Bicyclic graphs with maximal revised Szeged index*

Xueliang Li, Mengmeng Liu
Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, China
Email: lxl@nankai.edu.cn, liumm05@163.com

Abstract

The revised Szeged index of a graph G is defined as $S z^{*}(G)=$ $\sum_{e=u v \in E}\left(n_{u}(e)+n_{0}(e) / 2\right)\left(n_{v}(e)+n_{0}(e) / 2\right)$, where $n_{u}(e)$ and $n_{v}(e)$ are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and $n_{0}(e)$ is the number of vertices equidistant to u and v. Hansen et al. used the AutoGraphiX and made the following conjecture about the revised Szeged index for a connected bicyclic graph G of order $n \geq 6$: $$
S z^{*}(G) \leq \begin{cases}\left(n^{3}+n^{2}-n-1\right) / 4, & \text { if } n \text { is odd, } \\ \left(n^{3}+n^{2}-n\right) / 4, & \text { if } n \text { is even. }\end{cases}
$$ with equality if and only if G is the graph obtained from the cycle C_{n-1} by duplicating a single vertex. This paper is to give a confirmative proof to this conjecture.

Keywords: Wiener index, Szeged index, Revised Szeged index, bicyclic graph.

AMS subject classification 2010: 05C12, 05C35, 05C90, 92E10.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [2] for terminology and notations. Let G be a connected graph with vertex set V and edge set E. For $u, v \in V, d(u, v)$ denotes the distance between u and v. The Wiener index of G is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V} d(u, v) .
$$

This topological index has been extensively studied in the mathematical literature; see, e.g., $[4,6]$. Let $e=u v$ be an edge of G, and define three sets as follows:

$$
N_{u}(e)=\{w \in V: d(u, w)<d(v, w)\},
$$

[^0]\[

$$
\begin{aligned}
& N_{v}(e)=\{w \in V: d(v, w)<d(u, w)\}, \\
& N_{0}(e)=\{w \in V: d(u, w)=d(v, w)\} .
\end{aligned}
$$
\]

Thus, $\left\{N_{u}(e), N_{v}(e), N_{0}(e)\right\}$ is a partition of the vertices of G with respect to e. The number of vertices of $N_{u}(e), N_{v}(e)$ and $N_{0}(e)$ are denoted by $n_{u}(e), n_{v}(e)$ and $n_{0}(e)$, respectively. A long time known property of the Wiener index is the formula [5,12]:

$$
W(G)=\sum_{e=u v \in E} n_{u}(e) n_{v}(e),
$$

which is applicable for trees. Using the above formula, Gutman [3] introduced a graph invariant named the Szeged index as an extention of the Wiener index and defined it by

$$
S z(G)=\sum_{e=u v \in E} n_{u}(e) n_{v}(e) .
$$

Randić [10] observed that the Szeged index does not take into account the contributions of the vertices at equal distances from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named the revised Szeged index. The revised Szeged index of a connected graph G is defined as

$$
S z^{*}(G)=\sum_{e=u v \in E}\left(n_{u}(e)+\frac{n_{0}(e)}{2}\right)\left(n_{v}(e)+\frac{n_{0}(e)}{2}\right) .
$$

Some properties and applications of this topological index have been reported in [8, 9]. In [1], Aouchiche and Hansen showed that for a connected graph G of order n and size m, an upper bound of the revised Szeged index of G is $\frac{n^{2} m}{4}$. In [13], Xing and Zhou determined the unicyclic graphs of order n with the smallest and the largest revised Szeged indices for $n \geq 5$, and they also determined the unicyclic graphs of order n with a unique cycle of length $r(3 \leq r \leq n)$, with the smallest and the largest revised Szeged indices.

In [7], Hansen et al. used the AutoGraphiX and made the following conjecture:

Conjecture 1.1 Let G be a connected bicyclic graph G of order $n \geq 6$. Then

$$
S z^{*}(G) \leq \begin{cases}\left(n^{3}+n^{2}-n-1\right) / 4, & \text { if } n \text { is odd } \\ \left(n^{3}+n^{2}-n\right) / 4, & \text { if } n \text { is even } .\end{cases}
$$

with equality if and only if G is the graph obtained from the cycle C_{n-1} by duplicating a single vertex (see Figure 1).

It is easy to see that for bicyclic graphs, the upper bound in Conjecture 1.1 is better than $\frac{n^{2} m}{4}$ for general graphs.

