n ≥ 0, we have
∞∑

n=0

B5(10n + 2)qn ≡
∞∑

n=0

b5(n)qn (mod 2).

Proof. Applying (2.4) yields that
∞∑

n=0

B5(2(5n + 1))qn =
∞∑

n=0

B5(10n + 2)qn ≡ (q5; q5)∞
(q; q)∞

=
∞∑

n=0

b5(n)qn (mod 2).

¤

The authors [6] found that for any prime p ≥ 5,
(
−10

p

)
= −1, α ≥ 1, and n ≥ 0,

b5

(
4 · p2αn +

(24i + 7p)p2α−1 − 1

6

)
≡ 0 (mod 2), i = 1, 2, . . . , p− 1. (2.5)

Meanwhile, for α ≥ 0 and n ≥ 0, there exist

b5

(
4 · 52α+1n +

31 · 52α − 1

6

)
≡ 0 (mod 2), (2.6)
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b5

(
4 · 52α+1n +

79 · 52α − 1

6

)
≡ 0 (mod 2), (2.7)

b5

(
4 · 52α+2n +

83 · 52α+1 − 1

6

)
≡ 0 (mod 2), (2.8)

b5

(
4 · 52α+2n +

107 · 52α+1 − 1

6

)
≡ 0 (mod 2). (2.9)

Therefore, The combination of Lemma 2.2 and (2.5)-(2.9) gives more congruences for
B5(n).

Theorem 2.3. For any prime p ≥ 5,
(
−10

p

)
= −1, α ≥ 1, and n ≥ 0, we have

B5

(
40 · p2αn +

5 · (24i + 7p)p2α−1 + 1

3

)
≡ 0 (mod 2),

where i = 1, 2, . . . , p− 1.

For example, setting p = 17, i = 6, and α = 1 in Theorem 2.3, we deduce that

B5(11560n + 7452) ≡ 0 (mod 2).

Theorem 2.4. For α ≥ 1 and n ≥ 0, we have

B5

(
8 · 52αn +

31 · 52α−1 + 1

3

)
≡ 0 (mod 2),

B5

(
8 · 52αn +

79 · 52α−1 + 1

3

)
≡ 0 (mod 2),

B5

(
8 · 52α+1n +

83 · 52α + 1

3

)
≡ 0 (mod 2),

B5

(
8 · 52α+1n +

107 · 52α + 1

3

)
≡ 0 (mod 2).

3. Congruences Modulo p for Bk(n)

The authors [6] derived that for a given prime p ≥ 5,

f(−q) =

p−1
2∑

k = − p−1
2

k 6= ±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 f(−qp2

),

(3.1)
where

±p− 1

6
:=

{
p−1
6

, p ≡ 1 (mod 6),
−p−1

6
, p ≡ −1 (mod 6).

Furthermore, for −(p− 1)/2 ≤ k ≤ (p− 1)/2 and k 6= (±p− 1)/6,

3k2 + k

2
6≡ p2 − 1

24
(mod p).

With the aid of the above result, we obtain the following lemma.
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Lemma 3.1. For any prime p ≥ 5, n ≥ 0, and r ≥ 1, if k = pr is a prime power, then
we have for 1 ≤ α ≤ (r + 1)/2,

∞∑
n=0

Bk

(
p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α (q2p; q2p)∞(
q2pr−(2α−1) ; q2pr−(2α−1)

)
∞

(mod p).

Proof. We prove the lemma by induction on α. For k = pr, Fu [4] showed that
∞∑

n=0

Bk(n)qn ≡ (q2; q2)∞
(q2k; q2k)∞

(mod p).

In light of (3.1), it can be seen that
∞∑

n=0

Bk

(
pn +

p2 − 1

12

)
qn ≡ (−1)

±p−1
6

(q2p; q2p)∞
(q2pr−1 ; q2pr−1)∞

(mod p),

which is the case when α = 1. Suppose that the lemma holds for α. We prove the case
for α + 1. Since

∞∑
n=0

Bk

(
p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α (q2p; q2p)∞(
q2pr−(2α−1) ; q2pr−(2α−1)

)
∞

(mod p),

it can be shown that
∞∑

n=0

Bk

(
p2α−1(pn) +

p2α − 1

12

)
qn =

∞∑
n=0

Bk

(
p2αn +

p2α − 1

12

)
qn

≡
(
(−1)

±p−1
6

)α (q2; q2)∞
(q2pr−2α ; q2pr−2α)∞

(mod p). (3.2)

Using (3.1) again, we get
∞∑

n=0

Bk

(
p2α

(
pn +

p2 − 1

12

)
+

p2α − 1

12

)
qn

=
∞∑

n=0

Bk

(
p2α+1n +

p2α+2 − 1

12

)
qn

≡
(
(−1)

±p−1
6

)α+1 (q2p; q2p)∞(
q2pr−(2α+1) ; q2pr−(2α+1)

)
∞

(mod p).

