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Abstract

A graph G is said to have a parity-linked orientation φ if every
even cycle C2k in Gφ is evenly (resp. oddly) oriented whenever k is
even (resp. odd). In this paper, this concept is used to provide an
affirmative answer to the following conjecture of D. Cui and Y. Hou
[D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs,
The Electronic J. Combin. 20(2) (2013), #P19]: Let G = G(X,Y )
be a bipartite graph. Call the X → Y orientation of G, the canoni-
cal orientation. Let φ be any orientation of G and let SpS(G

φ) and
Sp(G) denote respectively the skew spectrum of Gφ and the spectrum
of G. Then SpS(G

φ) = iSp(G) if and only if φ is switching-equivalent
to the canonical orientation of G. As an illustration of this result, we
determine the switch for a special family of oriented hypercubes Qφ

d ,

d ≥ 1. Moreover, we give an orientation of the Cartesian product of a
bipartite graph and a graph, and then determine the skew spectrum of
the resulting oriented product graph, which generalizes a result of Cui
and Hou. Further this is used to construct new families of oriented
graphs with maximum skew energy.
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1 Introduction

Let G = (V,E) be a finite simple undirected graph of order n with V =
{v1, v2, . . . , vn} as its vertex set and E as its edge set. An orientation φ of
E results in the oriented graph Gφ = (V,Γ), where Γ is the arc set of Gφ.

The adjacency matrix of G is the n × n matrix A = (aij), where aij = 1 if
(vi, vj) ∈ E and aij = 0 otherwise. As the matrix A is real and symmetric,
all its eigenvalues are real. The spectrum of G, denoted by Sp(G), is the
spectrum of A. The energy E(G) of a graph G of order n, introduced by
Ivan Gutman [8] in 1978, is defined as the sum of the absolute values of
its eigenvalues. The skew adjacency matrix of an oriented graph Gφ is the
n× n matrix S(Gφ) = (sij), where sij = 1 = −sji whenever (vi, vj) ∈ Γ(Gφ)
and sij = 0 otherwise. As the matrix S(Gφ) is real and skew symmetric, its
eigenvalues are all pure imaginary. The skew spectrum of Gφ is the spectrum
of S(Gφ). The concept of graph energy was recently generalized to oriented
graphs as skew energy by Adiga, Balakrishnan and Wasin So in [1]. The skew
energy ES(Gφ) of an oriented graph Gφ is defined as the sum of the absolute
values of all the eigenvalues of S(Gφ). For the properties of the energy and
spectrum of a graph, the reader may refer to [3, 9, 12], and for skew energy
and skew spectrum of an oriented graph, to [1, 4, 10, 11, 13]. We follow [3]
for standard graph theoretic notation.

By a cycle in Gφ, we refer to not necessarily a directed cycle. An oriented
even cycle is classified into two types based on its structure. An even cycle
C of Gφ is said to be evenly or oddly oriented according as the number of
arcs of C in each direction is even or odd [10].

Let G denote the family of graphs without even cycles. In [4], Cavers et
al. have proved the following result.

Theorem 1.1 (Cavers et al. [4]). The skew spectrum of Gφ remains invariant
under any orientation φ of G if and only if G contains no even cycles, that
is, G ∈ G .
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2 Oriented bipartite graphs Gφ with SpS(G
φ) =

iSp(G)

Let G = G(X, Y ) be a bipartite graph with bipartition (X, Y ). The canonical
orientation of G is that orientation which orients all the edges from one
partite set to the other. It is immaterial if it is from X to Y or from Y to
X. Shader and So [13] have shown that for the canonical orientation σ of
G(X, Y ),

SpS(G
σ) = iSp(G). (1)

From this point onward, σ stands for the canonical orientation of a bi-
partite graph G with a fixed bipartition (X, Y ).