This paper is to give a confirmative proof to this conjecture.

2 Main results

For convenience, let B_{n} be the graph obtained from the cycle C_{n-1} by duplicating a single vertex (see Figure 1). It is easy to check that

$$
S z^{*}\left(B_{n}\right)= \begin{cases}\left(n^{3}+n^{2}-n-1\right) / 4, & \text { if } n \text { is odd, } \\ \left(n^{3}+n^{2}-n\right) / 4, & \text { if } n \text { is even }\end{cases}
$$

i.e., B_{n} satisfies the equality of Conjecture 1.1.

So, we are left to show that for any connected bicyclic graph G_{n} of order n, other than $B_{n}, S z^{*}\left(G_{n}\right)<S z^{*}\left(B_{n}\right)$. Using the fact that $n_{u}(e)+n_{v}(e)+n_{0}(e)=n$, we have

$$
\begin{aligned}
S z^{*}(G) & =\sum_{e=u v \in E}\left(n_{u}(e)+\frac{n_{0}(e)}{2}\right)\left(n_{v}(e)+\frac{n_{0}(e)}{2}\right) \\
& =\sum_{e=u v \in E}\left(\frac{n+n_{u}(e)-n_{v}(e)}{2}\right)\left(\frac{n-n_{u}(e)+n_{v}(e)}{2}\right) \\
& =\sum_{e=u v \in E} \frac{n^{2}-\left(n_{u}(e)-n_{v}(e)\right)^{2}}{4} \\
& =\frac{m n^{2}}{4}-\frac{1}{4} \sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} .
\end{aligned}
$$

Moreover, from $m=n+1$ we have

$$
\begin{equation*}
S z^{*}(G)=\frac{n^{3}+n^{2}}{4}-\frac{1}{4} \sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} \tag{1}
\end{equation*}
$$

Figure 1: B_{n}

We distinguish three cases to show the conjecture. First, we consider connected bicyclic graphs with at least one pendant edge. Then, we consider connected bicyclic graphs without pendant edges but with a cut vertex. Finally, we consider 2-connected bicyclic graphs. In the following lemmas, we deal with these cases separately.

Lemma 2.1 Let G_{n} be a connected bicyclic graph of order $n \geq 6$ with at least one pendant edge, i.e., $\delta\left(G_{n}\right)=1$. Then

$$
S z^{*}\left(G_{n}\right)<S z^{*}\left(B_{n}\right)
$$

Proof. Let $e^{\prime}=x y$ be a pendant edge and $d(y)=1$. Then, for $n \geq 6$, we have

$$
\begin{aligned}
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} & \geq\left(n_{x}\left(e^{\prime}\right)-n_{y}\left(e^{\prime}\right)\right)^{2} \\
& =(n-1-1)^{2} \\
& >n+1
\end{aligned}
$$

Combining with equality (1), the result follows.
Lemma 2.2 Let G_{n} be a connected bicyclic graph of order $n \geq 6$ without pendant edges but with a cut vertex, i.e., $\delta\left(G_{n}\right) \geq 2$ and $\kappa\left(G_{n}\right)=1$. Then, we have

$$
S z^{*}\left(G_{n}\right)<S z^{*}\left(B_{n}\right)
$$

Proof. Since $\delta\left(G_{n}\right) \geq 2$ and $\kappa\left(G_{n}\right)=1, G_{n}$ consists of two disjoint cycles linked by a path or two cycles with a common vertex. Assume that C_{1} and C_{2} are the two cycles of G_{n}, P_{t} is the path joining C_{1} and C_{2}, where $t \geq 0$ is the length of the path. Thus $\left|C_{1}\right|+\left|C_{2}\right|+t-1=n$, and $\left|C_{1}\right| \geq 3$ and $\left|C_{2}\right| \geq 3$. Let $u \in C_{1}, v \in C_{2}$ be the endpoints of P_{t}. Now we consider the four edges on the two cycles which are incident with u and v. Without loss of generality, we consider one of the 4 edges $e_{1}=u w$. Then we have

$$
n_{u}\left(e_{1}\right)-n_{w}\left(e_{1}\right)=n-\left|C_{1}\right|+\left\lfloor\frac{C_{1}}{2}\right\rfloor-\left\lfloor\frac{C_{1}}{2}\right\rfloor=n-\left|C_{1}\right|
$$