Therefore, the lemma holds for α + 1. ¤

Theorem 3.2. For any prime p ≥ 5, n ≥ 0, and r ≥ 1, if k = pr is a prime power,
then we have

Bk

(
p2αn +

(12i + p)p2α−1 − 1

12

)
≡ 0 (mod p), (3.3)

where i = 1, 2, · · · , p− 1 and 1 ≤ α ≤ r/2. We also have

Bk

(
p2α+1n +

(12j + 1)p2α − 1

12

)
≡ 0 (mod p),

where 1 ≤ j ≤ p− 1 is an integer such that
(

12j+1
p

)
= −1 and 1 ≤ α ≤ (r − 1)/2.
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Proof. When 1 ≤ α ≤ r/2, from Lemma 3.1, it follows that for i = 1, 2, · · · , p− 1,

Bk

(
p2α−1(pn + i) +

p2α − 1

12

)
≡ 0 (mod p),

which implies (3.3). Applying (3.1) to (3.2), we consider

j ≡ 2 · 3k2 + k

2
(mod p),

namely,

12j + 1 ≡ (6k + 1)2 (mod p).

Since 12j + 1 is a quadratic nonresidue modulo p, we conclude that

Bk

(
p2α(pn + j) +

p2α − 1

12

)
≡ 0 (mod p).

¤

Based on Lemma 3.1 and generating functions for p(n) and b`(n), we get the follow-
ing congruence relations.

Theorem 3.3. For any prime p ≥ 5, α ≥ 1, and n ≥ 0, if k = p2α−1 is a prime power,
then we have

∞∑
n=0

Bk

(
2p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α
∞∑

n=0

bp(n)qn (mod p),

∞∑
n=0

Bk

(
2p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α

(qp; qp)∞
∞∑

n=0

p(n)qn (mod p). (3.4)

Proof. Set r = 2α− 1 in Lemma 3.1. Then k = p2α−1. So we derive that
∞∑

n=0

Bk

(
p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α (q2p; q2p)∞
(q2; q2)∞

(mod p).

Therefore,
∞∑

n=0

Bk

(
p2α−1(2n) +

p2α − 1

12

)
qn =

∞∑
n=0

Bk

(
2p2α−1n +

p2α − 1

12

)
qn

≡
(
(−1)

±p−1
6

)α (qp; qp)∞
(q; q)∞

(mod p).

¤

Combining (3.4) with three famous congruences for p(n) given by Ramanujan [15,16]

p(5n + 4) ≡ 0 (mod 5), (3.5)

p(7n + 5) ≡ 0 (mod 7), (3.6)

p(11n + 6) ≡ 0 (mod 11), (3.7)

we obtain the following results.
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Corollary 3.4. For α ≥ 1 and n ≥ 0, we have

B52α−1

(
2 · 52αn +

101 · 52α−1 − 1

12

)
≡ 0 (mod 5),

B72α−1

(
2 · 72αn +

127 · 72α−1 − 1

12

)
≡ 0 (mod 7),

B112α−1

(
2 · 112αn +

155 · 112α−1 − 1

12

)
≡ 0 (mod 11).

Proof. With the aid of (3.4), we arrive at

∞∑
n=0

B52α−1

(
2 · 52α−1n +

52α − 1

12

)
qn ≡ (−1)α(q5; q5)∞

∞∑
n=0

p(n)qn (mod 5),

∞∑
n=0

B72α−1

(
2 · 72α−1n +

72α − 1

12

)
qn ≡ (−1)α(q7; q7)∞

∞∑
n=0

p(n)qn (mod 7),

∞∑
n=0

B112α−1

(
2 · 112α−1n +

112α − 1

12

)
qn ≡ (q11; q11)∞

∞∑
n=0

p(n)qn (mod 11).

Applying (3.5), (3.6), and (3.7) yields

B52α−1

(
2 · 52α−1(5n + 4) +

52α − 1

12

)
≡ 0 (mod 5),

B72α−1

(
2 · 72α−1(7n + 5) +

72α − 1

12

)
≡ 0 (mod 7),

B112α−1

(
2 · 112α−1(11n + 6) +

112α − 1

12

)
≡ 0 (mod 11).

¤

Another congruence modulo p for Bk(n) can be directly obtained from Lemma 3.1.

Theorem 3.5. For any prime p ≥ 5, α ≥ 1, and n ≥ 1, if k = p2α is a prime power,
then we have

Bk

(
p2α−1n +

p2α − 1

12

)
≡ 0 (mod p).

Proof. Set r = 2α in Lemma 3.1. Then we have k = p2α. Therefore,

∞∑
n=0

Bk

(
p2α−1n +

p2α − 1

12

)
qn ≡

(
(−1)

±p−1
6

)α

(mod p).

¤
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