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Abstract

A path in an edge-colored graph is called rainbow if no two edges of it are colored
the same. For an `-connected graph G and an integer k with 1 ≤ k ≤ `, the rainbow
k-connection number rck(G) of G is defined to be the minimum number of colors
required to color the edges of G such that every two distinct vertices of G are
connected by at least k internally disjoint rainbow paths. Fujita et. al. proposed
a problem: What is the minimum constant α > 0 such that for every 2-connected
graph G on n vertices, we have rc2(G) ≤ αn ? In this paper, we prove that the
minimum constant α = 1 and rc2(G) = n if and only if G is a cycle of order n,
which solves the problem of Fujita et. al.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the

terminology and notation of Bondy and Murty [2]. A path in an edge-colored graph is

called rainbow if every two edges on it have distinct colors. Let G be an edge-colored `-

connected graph, where ` is a positive integer. For 1 ≤ k ≤ `, G is rainbow k-connected if

every pair of distinct vertices of G are connected by at least k internally disjoint rainbow
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paths. The minimum number of colors required to color the edges of G to make G

rainbow k-connected is called the rainbow k-connection number of G, denoted by rck(G).

Particularly, rc1(G) is equal to rc(G), the rainbow connection number. For more results

on this topic, see a recent book by Li and Sun [12] and a survey paper [11].

A graph G is minimally k-connected if G is k-connected but G−e is not k-connected for

every e ∈ E(G). Let G′ be a subgraph of a graph G. An ear of G′ in G is a nontrivial path

in G whose end vertices lie in G′ but whose internal vertices are not. An ear decomposition

of a 2-connected graph G is a sequence G0, G1, · · · , Gk of 2-connected subgraphs of G such

that (1) G0 is a cycle of G; (2) Gi = Gi−1

⋃
Pi−1 (1 ≤ i ≤ k), where Pi−1 is an ear of

Gi−1 in G; (3) Gi−1 (1 ≤ i ≤ k) is a proper subgraph of Gi; (4) Gk = G. It is obvious

that every graph Gi in an ear decomposition is 2-connected. Two paths P ′ and P ′′ from

vi to vj are internally disjoint if V (P ′)
⋂

V (P ′′) = {vi, vj}. For three distinct vertices

v′, v′′1 , v
′′
2 , the paths P ′ and P ′′ from v′ to v′′1 and v′′2 , respectively, are internally disjoint if

V (P ′)
⋂

V (P ′′) = {v′}. Two paths P ′ and P ′′ are disjoint if V (P ′)
⋂

V (P ′′) = ∅.
The concept of rainbow k-connection number rck(G) was introduced by Chartrand et.

al. [5, 6]. It was shown in [7] that computing the rainbow connection number of a graph is

NP-hard. Hence, bounds on rainbow connection number for graphs have been a subject

of investigation. There are some results in this direction. For a connected graph G,

rc(G) ≤ n− 1 in [3]. An upper bound for the rainbow connection number of a connected

graph with minimum degree δ is 3n/(δ + 1) + 3 in [4]. If G is a 2-connected graph of

order n, then rc(G) ≤ dn
2
e and rc(Cn) = dn

2
e, where Cn is an n-vertex cycle in [10]. An

easy observation is that rc2(Cn) = n. In [8], the authors proved the following theorem

and proposed a problem.

Theorem 1.1. [8] If ` ≥ 2 and G is an `-connected graph of order n ≥ ` + 1, then

rc2(G) ≤ (` + 1)n/`.

Problem 1.1. [8] What is the minimum constant α > 0 such that for all 2-connected

graphs G on n vertices, we have rc2(G) ≤ αn?

In a published version of [8], they stated the following theorem and problem.

Theorem 1.2. [9] If G is a 2-connected graph of order n ≥ 3, then rc2(G) ≤ 3n/2.

Problem 1.2. [9] For 1 ≤ k ≤ `, derive a sharp upper bound for rck(G), if G is an

`-connected graph on n vertices. Is there a constant α = α(k, `) such that rck(G) ≤ αn ?