Let Gφ be an oriented graph of order n. An even cycle C2k of length 2k in
Gφ is said have a parity-linked orientation if it is evenly oriented whenever k
is even and oddly oriented whenever k is odd. If every even cycle in Gφ has
a parity-linked orientation, then the orientation φ is defined to be a parity-
linked orientation of G. (The parity-linked orientation is termed as uniform
orientation in [6].)

In [6], Cui and Hou have given a characterization of oriented bipartite
graphs Gφ that satisfy Equation (1) by using the parity-linked orientation of
graphs.

Theorem 2.1 ([6]). Suppose Gφ is an oriented bipartite graph with G as its
underlying graph. Then SpS(G

φ) = iSp(G) if and only if the orientation φ

of G is parity-linked.

Let U be any proper subset of V (G) of an oriented graph Gφ1 and let
U = V (G) \ U be its complement. Reversing the orientations of all the arcs
between U and U results in another oriented graph Gφ2 . This process is called
the switch of Gφ1 with respect to U. The oriented graph got by two successive
switches with respect to U1 and U2 is just the oriented graph obtained from
G by the switch with respect to the set U1∆U2, the symmetric difference of
U1 and U2.

Suppose φ1 and φ2 are two orientations of a graph G. Then Gφ1 and Gφ2

are said to be switching-equivalent if Gφ2 can be obtained from Gφ1 by a
switch. It is clear that switching-equivalence among the set O of all orien-
tations of a graph G is indeed an equivalence relation on O . The following
result is proved in [1].

Theorem 2.2 ([1]). Let φ1 and φ2 be two orientations of a graph G. If Gφ1

and Gφ2 are switching-equivalent, then SpS(G
φ1) = SpS(G

φ2).
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We mention that the converse of Theorem 2.2 is not true for non-bipartite
graphs.

Example 2.3. Consider the two orientations φ1 and φ2 of the cycle graph
C5 as given in Figure 1.
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Figure 1: Two orientations of the cycle graph C5

Since C5 ∈ G , the family of graphs without even cycles, by Theorem 1.1,

SpS(C
φ1

5 ) = SpS(C
φ2

5 ).

The oriented cycle Cφ1

5 has 5 arcs in one direction (clockwise) while Cφ2

5 has
4 arcs in the same direction for the given labeling. Any switch in C

φ1

5 will
cause an even number of changes in the number of arcs in both the directions.
Hence the 5 arcs in the clockwise direction can only become either 3 arcs or
1 arc in the clockwise direction after any switch but never 4 arcs in the
clockwise direction. Therefore φ1 and φ2 are not switching-equivalent in C5.

(Clearly, 5 can be replaced by any odd number 2p+ 1, p ≥ 1.)

In [6], Cui and Hou conjectured that for an oriented bipartite graph Gφ,

SpS(G
φ) = iSp(G) if and only if Gφ is switching-equivalent to Gσ, where σ is

the canonical orientation of G. In this paper, we settle the above conjecture
in the affirmative and present it as the following theorem.

Theorem 2.4 (Conjectured in [6]). Suppose φ is an orientation of a bipartite
graph G = G(X, Y ). Then SpS(G

φ) = iSp(G) if and only if Gφ is switching-
equivalent to Gσ, where σ is the canonical orientation of G.

Proof. Without loss of generality, we may assume that G is a connected
graph.
Sufficiency. If Gφ and Gσ are switching-equivalent, then by Theorem 2.2,
SpS(G

φ) = SpS(G
σ) = iSp(G) (where the second equality follows from (1)).
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Necessity. We prove by induction on the number of edges m of the bipartite
graph G. The result is trivial for m = 1.

