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Abstract

The revised Szeged index of a graph G is defined as Sz∗(G) =∑
e=uv∈E(nu(e)+n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are,

respectively, the number of vertices of G lying closer to vertex u than to
vertex v and the number of vertices of G lying closer to vertex v than
to vertex u, and n0(e) is the number of vertices equidistant to u and v.
Hansen et al. used the AutoGraphiX and made the following conjecture
about the revised Szeged index for a connected bicyclic graph G of order
n ≥ 6:

Sz∗(G) ≤
{

(n3 + n2 − n− 1)/4, if n is odd,

(n3 + n2 − n)/4, if n is even.

with equality if and only if G is the graph obtained from the cycle Cn−1

by duplicating a single vertex. This paper is to give a confirmative proof
to this conjecture.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the

readers to [2] for terminology and notations. Let G be a connected graph with vertex

set V and edge set E. For u, v ∈ V, d(u, v) denotes the distance between u and v. The

Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V

d(u, v).

This topological index has been extensively studied in the mathematical literature; see,

e.g., [4, 6]. Let e = uv be an edge of G, and define three sets as follows:

Nu(e) = {w ∈ V : d(u,w) < d(v, w)},
∗Supported by NSFC and the “973” program.
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Nv(e) = {w ∈ V : d(v, w) < d(u,w)},
N0(e) = {w ∈ V : d(u,w) = d(v, w)}.

Thus, {Nu(e), Nv(e), N0(e)} is a partition of the vertices of G with respect to e. The

number of vertices of Nu(e), Nv(e) and N0(e) are denoted by nu(e), nv(e) and n0(e),

respectively. A long time known property of the Wiener index is the formula [5, 12]:

W (G) =
∑

e=uv∈E

nu(e)nv(e),

which is applicable for trees. Using the above formula, Gutman [3] introduced a graph

invariant named the Szeged index as an extention of the Wiener index and defined it

by

Sz(G) =
∑

e=uv∈E

nu(e)nv(e).

Randić [10] observed that the Szeged index does not take into account the contributions

of the vertices at equal distances from the endpoints of an edge, and so he conceived

a modified version of the Szeged index which is named the revised Szeged index. The

revised Szeged index of a connected graph G is defined as

Sz∗(G) =
∑

e=uv∈E

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)
.

Some properties and applications of this topological index have been reported in

[8, 9]. In [1], Aouchiche and Hansen showed that for a connected graph G of order n

and size m, an upper bound of the revised Szeged index of G is n2m
4

. In [13], Xing

and Zhou determined the unicyclic graphs of order n with the smallest and the largest

revised Szeged indices for n ≥ 5, and they also determined the unicyclic graphs of

order n with a unique cycle of length r (3 ≤ r ≤ n), with the smallest and the largest

revised Szeged indices.

In [7], Hansen et al. used the AutoGraphiX and made the following conjecture:

Conjecture 1.1 Let G be a connected bicyclic graph G of order n ≥ 6. Then

Sz∗(G) ≤
{

(n3 + n2 − n− 1)/4, if n is odd,

(n3 + n2 − n)/4, if n is even.

with equality if and only if G is the graph obtained from the cycle Cn−1 by duplicating

a single vertex (see Figure 1).

It is easy to see that for bicyclic graphs, the upper bound in Conjecture 1.1 is better

than n2m
4

for general graphs.

This paper is to give a confirmative proof to this conjecture.
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2 Main results

For convenience, let Bn be the graph obtained from the cycle Cn−1 by duplicating a

single vertex (see Figure 1). It is easy to check that

Sz∗(Bn) =

{
(n3 + n2 − n− 1)/4, if n is odd,

(n3 + n2 − n)/4, if n is even.

i.e., Bn satisfies the equality of Conjecture 1.1.

So, we are left to show that for any connected bicyclic graph Gn of order n, other

than Bn, Sz∗(Gn) < Sz∗(Bn). Using the fact that nu(e) + nv(e) + n0(e) = n, we have

Sz∗(G) =
∑

e=uv∈E

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)

=
∑

e=uv∈E

(
n + nu(e)− nv(e)

2

)(
n− nu(e) + nv(e)

2

)

=
∑

e=uv∈E

n2 − (nu(e)− nv(e))
2

4

=
mn2

4
− 1

4

∑
e=uv∈E

(nu(e)− nv(e))
2.

