CONGRUENCES FOR k£ DOTS BRACELET PARTITION
FUNCTIONS
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ABSTRACT. Andrews and Paule introduced broken k-diamond partitions by using
MacMahon’s partition analysis. Recently, Fu found a generalization which he called k
dots bracelet partitions and investigated some congruences for this kind of partitions.
In this paper, by finding congruence relations between the generating function for 5
dots bracelet partitions and that for 5-regular partitions, we get some new congruences
modulo 2 for the 5 dots bracelet partition function. Moreover, for a given prime p,
we study arithmetic properties modulo p of k dots bracelet partitions.

1. INTRODUCTION

Andrews and Paule [1] studied broken k-diamond partitions by using MacMahon’s
partition analysis, and gave the generating function for A(n) which denotes the num-
ber of broken k-diamond partitions of n:

i Ak(n)q" _ <_Q; Q)oo

(05 @)% (=1 241

They [1] proved the following arithmetic theorem for Ay (n).

Theorem 1.1. [1, Theorem 5] For n > 0,
Ai(2n+1)=0 (mod 3).

Meanwhile, they posed some conjectures related to Ay(n). Arithmetic properties of
broken k-diamond partitions have been the subject of many studies, see, for example
[3,7,9-12,14,17]. Recently, Fu [4] found a combinatorial proof of Theorem 1.1 and
introduced a generalization of broken k-diamond partitions which he called k dots
bracelet partitions. The generating function for the number of this kind of partitions
of n, denoted by B (n), is given by

- (=% @)oo
Z‘Bk(n)q" = - , k> 3.
~ (¢ )5 (=4 ¢")oo

Fu [4] proved the following congruences for B (n).
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Theorem 1.2. [/, Theorem 3.3/ For n > 0, k > 3, if k = p" is a prime power, we
have

B.2n+1)=0 (mod p).

Theorem 1.3. [/, Theorem 3.5] For any k > 3, s an integer between 1 and p — 1
such that 12s + 1 is a quadratic nonresidue modulo p, and anyn >0, if p | k for some
prime p > 5 say k = pm, then we have

Br(pn+s) =0 (mod p).

Theorem 1.4. [4, Theorem 3.6] For n > 0, k > 3 even, say k = 2™, where | is odd,
we have

Br(2n+1)=0 (mod 2™).

Later, Radu and Sellers [13] found some new congruences for B(n).
Theorem 1.5. [13, Theorem 1.4] For allm >0,
B5(10n+7) =0 (mod 5%),
B7(14n +11) =0 (mod 7%), and
B11(22n+21) =0 (mod 11?).

In this paper, we continue to study arithmetic properties of k dots bracelet parti-
tions. First, we recall two kinds of partitions which are used in this paper.

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n. Let p(n) denote the number of partitions of n. We have

- |
;pm)q (@9

If ¢ is a positive integer, then a partition is called an f-regular partition if there is
no part divisible by ¢. Let b,(n) denote the number of ¢-regular partitions of n. The
generating function for by(n) is given by

ibg(n)q” _ (454w

(¢ Voo

In section 2, in view of an identity given by Ramanujan [16] and a congruence
given by Hirschhorn and Sellers [8], we obtain two congruences modulo 2 for B5(n).
Meanwhile, by finding a congruence relation between B5(n) and bs(n), we derive many
infinite families of congruences modulo 2 for B5(n). In section 3, for a given prime p, by
means of the p-dissection identity for f(—q) given by the authors [6] and three classical
congruences for p(n) given by Ramanujan [15,16], we deduce more congruences modulo
p for By(n).

As usual, we follow the standard g¢-series notation [5]

oo m

(@: )0 = [J(1 —ag®) and (a1 00,... am; Q) = [[(aj: D)oer gl < 1.

k=0 j=1
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The Legendre symbol is defined as

a 1, if a is a quadratic residue modulo p and a Z0 (mod p),
<—> =< —1, if a is a quadratic non-residue modulo p,
P 0, ifa=0 (modp).

Let f(a,b) be Ramanujan’s general theta function given by

flab)= 3" ™6, Jab < L.

n=—oo

In light of Jacobi’s triple product identity [2, Theorem 1.3.3]

o0

S g = (—2q,—q/% % P)oer Nl < 1,

a special case of f(a,b) is stated as follows:

F-0) = f—a.—) = 3 (1" = (4 0)m.

n=—oo

2. CONGRUENCES MODULO 2 FOR B5(n)

We recall Ramanujan’s identity [16, p. 212]

(Q' q) — (qlo’ q15’ q%; q25)°° _ q(q25. C]25) . qz (q57 q20, q%; q25)oo
e (2%, 4% ¢%°) o ’ (4", 4" ¢%) oo

(2.1)

For convenience, set
(@', ¢%5; %) o
= (0%, 4% ¢°)o0
Then we rewrite (2.1) as
(@ @) = (67:4%) (alg) — g — ¢°b(q)) - (2:2)
In addition, Hirschhorn and Sellers [8] showed that

(@, ¢ ¢®) _ 1
(4'°,¢'%¢%)oc  alq)

and b(q) =

D b5(2n)q" = (¢%1¢7)  (mod 2). (2.3)

By means of (2.2) and (2.3), we derive the following results.