Assume that the result is true for all bipartite graphs with at most m−
1(m ≥ 2) arcs. Let G be a bipartite graph with m edges and (X, Y ) be the
bipartition of the vertex set of G. Suppose that φ is an orientation of G such
that SpS(G

φ) = iSp(G). We have to prove that φ is switching-equivalent to
σ. Let e be any edge of G. By Theorem 2.1, φ is a parity-linked orientation
of Gφ and hence of (G − e)φ. Consequently, (G − e)φe has a parity-linked
orientation, where φe is the restriction of φ to the graph G− e. So again by
Theorem 2.1,

SpS((G− e)φe) = iSp(G− e).
Consequently, by induction hypothesis, (G− e)φe is switching-equivalent

to (G− e)σe , where σe is the restriction of σ to the graph G− e.
Let α be the switch that takes (G−e)φe to (G−e)σe effected by the subset

U of V (G− e) = V (G). We claim that α takes φ to σ in G. If not, then the
resulting oriented graph Gφ′

will be of the following type: All the arcs of
G− e will be oriented from one partite set (say, X) to the other (namely, Y )
while the arc e will be oriented in the reverse direction, that is, from Y to X
(See Figure 2).

b b

X Y

e

Gφ′

Figure 2: The oriented bipartite graph Gφ′

in Theorem 2.4

Consider first the case when e is a cut edge of G. The subgraph G−e will
then consist of two components with vertex sets, say, S1 and S2. Now switch
with respect to S1. This will change the orientation of the only arc e and the
resulting orientation is σ. Consequently, φ is switching-equivalent to σ.

Note that the above argument also takes care of the case when G is a
tree since each edge of G will then be a cut edge. Hence we now assume that
G contains an even cycle C2k containing the arc e and complete the proof.
But then any such C2k has k − 1 arcs in one direction and k + 1 arcs in
the opposite direction (see Figure 3) thereby not admitting a parity-linked
orientation. Hence this case can not arise. Consequently, φ is switching-
equivalent to σ in G.
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Figure 3: Cycle C2k for k = 3, 4 in Gφ′

Theorem 2.1 provides a nice characterization for an oriented bipartite
graph Gφ to have the property that SpS(G

φ) = iSp(G). But it requires to
check if every cycle in Gφ possesses a parity-linked orientation. A natural
question is the following: Is it possible to reduce the number of checks to
determine whether an oriented graphGφ has a parity-linked orientation? Our
next result provides an answer in this direction.

Theorem 2.5. Let G be a bipartite graph and φ be an orientation of G. If
φ induces a parity-linked orientation on every chordless (even) cycle of G,
then SpS(G

φ) = iSp(G).

Proof. By virtue of Theorem 2.1, it suffices to show that if φ induces a parity-
linked orientation on every chordless (even) cycle of G, then φ induces a
parity-linked orientation on every cycle of G. If the result were not true, then
there exists a cycle C2` in G

φ of least length 2` such that φ does not induce a
parity-linked orientation on C2`. This of course means that C2` is evenly (resp.
oddly) oriented if l is odd (resp. even). By hypothesis, C2` contains a chord
x1y1. Suppose that C2` = x1x2 . . . x`1y1y2 . . . y2`−`1x1 in clockwise direction.
Consider the two cycles C1 = x1x2 . . . x`1y1x1 and C2 = x1y1y2 . . . y2`−`1x1
with respective lengths `1 + 1 and 2` − `1 + 1 in clockwise direction. Note
that C1 and C2 are also even (G being bipartite). Suppose that C1 and C2

contain respectively r1 and r2 arcs in the clockwise direction. By the choice
of C2`, C1 and C2 possess the parity-linked orientation. Hence

`1 + 1

2
≡ r1(mod 2) and

2`− `1 + 1

2
≡ r2(mod 2).

It follows that `+1 ≡ (r1+r2)(mod 2). Observe that if the arc corresponding
to x1y1 is clockwise in C1, then it must be anticlockwise in C2 and vice versa.
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This of course means that C2` also admits the parity-linked orientation. This
contradiction proves the result.

Combining Theorem 2.1 and Theorem 2.5, we obtain immediately the
following corollary.

Corollary 2.6. Let G be a bipartite graph and φ, an orientation of G. Then
SpS(G

φ) = iSp(G) if and only if φ induces a parity-linked orientation on all
the chordless cycles of G.