Problem 1.1 is restated in [12]. From Theorem 1.2 and rc2(Cn) = n, it is obvious that

1 ≤ α ≤ 3/2. For a 2-connected series-parallel graph G, the authors of [8, 9] showed the

following result.
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Theorem 1.3. [8, 9] If G is a 2-connected series-parallel graph on n vertices, then

rc2(G) ≤ n.

In this paper, we will show that the above result holds for general 2-connected graphs.

Theorem 1.4. If G is a 2-connected graph on n vertices, then rc2(G) ≤ n with equality

if and only if G is a cycle of order n.

Therefore, the minimum constant α = 1 in Problem 1.1. The following classic results

on minimally 2-connected graphs are needed in the sequel.

Theorem 1.5. [1] Let G be a minimally 2-connected graph that is not a cycle. Let

D ⊂ V (G) be the set of vertices of degree two. Then F = G−D is a forest with at least

two components. A component P of G[D] is a path and the end vertices of P are not

joined to the same tree of the forest F .

Theorem 1.6. [1] Every 2-connected subgraph of a minimally 2-connected graph is min-

imally 2-connected.

2 Main results

We first give a lemma, which will be used later.

Lemma 2.1. Let G be a minimally 2-connected graph, but not a cycle. Then G has an

ear decomposition G0, G1, · · · , Gt (t ≥ 1) satisfying the following conditions:

(1) Gi = Gi−1

⋃
Pi−1 (1 ≤ i ≤ t), where Pi−1 is an ear of Gi−1 in G and at least one

vertex of Pi−1 has degree two in G;

(2) each of the two internally disjoint paths in G0 between the end vertices of P0 has at

least one vertex of degree two in G.

Proof. We first construct a sequence of 2-connected subgraphs of G. Let D ⊂ V (G) be

the set of vertices of degree two in G. Let G0 be a cycle of G which contains as many

vertices of D as possible. If D\V (G0) 6= ∅, then choose a vertex v0 ∈ D\V (G0). Since G

is 2-connected, from Menger’s Theorem there exist two internally disjoint paths P ′ and

P ′′ from v0 to two distinct vertices of G0 such that the internal vertices of P ′ and P ′′

do not belong to G0. Hence P0 = P ′ ⋃ P ′′ is an ear of G0 which contains a vertex v0 in

D. Let G1 = G0

⋃
P0. If D\V (G1) 6= ∅, then we continue the procedure. After a finite

number of steps, we get a sequence G0, G1, · · · , Gt (t ≥ 1) of 2-connected subgraphs of G

such that D\V (Gt) = ∅ and Gi = Gi−1

⋃
Pi−1 (1 ≤ i ≤ t), where Pi−1 is an ear of Gi−1
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containing at least one vertex in D. If Gt = G, then from the procedures of construction,

the sequence G0, G1, · · · , Gt (t ≥ 1) is an ear decomposition of G satisfying condition (1).

We first show that Gt = G. Suppose on the contrary that Gt 6= G, i.e., Gt is a proper

2-connected subgraph of G. Since G is minimally 2-connected, we have V (G)\V (Gt) 6= ∅.
From Theorem 1.5, G − D is a forest. Since D ⊆ V (Gt), F = G − V (Gt) ⊆ G − D

is also a forest with |F | ≥ 1. Let T be a component of F with |T | ≥ 1. Then T is a

tree. If |T | = 1 and V (T ) = {v}, then there exist three distinct vertices v1, v2, v3 in Gt

such that vvj ∈ E(G) (1 ≤ j ≤ 3). Let G′ = (V ′, E ′), where V ′ = V (Gt)
⋃{v} and

E ′ = E(Gt)
⋃{vvj : 1 ≤ j ≤ 3}. So G′ is a 2-connected subgraph of G. Since G′ − vv3

is also 2-connected, G′ is not minimally 2-connected which contradicts to Theorem 1.6.