Theorem 2.1. Forn > 0, we have
B5(10n+6) =0 (mod 2),
B5(10n+8) =0 (mod 2).

Proof. We show that
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_ (@%6%)= (0% 0o
(4 9)% (1076110)00
(0% 4%) oo (q q°)oo
(% 4*) 0 ("5 1) 0 (45 @) o
1 (0% 4°)oc
(4% 6?)00(q'%; ¢1) o0 (q'cI)

1
T@ st

(mod 2)

(mod 2)

0*)os(q"; "
Then
B5(2n)q¢" = . bs(2n)q"™ (mod 2
2 B = (g 2 (mod 2
(¢* %)
= mod 2 by (2.3
(45 4)oo (4% 4°) o ( ) (23)
(439
= ———— (mod 2).
(4% ¢%)oo ( )
According to (2.2), it follows that
S w0756 2
Z B5(2n)q" = (i) (alg) —q¢—¢*b(q)) (mod 2). (2.4)
Therefore, we get
B5(2(5n+3)) = B5(10n+6) =0  (mod 2),
B5(2(5n+4)) = B5(10n+8) =0 (mod 2).
0
Lemma 2.2. Forn > 0, we have
Z B5(10n + 2)¢" = Z%(n)q” (mod 2).
n=0 n=0
Proof. Applying (2.4) yields that
N "N n_ (@) N "
D Bs(205n+ 1))g" =Y Bs(10n +2)¢" = 22 =) “bs(n)g"  (mod 2).
n=0 n=0 (Q’ Q)oo n=0
0

The authors [6] found that for any prime p > 5, (—710> =—1,a>1,and n >0,

6
Meanwhile, for a > 0 and n > 0, there exist

31-5% —1
bs (4 520ty 4 T) =0 (mod 2), (2.6)

24 2c 1_1
b5<4.p2an+( nalll ) )zo (mod 2), i=1,2....p—1.  (2.5)
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200 1

bs (4 - 52ty 79 5 ) (mod 2), (2.7)
83 - 520‘“ 1

bs (4 - 5202y 4 ) =0 (mod 2), (2.8)
1 2a+1 1

bs (4 52ty 4 07 5 ) =0 (mod 2). (2.9)

Therefore, The combination of Lemma 2.2 and (2.5)-(2.9) gives more congruences for

%5( )

Theorem 2.3. For any prime p > 5, (7710) =—1,a>1, and n > 0, we have

. 24 20—1 1
%5(4o.p2an+5< H?g)p + )zo (mod 2),

where 1 =1,2,...,p— 1.

For example, setting p = 17, i = 6, and a = 1 in Theorem 2.3, we deduce that
B5(11560n + 7452) =0 (mod 2).
Theorem 2.4. For a > 1 and n > 0, we have

Bs (8 - 5% + oL 52a + 1) =0 (mod 2),
B (8 - 5% + E% 52a + 1) =0 (mod 2),
B, (8 Rty 4 83 52a + 1) =0 (mod 2),
B <8 52t + 1075—;a+1) =0 (mod 2).

3. CONGRUENCES MODULO p FOR B (n)

The authors [6] derived that for a given prime p > 5,

p—1
2

324k 3p2+(6k+1)p 3p2—(6k+1)p tp—1 p?-1 2
fleo) = >, (=g > f(—q = —q  ® )+(—1) T f(—7),

(3.1)

where

tp—1 B, p=1 (mod 6),
6 2=l p=-1 (mod 6).
Furthermore, for —(p —1)/2 <k <(p—1)/2 and k # (£p —1)/6,
32 +k | pP—1
2 # 24
With the aid of the above result, we obtain the following lemma.

(mod p).
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Lemma 3.1. For any prime p > 5,n >0, andr > 1, if k = p” is a prime power, then
we have for 1 < a < (r+1)/2,

o 20 2 2

IR e S N £p-1) @ (471 4°) oo
Z%k <p2a 'n+ 12 > q" = ((_1) 6 ) (q2pr7(2a71)_ 2p7‘7(2a71)) (mOd p)-
n=0

1q .

Proof. We prove the lemma by induction on «. For k = p", Fu [4] showed that

Z B ( = —(QZ; T o (mod p).