Remark 2.7. Let C denote the set of all cycles of a bipartite graph G.

A subset S of C is called a generating set of C if for any cycle C of C

either C ∈ S or there is a sequence of cycles C1, C2, . . . , Ck in S such that
C = ((C1∆C2)∆C3) . . .∆Ck and for 2 ≤ p ≤ k − 1, ((C1∆C2)∆C3) . . .∆Cp

are all cycles of G. With this notation, one can prove that for any oriented
bipartite graph Gφ, SpS(G

φ) = iSp(G) if and only if φ induces a parity-linked
orientation for every cycle in a generating set S of C in G. Actually, the set
of all chordless cycles of a graph G is a generating set of the set of all cycles
of G.

3 Switching-equivalence in oriented hypercubes

We present below an illustration for Theorem 2.4. In [2], Anuradha and Bal-
akrishnan have constructed an oriented hypercube Qφ

d for which SpS(Q
φ
d) =

iSp(Qd), d ≥ 1.
By Theorem 2.4, φ must be switching-equivalent to the canonical orien-

tation σ of Qd. We now determine a switching set Ud in Qφ
d that takes φ to

σ.

We first recall the algorithm given in [2] by means of which Qφ
d , d ≥ 1, is

constructed.

Algorithm 3.1. The hypercube Qd, d ≥ 2, can be constructed by taking
two copies of Qd−1 and making the corresponding vertices in the two copies
adjacent. Let V (Qd) = {(ε1, ε2, . . . , εd) : εi = 0 or 1} be the vertex set of
Qd.

1. For Q1 = K2, V (Q1) = {(0), (1)}. Set (1, 0) ∈ Γ(Qφ
1).

2. Assume that for i = 1, 2, . . . , k(< d), the oriented hypercube Qφ
k has been

constructed. For i = k + 1, the oriented hypercube Qφ
k+1 is formed as

follows:

7



(a). Take two copies C
(k)
0 and C

(k)
1 of Qφ

k . Reverse the orientation of all

the arcs in C
(k)
1 .

(b). For j = 0, 1, relabel the vertices of C
(k)
j by adding j as the first coordi-

nate, that is, if (ε1, ε2, . . . , εk) ∈ Qk, then the vertex (0, ε1, ε2, . . . , εk) ∈
C

(k)
0 and the vertex (1, ε1, ε2, . . . , εk) ∈ C(k)

1 .

(c). Let (X0, Y0) be the bipartition of V (Qk) in C
(k)
0 such that the vertex

labeled (0, 0, . . . , 0) is in X0. Set the corresponding bipartition in

C
(k)
1 as (X1, Y1). (Note that the vertex labeled (1, 0, 0, . . . , 0) ∈ X1.)

Consequently X = X0 ∪ Y1 and Y = X1 ∪ Y0 form the bipartition of
V (Qk+1).

(d). Add an edge between the vertices of C
(k)
0 and C

(k)
1 that differ in

exactly the first coordinate. For each such edge, assign the orientation
from X0 to X1 and from Y1 to Y0 (see Figure 4). This yields the
oriented hypercube Qφ

k+1. (See Figure 5.)

3. If k + 1 = d, stop; else take k ← k + 1, return to Step 2. 2

X1

Y1Y0

X0

Q
φ
3

Q
φ
2

Q
φ
2

b b

b b b b

bb(0, 0, 0) (0, 1, 1) (1, 1, 1)

(1, 0, 1)(1, 1, 0)(0, 0, 1)(0, 1, 0)

(1, 0, 0)

Figure 4: Example for Step 2(d) in Algorithm 3.1

Let (X, Y ) be the bipartition of V (Qφ
d) for d ≥ 1 such that the vertex

(0, 0, . . . , 0) is in X. It is then easy to observe from the construction of Qφ
d

that the indegree, deg−(u), of each vertex u ∈ X is 1 while the outdegree
deg+(v) of each vertex v ∈ Y is 1 in Qφ

d .