For the other three edges, one can get equalities similar to the above. So we have, for $n \geq 6$,

$$
\begin{aligned}
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} & \geq 2\left(n-\left|C_{1}\right|\right)^{2}+2\left(n-\left|C_{2}\right|\right)^{2} \\
& =2\left(2 n t-2 n+\left|C_{1}\right|^{2}+\left|C_{2}\right|^{2}\right) \\
& \geq 2\left(2 n t-2 n+2 \times\left(\frac{n+1-t}{2}\right)^{2}\right) \\
& =(n-1+t)^{2} \\
& >n+1,
\end{aligned}
$$

Combining with equality (1), this completes the proof.
For the last case, i.e., $\kappa\left(G_{n}\right)=2$, we define a class of graphs. A graph is called a Θ-graph if it consists of three internally disjoint paths P_{1}, P_{2} and P_{3} connecting two fixed vertices x and y. Obviously, in this case G_{n} must be a Θ-graph. A path or a cycle is called odd (even) if its length is odd (even).

Lemma 2.3 Let $G=(V, E)$ be a Θ-graph composed of three paths P_{1}, P_{2} and P_{3}, and $e=u v \in E$. Then $\left|n_{u}(e)-n_{v}(e)\right|=0$ if and only if e is in the middle of an odd path of the three paths P_{1}, P_{2} and P_{3}.

Proof. Assume that x and y are the vertices in G with degree 3 , and $e=u v$ belongs to $P_{i}(1 \leq i \leq 3)$, the i th path connecting x and y. Then, with respect to $N_{u}(e)$ and $N_{v}(e)$, there are three cases to discuss.

Case 1. x, y are in different sets. We claim that

$$
\left|n_{u}(e)-n_{v}(e)\right|=\left|b_{i}-a_{i}\right|,
$$

where a_{i} (resp. $\left.\left(b_{i}\right)\right)$ is the distance between x (resp. y) and the edge e.
To see this, assume that $x \in N_{u}(e), y \in N_{v}(e)$. Then we have $a_{i}-b_{i}$ vertices more in $N_{u}(e)$ than in $N_{v}(e)$ on the path P_{i}, but on each path $P_{j}(j \neq i)$, we have $b_{i}-a_{i}$ vertices more in $N_{u}(e)$ than in $N_{v}(e)$. Hence $\left|n_{u}(e)-n_{v}(e)\right|=\left|2\left(b_{i}-a_{i}\right)+\left(a_{i}-b_{i}\right)\right|=\left|b_{i}-a_{i}\right|$.
Case 2. x, y are in the same set. We claim that

$$
\left|n_{u}(e)-n_{v}(e)\right|=|V|-g,
$$

where g is the length of the shortest cycle of G that contains e.
To see this, assume that $x, y \in N_{u}(e)$. Thus all vertices from the paths $P_{i}(j \neq i)$ are in $N_{u}(e)$. Therefore, $n_{v}(e)=\left\lfloor\frac{g}{2}\right\rfloor$, while $n_{u}(e)=\left\lfloor\frac{g}{2}\right\rfloor+|V|-g$. So $\left|n_{u}(e)-n_{v}(e)\right|=$ $|V|-g$.
Case 3. One of x, y is in $N_{0}(e)$. We claim that

$$
\left|n_{u}(e)-n_{v}(e)\right| \geq a-1
$$

with equality if and only if two paths of $P_{i}(i=1,2,3)$ have length a, where a is the length of a shortest path of the three paths $P_{i}(i=1,2,3)$.

To see this, assume that $x \in N_{u}(e), y \in N_{0}(e)$. Then the shortest cycle C of G that contains e is odd. Let $z \in V \backslash C$ be the furthest vertex from e such that $z \in N_{0}(e)$. Then $\left|n_{u}(e)-n_{v}(e)\right|=d(x, z)-1 \geq a+d(y, z)-1 \geq a-1$.

From the above, we know that $\left|n_{u}(e)-n_{v}(e)\right| \geq 1$ in Case 2. In Case 3, $\mid n_{u}(e)-$ $n_{v}(e) \mid=0$ if two paths of $P_{i}(i=1,2,3)$ have length 1 , which is impossible since G is simple. So, $\left|n_{u}(e)-n_{v}(e)\right|=0$ if and only if x, y are in different sets and $\left|b_{i}-a_{i}\right|=0$, that is, e is in the middle position of an odd path of G.