(65 4%) o
In light of (3.1), it can be seen that
—1 w21 (6750
Z%k ( 12 ) (_1) 6 (q2pr—l;q2pr—1)oo (mod p)?
which is the case when o = 1. Suppose that the lemma holds for a. We prove the case
for o + 1. Since

S!S 2 2 2

a— p ]. +p—1 (63 ( p; p)
z k(p n -+ >ql_— <(_|> 6 ) ( ( ql).q oo(@ 1)) ( ),
n=0 2 q2p 2 ; 221)7* 20— IIlOd p

o0

it can be shown that
20 o0 20
20— l p —1 no__ 20 p —1 n
E%< pn) + 5 )q—E%k(p D )q

= (0% e (mod p). (32

Using (3.1) again, we get
o0 2 20
p-—1 p™—1
% 20 n
Z k<p (pn+ - )+ - )q
20042 1
_ % 2a+1 p n
=Y (e P )

tp_1 at1 (q2p; q2p)oo
= ((_1 6 ) (q2pr_(2a+1) . q2pr—(2&+l))

(mod p).

Therefore, the lemma holds for a + 1. O
Theorem 3.2. For any prime p > 5,n >0, and r > 1, if k = p" is a prime power,

then we have 191 21|
B, <p2“n + (12 +p)11; — ) =0 (mod p), (3.3)

where i =1,2,--- . p—1and 1 < a <r/2. We also have

1275 + 1)p?> — 1
B, (on‘HnJr (12j + 1;]9 ) =0 (mod p),

where 1 < j < p—1 is an integer such that (%) =—landl<a<(r—1)/2.
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Proof. When 1 < o < /2, from Lemma 3.1, it follows that for i = 1,2,--- | p — 1,
200

12

B (p2a_1(pn +1i) + P ) =0 (mod p),

which implies (3.3). Applying (3.1) to (3.2), we consider
3k* + k
2

j=2 (mod p),

namely,
12§ +1= (6k+1)*> (mod p).

Since 1275 + 1 is a quadratic nonresidue modulo p, we conclude that

200

B, (on‘(pn+j) +p 5 ) =0 (mod p).

O

Based on Lemma 3.1 and generating functions for p(n) and by(n), we get the follow-

ing congruence relations.
Theorem 3.3. For any primep > 5, a > 1, andn >0, if k = p**~!

then we have

i%k (2p2a—1n P it 1) ¢ = ((—1)i%_l>a§:bp(n)q” (mod p),

1S a prime power,

12

2c

- —1
9 20—1 p n
S (2 P ) g
n=0
Proof. Set r = 2ae — 1 in Lemma 3.1. Then k = p?**~!. So we derive that

1) 200 1 p—1\ & 2p; p oo
Z%k (p2a—ln L P ) ¢ = ((_1)%> [Cael/Rgl (mod p).
n=0

+p—1

((—1) ° )a(qp;qp)oozp(n)q” (mod p). (3.4)

12 (0% ¢*)oo
Therefore,
00 200 __1 o p2a __1
2a—1 ) p no__ 2 2a—1 n
;%k(p (2n) + =5 ) a ;‘Bk P+ ——— g
221\ @ (475 0")os
=((—1) s ) ————— (mod p).
<< ) (¢ 4)oo ( )
0]
Combining (3.4) with three famous congruences for p(n) given by Ramanujan [15,16]
p(bn+4) =0 (mod b), (3.5)
p(Tn+5) =0 (mod 7), (3.6)
p(1ln+6) =0 (mod 11), (3.7)

we obtain the following results.
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Corollary 3.4. Fora > 1 and n > 0, we have

101 - 521 -1
Bsra—1 (2 - 5% 4 5 ) =0 (mod 5),
127 - 7?71 -1
Brra—1 (2 ST 4 5 ) =0 (mod7),
b 155-11%71
Biza—1 [ 2117 + 7 =0 (mod 11).
Proof. With the aid of (3.4), we arrive at
- 2a—1 5 —1 n _ af,. 5. .5 = n
Z%5za_1 2.5 'n + 3 "= (-1 ¢) oo Zp(n)q (mod 5),
n=0 n=0
S B (27 T2 2 (L1 ) (mod 7)
n=0 12 ’ n=0 7

S 112 — 1 -
Z B12a—1 (2 S11%07 1 4 T) "= ("M nzzop(n)q" (mod 11).

n=0

Applying (3.5), (3.6), and (3.7) yields

200 1
Brza-1 (2 527N (5n 4+ 4) + > T ) =0 (mod 5),
2a—1 7 -1
Brza—r (277 (Tn+5) + 5 =0 (modT7),
201 1% — 1Y _
Byzer (21177 (Lln +6) + —-— ) =0 (mod 11).

O

Another congruence modulo p for B (n) can be directly obtained from Lemma 3.1.

Theorem 3.5. For any prime p > 5, a > 1, and n > 1, if k = p** is a prime power,

then we have
200 1

12

By <p2°‘_1n + 2 ) =0 (mod p).

Proof. Set r = 2a in Lemma 3.1. Then we have k = p*>*. Therefore,

Z%k (p2a—1n " P - 1> ¢ = ((_1)%>a (mod p).
n=0

12
U
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