Suppose |T | ≥ 2. Then T has at least two leaves, say v′ and v′′. Since v′, v′′ /∈ D

and dT (v′) = dT (v′′) = 1, there exist four vertices vi (1 ≤ i ≤ 4, v1 6= v2, v3 6= v4) in

Gt such that v′v1, v
′v2, v

′′v3, v
′′v4 ∈ E(G). Let P be the path from v′ to v′′ in T . Then

G′ = (V ′, E ′), where V ′ = V (Gt)
⋃

V (P ) and E ′ = E(Gt)
⋃

E(P )
⋃{v′v1, v

′v2, v
′′v3, v

′′v4}
is a 2-connected subgraph of G. Since G′ − v′v1 is also 2-connected, G′ is not minimally

2-connected which contradicts to Theorem 1.6. Therefore, Gt = G.

Now we show that the ear decomposition G0, G1, · · · , Gt (t ≥ 1) of G satisfies condition

(2). Denote by P ′ and P ′′ the two internally disjoint paths in G0 between the two end

vertices of P0. Suppose on the contrary that one of P ′ and P ′′, say P ′, has no vertex of

degree two in G, i.e., V (P ′)
⋂

D = ∅. From the procedure of construction, V (P0)
⋂

D 6= ∅.
Hence, P ′′ ⋃ P0 is a cycle of G, which contains more vertices in D than G0, a contradiction.

Therefore, the ear decomposition G0, G1, · · · , Gt (t ≥ 1) of G satisfies condition (2).

For convenience, we give some more notations. If c is an edge-coloring of a graph G,

then c(G) denotes the set of colors appearing in G. Write |G| for the order of a graph G.

If P is a path and vi, vj ∈ V (P ), then viPvj denotes the segment of P from vi to vj.

Lemma 2.2. Let G ba a minimally 2-connected graph of order n ≥ 3. If G is not a cycle,

then rc2(G) ≤ n− 1.

Proof. Let G be a minimally 2-connected graph of order n, but not a cycle. We will

prove the result by giving an edge-coloring of G with n−1 colors which makes G rainbow

2-connected. From Lemma 2.1, G has an ear decomposition G0, G1, · · · , Gt (t ≥ 1)

satisfying the two conditions in Lemma 2.1. Let D ⊆ V (G) be the set of vertices of

degree two in G and D = V (G)\D. In the following, for every graph Gi (1 ≤ i ≤ t) we

will define an edge-coloring ci of Gi with |Gi| − 1 colors and a map fi from D
⋂

V (Gi) to

ci(Gi) satisfying the following conditions:

(A1) Gi is rainbow 2-connected;

4



(A2) for any three distinct vertices v′, v′′1 , v
′′
2 ∈ V (Gi), Gi has two internally disjoint

rainbow paths P ′ and P ′′ from v′ to v′′1 and v′′2 , respectively;

(A3) for any four distinct vertices v′1, v
′
2, v

′′
1 , v

′′
2 ∈ V (Gi), Gi has two disjoint rainbow

paths P ′ from v′1 to one of v′′1 and v′′2 , say v′′1 , and P ′′ from v′2 to the other vertex v′′2 ;

(A4) fi is injective, i.e., for any two distinct vertices v′, v′′ ∈ D
⋂

V (Gi), fi(v
′) 6= fi(v

′′);

(A5) for any vertex v ∈ D
⋂

V (Gi), the color fi(v) appears exactly once in ci and the

edge colored by fi(v) in Gi is incident with v.

We define ci and fi of Gi (1 ≤ i ≤ t) by induction. First, consider the graph

G1 = G0

⋃
P0. Without loss of generality, suppose that G0 = v1v2 · · · vsv1 and P0 =

v1vs+1vs+2 · · · v`vp (` > s), where G0 is a cycle, P0 is a path and V (G0)
⋂

V (P0) =

{v1, vp} (3 ≤ p ≤ s− 1). Since the ear decomposition G0, G1, · · · , Gt (t ≥ 1) of G satisfies

the two conditions in Lemma 2.1, there exist three vertices vp1 , vp2 , vp3 ∈ D (1 < p1 <

p < p2 ≤ s < p3 ≤ `) in G1. Define an edge-coloring c1 of G1 by c1(vjvj+1) = xj if