Now we are ready to give our main result.
Theorem 2.4 If G_{n} is a connected bicyclic graph of order $n>6$, other than B_{n}, then

$$
S z^{*}\left(G_{n}\right)<S z^{*}\left(B_{n}\right)
$$

Proof. The result follows from Lemmas 2.1 and 2.2 for bicyclic graphs of connectivity 1. So, we assume that G_{n} is 2 -connected next. Then G_{n} must be a Θ-graph. Let x and y be the vertices in G with degree $3, a \leq b \leq c$ be the lengths of the corresponding 3 paths. By Lemma 2.3, we know that there are at most 3 edges such that $\left|n_{u}(e)-n_{v}(e)\right|=0$. We distinguish the following cases to proceed the proof.
Case 1. $3 \leq a \leq b \leq c$.
Consider the six edges that are incident with x and y. Let $e_{1}=x z$ be one of them. Then, $\left|n_{u}(e)-n_{v}(e)\right| \geq 2$ from Lemma 2.3. Similar thing is true for the other five edges. Hence

$$
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} \geq 2^{2} \times 6+(m-6-3)=m+15>m=n+1
$$

Combining with equality (1), the result follows.
Case 2. $2=a<b \leq c$.
Consider the four edges which are incident with x and y but do not belong to the shortest path. Let $e_{1}=x z$ be one of them. Then, $\left|n_{u}(e)-n_{v}(e)\right| \geq 2$ from Lemma 2.3. Similarly, this is true for the other three edges. Hence,

$$
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} \geq 2^{2} \times 4+(m-4-2)=m+10>m=n+1
$$

Combining with equality (1), the result follows.
Case 3. $1=a<b \leq c$.
If $b \geq 3$, similar to the above Case 2 , we have

$$
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} \geq 2^{2} \times 4+(m-4-3)=m+9>m=n+1 .
$$

Combining with equality (1), the result follows.
If $b=2$, we consider the two edges on the second longest path. Let $e_{1}=x w$ be one of them. Obviously, $y \in N_{0}(e)$, in other words, $\left|n_{u}(e)-n_{v}(e)\right|=d(x, z)-1 \geq$ $a+d(y, z)-1=d(y, z)$, where z is defined as in Case 3 of Lemma 2.3. We claim that $d(x, z) \geq 3$. Otherwise, if $d(x, z) \leq 2$, then $d(y, z) \leq 1$, thus $c=d(x, z)+d(y, z) \leq 3$. It follows that $n=a+b+c-1 \leq 5$, a contradiction. Now we have

$$
\sum_{e=u v \in E}\left(n_{u}(e)-n_{v}(e)\right)^{2} \geq 2^{2} \times 2+(m-2-2)=m+4>m=n+1 .
$$

Combining with equality (1), the result follows.
According to our proof for Conjecture 1.1, we can also get that among connected bicyclic graphs of order n, the graph $\Theta(1,2, n-2)$ has the second-largest revised Szeged index, where $\Theta(a, b, c)$ is a Θ-graph with three paths of lengths a, b, c, respectively.
Acknowledgement. The authors would like to thank the reviewers for helpful comments and suggestions.

References

[1] M. Aouchiche, P. Hansen, On a conjecture about the Szeged index, European J. Combin. 31(2010), 1662-1666.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[3] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes of New York 27(1994), 9-15.
[4] I. Gutman, S. Klavžar, B. Mohar(Eds), Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem. 35(1997), 1-259.
[5] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[6] I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A(1993), 651-661.
[7] P. Hansen, Computers and conjectures in chemical graph theory: Some AutoGraphiX open conjectures, Plenary talk at the International Conference on Mathematical Chemistry, August 4-7, 2010, Xiamen, China.
[8] T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for meauring network bipartivity, Discrete Appl. Math. 158(2010), 1936-1944.
[9] T. Pisanski, J. Žerovnik, Edge-contributions of some topological indices and arboreality of molecular graphs, Ars Math. Contemp. 2(2009), 49-58.
[10] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49(2002), 483-496.
[11] S. Simić, I. Gutman, V. Baltić, Some graphs with extremal Szeged index, Math. Slovaca 50(2000), 1-15.
[12] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69(1947), 17-20.
[13] R. Xing, B. Zhou, On the revised Szeged index, Discrete Appl. Math. 159(2011), 69-78.

[^0]: *Supported by NSFC and the " 973 " program.