Moreover, from m = n + 1 we have

Sz∗(G) =
n3 + n2

4
− 1

4

∑
e=uv∈E

(nu(e)− nv(e))
2 (1)
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Figure 1: Bn

We distinguish three cases to show the conjecture. First, we consider connected

bicyclic graphs with at least one pendant edge. Then, we consider connected bicyclic

graphs without pendant edges but with a cut vertex. Finally, we consider 2-connected

bicyclic graphs. In the following lemmas, we deal with these cases separately.
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Lemma 2.1 Let Gn be a connected bicyclic graph of order n ≥ 6 with at least one

pendant edge, i.e., δ(Gn) = 1. Then

Sz∗(Gn) < Sz∗(Bn)

Proof. Let e′ = xy be a pendant edge and d(y) = 1. Then, for n ≥ 6, we have
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ (nx(e

′)− ny(e
′))2

= (n− 1− 1)2

> n + 1.

Combining with equality (1), the result follows.

Lemma 2.2 Let Gn be a connected bicyclic graph of order n ≥ 6 without pendant edges

but with a cut vertex, i.e., δ(Gn) ≥ 2 and κ(Gn) = 1. Then, we have

Sz∗(Gn) < Sz∗(Bn)

Proof. Since δ(Gn) ≥ 2 and κ(Gn) = 1, Gn consists of two disjoint cycles linked by a

path or two cycles with a common vertex. Assume that C1 and C2 are the two cycles

of Gn, Pt is the path joining C1 and C2, where t ≥ 0 is the length of the path. Thus

|C1|+ |C2|+ t− 1 = n, and |C1| ≥ 3 and |C2| ≥ 3. Let u ∈ C1, v ∈ C2 be the endpoints

of Pt. Now we consider the four edges on the two cycles which are incident with u and

v. Without loss of generality, we consider one of the 4 edges e1 = uw. Then we have

nu(e1)− nw(e1) = n− |C1|+
⌊

C1

2

⌋
−

⌊
C1

2

⌋
= n− |C1|

For the other three edges, one can get equalities similar to the above. So we have, for

n ≥ 6,
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ 2(n− |C1|)2 + 2(n− |C2|)2

= 2
(
2nt− 2n + |C1|2 + |C2|2

)

≥ 2

(
2nt− 2n + 2×

(
n + 1− t

2

)2
)

= (n− 1 + t)2

> n + 1,

Combining with equality (1), this completes the proof.

For the last case, i.e., κ(Gn) = 2, we define a class of graphs. A graph is called a

Θ-graph if it consists of three internally disjoint paths P1, P2 and P3 connecting two

fixed vertices x and y. Obviously, in this case Gn must be a Θ-graph. A path or a

cycle is called odd (even) if its length is odd (even).

4



Lemma 2.3 Let G = (V, E) be a Θ-graph composed of three paths P1, P2 and P3, and

e = uv ∈ E. Then |nu(e)− nv(e)| = 0 if and only if e is in the middle of an odd path

of the three paths P1, P2 and P3.

Proof. Assume that x and y are the vertices in G with degree 3, and e = uv belongs

to Pi (1 ≤ i ≤ 3), the ith path connecting x and y. Then, with respect to Nu(e) and

Nv(e), there are three cases to discuss.

Case 1. x, y are in different sets. We claim that

|nu(e)− nv(e)| = |bi − ai|,

where ai (resp. (bi)) is the distance between x (resp. y) and the edge e.

To see this, assume that x ∈ Nu(e), y ∈ Nv(e). Then we have ai−bi vertices more in

Nu(e) than in Nv(e) on the path Pi, but on each path Pj (j 6= i), we have bi−ai vertices

more in Nu(e) than in Nv(e). Hence |nu(e)−nv(e)| = |2(bi− ai) + (ai− bi)| = |bi− ai|.
Case 2. x, y are in the same set. We claim that

|nu(e)− nv(e)| = |V | − g,

where g is the length of the shortest cycle of G that contains e.