1 ≤ j ≤ s − 1 or s + 1 ≤ j ≤ ` − 1; c1(vsv1) = c1(v`vp) = xs and c1(v1vs+1) = xp, where

x1, x2, · · · , x`−1 are distinct colors. It is obvious that c1 uses |G1|−1 colors. Define a map

f1 : D
⋂

V (G1) → c1(G1) by f1(vj) = xj if vj ∈ D
⋂

V (G1) and 1 ≤ j < p1, p+1 ≤ j < p2

or s + 1 ≤ j < p3 and f1(vj) = xj−1 if vj ∈ D
⋂

V (G1) and p1 < j ≤ p, p2 < j ≤ s or

p3 < j ≤ `. It can be checked that c1 and f1 satisfy the above conditions (A1)-(A5).

If t = 1, then c1 is the rainbow 2-connected edge-coloring of G with n − 1 colors.

Consider the case t ≥ 2. Assume that we have defined ci−1 and fi−1 of Gi−1 (2 ≤ i ≤ t)

satisfying conditions (A1)-(A5) and the edge-coloring ci−1 of Gi−1 uses |Gi−1| − 1 colors.

Now consider the graph Gi = Gi−1

⋃
Pi−1. Suppose that Pi−1 = v1v2 · · · vq (q ≥ 3),

where V (Gi−1)
⋂

V (Pi−1) = {v1, vq}. It is obvious that v1, vq ∈ D
⋂

V (Gi−1). Define

an edge-coloring ci of Gi by ci(e) = ci−1(e) for e ∈ E(Gi−1), ci(vq−1vq) = fi−1(v1) and

ci(vjvj+1) = yj (1 ≤ j ≤ q − 2), where y1, y2, · · · , yq−2 are distinct new colors. It is clear

that ci uses |Gi| − 1 colors. From condition (1) of the Lemma 2.1, there exists a vertex

vq0 ∈ D (2 ≤ q0 ≤ q − 1) in Pi−1. Define a map fi : D
⋂

V (Gi) → ci(Gi) as follows:

fi(v) = fi−1(v) for v ∈ [D
⋂

V (Gi−1)]\{v1}, fi(vj) = yj for vj ∈ D
⋂

V (v1Pi−1vq0−1) and

fi(vj) = yj−1 for vj ∈ D
⋂

V (vq0+1Pi−1vq−1). The edge-coloring ci of Gi has the following

two properties.

(B1) There exists a rainbow path P ′
i−1 from v1 to vq in Gi−1 such that the color fi−1(v1)

does not appear on it. In fact, since Gi−1 is rainbow 2-connected, there are two internally

disjoint rainbow paths in Gi−1 connecting v1, vq. Since the map fi−1 satisfies condition

(A5), the color fi−1(v1) appears exactly once in Gi−1. So fi−1(v1) does not appear on one

of the two rainbow paths, denoted by P ′
i−1, from v1 to vq.

(B2) Since ci−1 and fi−1 satisfy condition (A5), the color fi−1(v1) does not appear on
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any path in Gi−1 which does not contain v1.

We will distinguish some cases to show that ci and fi satisfy conditions (A1)-(A5).

(I) For any two distinct vertices v′, v′′ ∈ V (Gi), we distinguish the following three cases

to show that (A1) is satisfied:

If v′, v′′ ∈ V (Gi−1), there exist two internally disjoint rainbow paths connecting them

in Gi−1, which are also rainbow paths in Gi according to the definition of ci.

If v′, v′′ ∈ V (Pi−1), from property (B1) we have that P ′
i−1

⋃
Pi−1 is a cycle whose colors

are distinct, and hence there are two internally disjoint rainbow paths from v′ to v′′ on

the cycle P ′
i−1

⋃
Pi−1.

If v′ ∈ V (Gi−1)\{v1, vq} and v′′ ∈ V (Pi−1)\{v1, vq}, since ci−1 satisfies condition (A2)

there exist two internally disjoint rainbow paths P ′ and P ′′ in Gi−1 from v′ to v1 and

vq, respectively. From property (B2) and v1 /∈ V (P ′′), we have fi−1(v1) /∈ ci(P
′′). So

v′P ′v1Pi−1v
′′ and v′P ′′vqPi−1v

′′ are two internally disjoint rainbow paths from v′ to v′′ in

Gi.