For each d ≥ 1, we now define a set Ud ⊂ V (Qφ
d) recursively as follows: For

the oriented hypercube Qφ
1 , set U1 = {(0)}. For k ≥ 1 (k < d), assume that

the set Uk has been determined. Form the set Uk+1 of the oriented hypercube
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(0, 0, 1)

(0, 1, 0)
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Q
φ
3

Q
φ
2

Q
φ
1

Figure 5: Orientation φ of hypercube Qi, i = 1, 2, 3, defined in Algorithm 3.1

Q
φ
k+1 by taking, for each vertex v = (ε1, ε2, . . . , εk) ∈ Uk of the hypercube Q

φ
k ,

the vertices v0 = (0, ε1, ε2, . . . , εk) and v1 = (1, ε1, ε2, . . . , εk). Note that in
the oriented hypercube Qφ

k+1, if U
0
k and U1

k are the two sets corresponding to

Uk in the two copies C
(k)
0 and C

(k)
1 of Qφ

k then Uk+1 = U0
k∪U1

k and |Uk+1| = 2k.
We now show that for each d ≥ 1, a switch with respect to the set Ud in

the oriented hypercube Qφ
d results in the canonical orientation σ of Qd.

Theorem 3.2. Suppose Qφ
d is the oriented hypercube obtained by Algorithm

3.1. Let Ud ⊂ V (Qφ
d) be determined as above. Then a switch with respect to

the set Ud, for d = 1, 2, . . . , yields the canonical orientation σ of Qd.

Proof. Proof by induction on d. It is obvious for d = 1, 2. (For d = 1, 2,
U1 = {(0)} and U2 = {(0, 0), (1, 0)}.)

Suppose that a switch with respect to the set Uk (k < d), yields the
canonical orientation in the oriented hypercube Qφ

k . Consider the set Uk+1 of

the oriented hypercube Qφ
k+1. Clearly Q

φ
k+1 consists of two copies C

(k)
0 and

C
(k)
1 of Qφ

k . For i = 0, 1, let U i
k be the switch in the corresponding copy C

(k)
i .

It is then easy to observe that

Uk+1 = U0
k ∪ U1

k .
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This shows that the copies C
(k)
0 and C

(k)
1 inQφ

k+1 exhibit canonical orientation
after the switch with respect to Uk+1. Further any arc between the two copies
agrees with the canonical orientation (see Step 2(d) of Algorithm 3.1). Hence
the switch with respect to Uk+1 results inQ

σ
k+1. Applying induction, the result

follows.

4 The skew spectrum of H2G with H bipar-

tite

In [1], Adiga et al. have shown that the skew energy of any oriented graph
Gφ of order n, for which the underlying undirected graph G is k-regular, is
bounded above by n

√
k and posed the following problem:

Problem 4.1. Which k-regular graphs G on n vertices have orientations φ
with ES(Gφ) = n

√
k, or equivalently, S(Gφ)TS(Gφ) = kIn?

In this section, we give an orientation of the Cartesian product H2G,

where H is bipartite, by extending the orientation of Pm2G in [6], and we
calculate its skew spectrum. As an application of this orientation, we con-
struct new families of oriented graphs with maximum skew energy, which
generalizes the construction in [6].

Let H and G be graphs with p and n vertices respectively. Recall that the
Cartesian productH2G ofH andG is the graph with vertex set V (H)×V (G)
and the vertices (u1, v1) and (u2, v2) are adjacent in H2G if and only if
u1 = u2 and v1v2 is an edge of G, or if v1 = v2 and u1u2 is an edge of H.
Assume that τ is any orientation of H and φ is any orientation of G. There is
a natural way to define the oriented Cartesian product Hτ

2Gφ of Hτ and Gφ

whose underlying undirected graph is H2G : There is an arc from (u1, v1) to
(u2, v2) if and only if u1 = u2 and (v1, v2) is an arc of Gφ, or if v1 = v2 and
u1u2 is an arc of Hτ . The skew spectrum of Hτ