To see this, assume that x, y ∈ Nu(e). Thus all vertices from the paths Pi (j 6= i)

are in Nu(e). Therefore, nv(e) = bg
2
c, while nu(e) = bg

2
c+ |V |− g. So |nu(e)−nv(e)| =

|V | − g.

Case 3. One of x, y is in N0(e). We claim that

|nu(e)− nv(e)| ≥ a− 1,

with equality if and only if two paths of Pi (i = 1, 2, 3) have length a, where a is the

length of a shortest path of the three paths Pi (i = 1, 2, 3).

To see this, assume that x ∈ Nu(e), y ∈ N0(e). Then the shortest cycle C of G that

contains e is odd. Let z ∈ V \C be the furthest vertex from e such that z ∈ N0(e).

Then |nu(e)− nv(e)| = d(x, z)− 1 ≥ a + d(y, z)− 1 ≥ a− 1.

From the above, we know that |nu(e) − nv(e)| ≥ 1 in Case 2. In Case 3, |nu(e) −
nv(e)| = 0 if two paths of Pi (i = 1, 2, 3) have length 1, which is impossible since G is

simple. So, |nu(e)− nv(e)| = 0 if and only if x, y are in different sets and |bi − ai| = 0,

that is, e is in the middle position of an odd path of G.

Now we are ready to give our main result.

Theorem 2.4 If Gn is a connected bicyclic graph of order n > 6, other than Bn, then

Sz∗(Gn) < Sz∗(Bn).
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Proof. The result follows from Lemmas 2.1 and 2.2 for bicyclic graphs of connectivity

1. So, we assume that Gn is 2-connected next. Then Gn must be a Θ-graph. Let x and y

be the vertices in G with degree 3, a ≤ b ≤ c be the lengths of the corresponding 3 paths.

By Lemma 2.3, we know that there are at most 3 edges such that |nu(e)− nv(e)| = 0.

We distinguish the following cases to proceed the proof.

Case 1. 3 ≤ a ≤ b ≤ c.

Consider the six edges that are incident with x and y. Let e1 = xz be one of them.

Then, |nu(e) − nv(e)| ≥ 2 from Lemma 2.3. Similar thing is true for the other five

edges. Hence
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ 22 × 6 + (m− 6− 3) = m + 15 > m = n + 1.

Combining with equality (1), the result follows.

Case 2. 2 = a < b ≤ c.

Consider the four edges which are incident with x and y but do not belong to the

shortest path. Let e1 = xz be one of them. Then, |nu(e) − nv(e)| ≥ 2 from Lemma

2.3. Similarly, this is true for the other three edges. Hence,
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ 22 × 4 + (m− 4− 2) = m + 10 > m = n + 1.

Combining with equality (1), the result follows.

Case 3. 1 = a < b ≤ c.

If b ≥ 3, similar to the above Case 2, we have
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ 22 × 4 + (m− 4− 3) = m + 9 > m = n + 1.

Combining with equality (1), the result follows.

If b = 2, we consider the two edges on the second longest path. Let e1 = xw be

one of them. Obviously, y ∈ N0(e), in other words, |nu(e) − nv(e)| = d(x, z) − 1 ≥
a + d(y, z)− 1 = d(y, z), where z is defined as in Case 3 of Lemma 2.3. We claim that

d(x, z) ≥ 3. Otherwise, if d(x, z) ≤ 2, then d(y, z) ≤ 1, thus c = d(x, z) + d(y, z) ≤ 3.

It follows that n = a + b + c− 1 ≤ 5, a contradiction. Now we have
∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ 22 × 2 + (m− 2− 2) = m + 4 > m = n + 1.

Combining with equality (1), the result follows.

According to our proof for Conjecture 1.1, we can also get that among connected

bicyclic graphs of order n, the graph Θ(1, 2, n−2) has the second-largest revised Szeged

index, where Θ(a, b, c) is a Θ-graph with three paths of lengths a, b, c, respectively.
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