Therefore, Gi is rainbow 2-connected.

(II) For any three distinct vertices v′, v′′1 , v
′′
2 ∈ V (Gi), we distinguish the following six

cases to show that (A2) is satisfied:

If v′, v′′1 , v
′′
2 ∈ V (Gi−1), then from condition (A2) of ci−1 and the definition of ci, there

exist two internally disjoint rainbow paths P ′ and P ′′ in Gi−1 from v′ to v′′1 and v′′2 ,

respectively.

If v′, v′′1 , v
′′
2 ∈ V (Pi−1), from property (B1) there exist two internally disjoint rainbow

paths on the cycle P ′
i−1

⋃
Pi−1 from v′ to v′′1 and v′′2 , respectively.

If v′, v′′1 ∈ V (Gi−1)\{v1} and v′′2 ∈ V (Pi−1)\{vq}, from condition (A2) of ci−1 there exist

two internally disjoint rainbow paths P ′ and P ′′ in Gi−1 from v′ to v′′1 and v1, respectively.

So P ′ and v′P ′′v1Pi−1v
′′
2 are two internally disjoint rainbow paths in Gi from v′ to v′′1 and

v′′2 , respectively.

If v′ ∈ V (Gi−1)\{v1, vq} and v′′1 , v
′′
2 ∈ V (Pi−1), without loss of generality, v′′1 , v′′2 appear

on Pi−1 in this order. From condition (A2) of ci−1, there exist two internally disjoint

rainbow paths P ′ and P ′′ in Gi−1 from v′ to v1 and vq, respectively. From property (B2)

and v1 /∈ V (P ′′), we have fi−1(v1) /∈ ci(P
′′). So v′P ′v1Pi−1v

′′
1 and v′P ′′vqPi−1v

′′
2 are two

internally disjoint rainbow paths in Gi from v′ to v′′1 and v′′2 , respectively.

If v′′1 , v
′′
2 ∈ V (Gi−1)\{v1} and v′ ∈ V (Pi−1)\{vq}, from condition (A3) of ci−1 there exist

two disjoint rainbow paths P ′ from v′′1 to one of v1 and vq, say v1, and P ′′ from v′′2 to

the other vertex vq. If v′′2 = vq, then P ′′ = v′′2 . From property (B2), v′Pi−1v1P
′v′′1 and

v′Pi−1vqP
′′v′′2 are two internally disjoint rainbow paths from v′ to v′′1 and v′′2 , respectively.
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If v′′2 ∈ V (Gi−1)\{v1} and v′′1 , v
′ ∈ V (Pi−1), without loss of generality, v′′1 , v′ appear on

Pi−1 in this order. Since the color fi−1(v1) appears exactly once in Gi−1, one of the two

internally disjoint rainbow paths in Gi−1 from vq to v′′2 , denoted by P ′, does not contain

the edge colored by fi−1(v1), i.e., fi−1(v1) /∈ ci(P
′). So v′Pi−1v

′′
1 and v′Pi−1vqP

′v′′2 are two

internally disjoint rainbow paths in Gi from v′ to v′′1 and v′′2 , respectively.

Therefore, ci satisfies condition (A2).

(III) For any four distinct vertices v′1, v
′
2, v

′′
1 , v

′′
2 ∈ V (Gi), we distinguish the following

six cases to show that (A3) is satisfied:

If v′1, v
′
2, v

′′
1 , v

′′
2 ∈ V (Gi−1), then there exist two required disjoint rainbow paths in Gi−1

from condition (A3) of ci−1 and the definition of ci.

If v′1, v
′
2, v

′′
1 , v

′′
2 ∈ V (Pi−1), then there exist two required disjoint rainbow paths on the

cycle P ′
i−1

⋃
Pi−1 from property (B1).