2Gφ has been determined in
[6]. Some interesting results on the skew spectrum of the product Hτ

2Gφ,

where Hτ is an oriented hypercube are obtained in [2].
When H is a bipartite graph with bipartition X and Y, we modify the

above definition of Hτ
2Gφ to obtain a new product graph (Hτ

2Gφ)o with
the following condition: If u ∈ Y and (v1, v2) ∈ Γ(Gφ), then we make
(u, v2)(u, v1) an arc of Hτ

2Gφ (instead of (u, v1)(u, v2)); the other arcs of
Hτ

2Gφ remain unchanged.

Theorem 4.2. Let Hτ be an oriented bipartite graph of order p and let the
skew eigenvalues of Hτ be the nonzero complex numbers ±iµ1,±iµ2, . . . ,±iµr

and p − 2r 0’s. Let Gφ be an oriented graph of order n and let the skew
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eigenvalues of Gφ be the nonzero complex numbers ±iλ1,±iλ2, . . . ,±iλt and
n − 2t 0’s. Then the skew eigenvalues of the oriented graph (Hτ

2Gφ)o are

±i
√

µ2
j + λ2k, j = 1, . . . , r, k = 1, . . . , t, each with multiplicity 2; ±iµj , j =

1, . . . , r, each with multiplicity n−2t; ±iλj , k = 1, . . . , t, each with multiplicity
p− 2r and 0 with multiplicity (p− 2r)(n− 2t).

Proof. Let H = H(X, Y ) with |X| = p1 and |Y | = p2.With suitable labeling
of the vertices of H2G, the skew adjacency matrix S = S((Hτ

2Gφ)o) can
be chosen as follows:

S = I ′p1+p2
⊗ S(Gφ) + S(Hτ )⊗ In,

where I ′p1+p2
= I ′p = (aij), aii = 1 if 1 ≤ i ≤ p1, aii = −1 if p1 + 1 ≤ i ≤ p

and aij = 0 otherwise; S(Hτ ) is the partitioned matrix

(

0 B

−BT 0

)

, where

B is a p1 × p2 matrix. Further, ⊗ stands for the Kronecker product of two
matrices [3].

We first determine the singular values of S. Note that the matrices S,
S(Hτ ) and S(Gφ) are all skew symmetric. By calculation, we have

SST = [I ′p ⊗ S(Gφ) + S(Hτ)⊗ In][I ′p ⊗ (−S(Gφ)) + (−S(Hτ ))⊗ In]
= −[(Ip ⊗ S2(Gφ) + S2(Hτ )⊗ In) + (I ′p ⊗ S(Gφ))(S(Hτ)⊗ In)

+(S(Hτ)⊗ In)(I ′p ⊗ S(Gφ))].

Define ωi = 1 for i = 1, 2, . . . , p1 and ωi = −1 for i = p1+1, p1+2, . . . , p.
Denote P (1) = (I ′p1+p2

⊗S(Gφ))(S(Hτ)⊗In) and P (2) = (S(Hτ )⊗In)(I ′p1+p2
⊗

S(Gφ)). Note that P (1) and P (2) are both partition matrices each of order
p1 × p2 in which each entry is an n× n submatrix. The (i, j)th block in the
matrix P (1) + P (2) is given by

P
(1)
ij + P

(2)
ij = S(Hτ )ijS(G

φ)((−1)ωi + (−1)ωj ).

For any 1 ≤ i, j ≤ p, if S(Hτ)ij = 0, then P
(1)
ij + P

(2)
ij = 0. Otherwise

the vertices corresponding to i and j in Hτ are in different parts of the
bipartition. That is, 1 ≤ i ≤ p1, p1+1 ≤ j ≤ p or 1 ≤ j ≤ p1, p1+1 ≤ i ≤ p.

Then (−1)ωi + (−1)ωj = 0. Thus it follows that P (1) + P (2) = 0. Hence

SST = −(Ip1+p2 ⊗ S2(Gφ) + S2(Hτ)⊗ In).

