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Abstract

A path in an edge-colored graph is called rainbow if no two edges of it are colored
the same. For an f-connected graph G and an integer k with 1 < k < ¢, the rainbow
k-connection number rci(G) of G is defined to be the minimum number of colors
required to color the edges of G such that every two distinct vertices of G are
connected by at least k£ internally disjoint rainbow paths. Fujita et. al. proposed
a problem: What is the minimum constant « > 0 such that for every 2-connected
graph G on n vertices, we have rco(G) < an ? In this paper, we prove that the
minimum constant o = 1 and rca(G) = n if and only if G is a cycle of order n,

which solves the problem of Fujita et. al.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the
terminology and notation of Bondy and Murty [2]. A path in an edge-colored graph is
called rainbow if every two edges on it have distinct colors. Let G be an edge-colored /-
connected graph, where ¢ is a positive integer. For 1 < k < ¢, G is rainbow k-connected if

every pair of distinct vertices of G are connected by at least k internally disjoint rainbow
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paths. The minimum number of colors required to color the edges of G to make G
rainbow k-connected is called the rainbow k-connection number of G, denoted by rci(G).
Particularly, 7¢,(G) is equal to re(G), the rainbow connection number. For more results

on this topic, see a recent book by Li and Sun [12] and a survey paper [11].

A graph G is minimally k-connected if G is k-connected but G —e is not k-connected for
every e € E(G). Let G’ be a subgraph of a graph G. An ear of G’ in G is a nontrivial path
in G whose end vertices lie in G’ but whose internal vertices are not. An ear decomposition
of a 2-connected graph G is a sequence Gg, Gy, - - - , Gy, of 2-connected subgraphs of GG such
that (1) Gy is a cycle of G; (2) G; = Gi—1|JPi-1 (1 <i < k), where P,_; is an ear of
Gi—1in G; (3) Gi—1 (1 <1 < k) is a proper subgraph of G;; (4) G, = G. It is obvious
that every graph G; in an ear decomposition is 2-connected. Two paths P’ and P” from
v; to v; are internally disjoint if V(P")\V(P”) = {v;,v;}. For three distinct vertices
v’ v, v, the paths P" and P” from v’ to v} and o4, respectively, are internally disjoint if
V(PN V(P") ={v'}. Two paths P’ and P" are disjoint if V/(P") "V (P") = 0.

The concept of rainbow k-connection number rc¢,(G) was introduced by Chartrand et.
al. [5, 6]. It was shown in [7] that computing the rainbow connection number of a graph is
NP-hard. Hence, bounds on rainbow connection number for graphs have been a subject
of investigation. There are some results in this direction. For a connected graph G,
re(G) <n—11in [3]. An upper bound for the rainbow connection number of a connected
graph with minimum degree ¢ is 3n/(6 + 1) + 3 in [4]. If G is a 2-connected graph of
order n, then rc(G) < [§] and 7¢(C,) = [§], where C,, is an n-vertex cycle in [10]. An
easy observation is that rcy(C,) = n. In [8], the authors proved the following theorem

and proposed a problem.

Theorem 1.1. [8 If { > 2 and G is an {-connected graph of order n > { + 1, then
rea(G) < (04 1)n/L.

Problem 1.1. [§/ What is the minimum constant o > 0 such that for all 2-connected

graphs G on n wvertices, we have rca(G) < an?

In a published version of [8], they stated the following theorem and problem.
Theorem 1.2. [9] If G is a 2-connected graph of order n > 3, then rea(G) < 3n/2.

Problem 1.2. [9] For 1 < k < {, derive a sharp upper bound for rcy(G), if G is an

(-connected graph on n vertices. Is there a constant o = a(k, () such that reg(G) < an ?

Problem 1.1 is restated in [12]. From Theorem 1.2 and rcy(C;,) = n, it is obvious that
1 < a < 3/2. For a 2-connected series-parallel graph G, the authors of [8, 9] showed the

following result.



Theorem 1.3. /8, 9] If G is a 2-connected series-parallel graph on n wvertices, then
reo(G) < n.

In this paper, we will show that the above result holds for general 2-connected graphs.

Theorem 1.4. If G is a 2-connected graph on n vertices, then rce(G) < n with equality
if and only if G is a cycle of order n.

Therefore, the minimum constant o = 1 in Problem 1.1. The following classic results

on minimally 2-connected graphs are needed in the sequel.

Theorem 1.5. [1] Let G be a minimally 2-connected graph that is not a cycle. Let
D C V(Q) be the set of vertices of degree two. Then F = G — D is a forest with at least
two components. A component P of G|D] is a path and the end vertices of P are not

joined to the same tree of the forest F.

Theorem 1.6. [1] Every 2-connected subgraph of a minimally 2-connected graph is min-

imally 2-connected.

2 Main results

We first give a lemma, which will be used later.

Lemma 2.1. Let G be a minimally 2-connected graph, but not a cycle. Then G has an
ear decomposition Gy, Gy, --- , Gy (t > 1) satisfying the following conditions:
(1) G; = Gi 1 UP1 (1 <i <t), where Py is an ear of G;_1 in G and at least one

vertex of P;_1 has degree two in G,

(2) each of the two internally disjoint paths in Gq between the end vertices of Py has at

least one vertex of degree two in G.