If v′1, v
′
2, v

′′
1 ∈ V (Gi−1)\{v1} and v′′2 ∈ V (Pi−1)\{vq}, from condition (A3) of ci−1 there

exist two disjoint rainbow paths P ′ from v′1 to one of v1 and v′′1 , say v′′1 , and P ′′ from v′2 to

the other vertex v1 in Gi−1. Then P ′ and v′2P
′′v1Pi−1v

′′
2 are two required disjoint rainbow

paths in Gi.

If v′1, v
′
2 ∈ V (Gi−1)\{v1} and v′′1 , v

′′
2 ∈ V (Pi−1)\{vq}, without loss of generality, v′′1 , v

′′
2

appear on Pi−1 in this order. From condition (A3) of ci−1, there exist two disjoint rainbow

paths P ′ from v′1 to v1 and vq, say v1, and P ′′ from v′2 to the other vertex vq in Gi−1. If

v′2 = vq, then P ′′ = v′2. Hence v′1P
′v1Pi−1v

′′
1 and v′2P

′′vqPi−1v
′′
2 are two required disjoint

rainbow paths in Gi.

If v′1, v
′′
1 ∈ V (Gi−1)\{v1} and v′2, v

′′
2 ∈ V (Pi−1)\{vq}, from condition (A1) of ci−1 let P ′

be a rainbow path from v′1 to v′′1 in Gi−1. Then P ′ and v′2Pi−1v
′′
2 are two required disjoint

rainbow paths in Gi.

If v′1 ∈ V (Gi−1)\{v1} and v′2, v
′′
1 , v

′′
2 ∈ V (Pi−1)\{vq}, without loss of generality, v′2, v

′′
2 , v

′′
1

appear on Pi−1 in this order. From conditions (A1) and (A5) of ci−1 and fi−1, there exists

one rainbow path P ′ in Gi−1 from v′1 to vq such that fi−1(v1) /∈ ci(P
′). Then v′1P

′vqPi−1v
′′
1

and v′2Pi−1v
′′
2 are two required disjoint rainbow paths in Gi.

Therefore, ci satisfies condition (A3).

(VI) From condition (A4) of fi−1 and the definition of fi, fi is injective. Hence, fi

satisfies condition (A4).

(V) From condition (A4) of fi−1 and the definition of fi, fi satisfies condition (A5).

Therefore, we can get an edge-coloring ct of G (= Gt) with n − 1 (= |Gt| − 1) colors

which makes G rainbow 2-connected. So rc2(G) ≤ n− 1.

An easy observation is that if G′ is a spanning subgraph of a graph G and rck(G) and
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rck(G
′) indeed exist, then we have rck(G) ≤ rck(G

′) (k ≥ 1).

Now we are ready to prove our main result Theorem 1.4.

Proof of Theorem 1.4: If G is an n-vertex cycle, then we have rc2(G) = n. Hence, to

prove the result we only need to show that rc2(G) ≤ n− 1 for any 2-connected graph G

of order n but not a cycle. Let G be such a graph. Consider the following two cases.

Case 1. G is Hamiltonian.

Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G. Since G is not a cycle, C must

have a chord, say v1vj ∈ E(G) (3 ≤ j ≤ n − 1). Then G′ = (V (G), E(C)
⋃{v1vj})

is a spanning 2-connected subgraph of G. Let x1, x2, · · · , xn−1 be n − 1 distinct colors.

Define an edge-coloring c of G′ with n − 1 colors as follows: c(v1v2) = c(vjvj+1) = x1,

c(v1vn) = c(vj−1vj) = x2 and the other n−3 edges of G′ are colored by colors x3, · · · , xn−1.

It can be checked that G′ is rainbow 2-connected. From the above observation, rc2(G) ≤
rc2(G

′) ≤ n− 1.

Case 2. G is not Hamiltonian.

Let G′ be a spanning minimally 2-connected subgraph of G. Since G is not Hamiltonian,

G′ is not a cycle. From Lemma 2.2 and the above observation, we have rc2(G) ≤ rc2(G
′) ≤

n− 1.

The proof is now complete. ¤
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