Therefore, the eigenvalues of SST are µ(Hτ)2+λ(Gφ)2, where ±iµ(Hτ ) ∈
SpS(H

τ) and ±iλ(Gφ) ∈ SpS(Gφ) and hence the eigenvalues of S are of the
form ±i

√

µ(Hτ)2 + λ(Gφ)2. Thus the skew spectrum of (Hτ
2Gφ)o is as given

in the statement of the theorem. The proof is thus complete.
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As an application of Theorem 4.2, we now construct new families of ori-
ented graphs with maximum skew energy.

Theorem 4.3. Let Hτ be an oriented `-regular bipartite graph on p vertices
with maximum skew energy ES(Hτ ) = p

√
` and Gφ be an oriented k-regular

bipartite graph on n vertices with maximum skew energy ES(Gφ) = n
√
k.

Then the oriented graph (Hτ
2Gφ)o of H2G has the maximum skew energy

ES((Hτ
2Gφ)o) = np

√
`+ k.

Proof. Since Hτ and Gφ have maximum skew energy, S(Hτ)S(Hτ )T = `Ip
and S(Gφ)S(Gφ)T = kIn. Then the skew eigenvalues of Hτ are all ±i

√
`

and the skew eigenvalues of Gφ are all ±i
√
k. By Theorem 4.2, all the skew

eigenvalues of (Hτ
2Gφ)o are of the form ±i

√
`+ k and hence its skew energy

is np
√
`+ k, the maximum possible skew energy that an (`+k)-regular graph

on np vertices can have.

An immediate corollary of Theorem 4.3 is the following result of Cui and
hou [6].

Corollary 4.4. Let Gφ be an oriented k-regular graph on n vertices with
maximum skew energy ES(Gφ) = n

√
k. Then the oriented graph (P22G

φ)o of
P22G has maximum skew energy ES((P22G

φ)o) = 2n
√
k + 1.

Adiga et al. [1] showed that a 1-regular connected graph that has an
orientation with maximum skew energy is K2; while a 2-regular connected
graph has an orientation with maximum skew energy if and only if it is an
oddly oriented cycle C4. Tian [14] proved that there exists a k-regular graph
with n = 2k vertices having an orientation ψ with maximum skew energy.
Cui and Hou [6] constructed a k-regular graph of order n = 2k−1 having an
orientation ϕ with maximum skew energy. The following examples provide
new families of oriented graphs with fewer vertices (compared to the last two
examples) that have maximum skew energy.

Example 4.5. Let G1 = K4,4. For each r ≥ 2, set Gr = K4,42Gr−1. As
there is an orientation of K4,4 with maximum skew energy 16 (see [5]), for
each r ≥ 1, there exists an orientation of Gr that yields the maximum skew
energy 23r

√
4r. This provides a family of 4r-regular graphs of order n = 23r

each having an orientation with skew energy 23r
√
4r, r ≥ 1.

Example 4.6. Let G1 = K4. For each r ≥ 2, set Gr = K4,42Gr−1. Since
there exist orientations for K4 with maximum skew energy 4

√
3 (see [1, 7]),

the skew energy of Gr, r ≥ 1, is 23r−1
√
4r − 1 and it is maximum. This

provides a family of 4r − 1-regular graphs of order 23r−1 each having an
orientation with maximum skew energy 23r−1

√
4r − 1, r ≥ 1.
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Example 4.7. A new family of 4r−2-regular oriented graphs of order 23r−1

with maximum skew energy 23r−1
√
4r − 2, r ≥ 1 is obtained when we set

G1 = C4 in place of K4 in Example 4.6.

Example 4.8. A new family of 4r−3-regular oriented graphs of order 23r−2

with maximum skew energy 23r−2
√
4r − 3, r ≥ 1 is obtained when we set

G1 = P2 in place of K4 in Example 4.6.
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