Proof. We first construct a sequence of 2-connected subgraphs of G. Let D C V(G) be
the set of vertices of degree two in GG. Let Gy be a cycle of G which contains as many
vertices of D as possible. If D\V(Gy) # 0, then choose a vertex vy € D\V(Gy). Since G
is 2-connected, from Menger’s Theorem there exist two internally disjoint paths P’ and
P” from vy to two distinct vertices of Gy such that the internal vertices of P’ and P”
do not belong to Gy. Hence Py = P'|J P” is an ear of Gy which contains a vertex vy in
D. Let G1 = GoU Py. If D\V(G4) # 0, then we continue the procedure. After a finite
number of steps, we get a sequence Gg, Gy, -+ ,G; (t > 1) of 2-connected subgraphs of G
such that D\V(G;) =0 and G; = G;_1|JP,—1 (1 < i < t), where P,_; is an ear of G;_;



containing at least one vertex in D. If G; = GG, then from the procedures of construction,

the sequence Go, G, -+, Gy (t > 1) is an ear decomposition of G satisfying condition (1).

We first show that Gy = G. Suppose on the contrary that G; # G, i.e., G; is a proper
2-connected subgraph of G. Since G is minimally 2-connected, we have V(G)\V (G,) # 0.
From Theorem 1.5, G — D is a forest. Since D C V(Gy), F = G —-V(G;) € G- D
is also a forest with |F'| > 1. Let T be a component of ' with |T'| > 1. Then T is a
tree. If |T| =1 and V(T') = {v}, then there exist three distinct vertices vy, vq,v5 in Gy
such that vv; € E(G) (1 < j < 3). Let G = (V',E’), where V' = V(G;) J{v} and
E' = E(Gy)U{vv; : 1 < j < 3}. So G’ is a 2-connected subgraph of G. Since G’ — vv;
is also 2-connected, G’ is not minimally 2-connected which contradicts to Theorem 1.6.
Suppose |T| > 2. Then T has at least two leaves, say v/ and v”. Since v',v" ¢ D
and dr(v') = drp(v"”) = 1, there exist four vertices v; (1 < i < 4,01 # v, v3 # v4) In
G, such that v'vy,v've, v"v3,v"vy € E(G). Let P be the path from v" to v” in T. Then
G' = (V',F'), where V! = V(Gy) |V (P) and E' = E(G,) | E(P) J{v'v1,v'va, v"v3, 0" 04 }
is a 2-connected subgraph of G. Since G’ — v'v; is also 2-connected, G’ is not minimally

2-connected which contradicts to Theorem 1.6. Therefore, G; = G.

Now we show that the ear decomposition Gy, G1,- -+, Gy (t > 1) of G satisfies condition
(2). Denote by P’ and P” the two internally disjoint paths in Gy between the two end
vertices of Py. Suppose on the contrary that one of P’ and P”, say P’, has no vertex of
degree two in G, i.e., V/(P") (| D = (). From the procedure of construction, V(Fy) (D # 0.
Hence, P"|J By is a cycle of G, which contains more vertices in D than Gy, a contradiction.
Therefore, the ear decomposition G, Gy, -+, Gy (t > 1) of G satisfies condition (2). O

For convenience, we give some more notations. If ¢ is an edge-coloring of a graph G,
then ¢(G) denotes the set of colors appearing in G. Write |G| for the order of a graph G.
If P is a path and v;,v; € V(P), then v; Pv; denotes the segment of P from v; to v;.

Lemma 2.2. Let G ba a minimally 2-connected graph of order n > 3. If G is not a cycle,
then reo(G) < n — 1.

Proof. Let G be a minimally 2-connected graph of order n, but not a cycle. We will
prove the result by giving an edge-coloring of G with n — 1 colors which makes G rainbow
2-connected. From Lemma 2.1, G has an ear decomposition Gg, Gy, ,Gy (t > 1)
satisfying the two conditions in Lemma 2.1. Let D C V(G) be the set of vertices of
degree two in G and D = V(G)\D. In the following, for every graph G; (1 <i <t) we
will define an edge-coloring ¢; of G; with |G;| — 1 colors and a map f; from D[V (G;) to
¢i(G;) satisfying the following conditions:

(A1) G, is rainbow 2-connected;



(A2) for any three distinct vertices v',v7,v5 € V(G;), G; has two internally disjoint
rainbow paths P’ and P” from v to v{ and vj, respectively;

(A3) for any four distinct vertices vf,vh,v{,v§ € V(G;), G; has two disjoint rainbow
paths P’ from v} to one of v{ and vJ, say v}, and P” from v} to the other vertex v?;
(A4) f; is injective, i.e., for any two distinct vertices v/, v"” € D\V(Gy), f;(v") # f;(v");
(A5) for any vertex v € D(V(G;), the color fi(v) appears exactly once in ¢; and the
edge colored by f;(v) in G; is incident with v.

We define ¢; and f; of G; (1 < ¢ < t) by induction. First, consider the graph
G1 = GolUFy. Without loss of generality, suppose that Gy = vivy---vsv; and Py =
V1Vs41Uss2 - - Uty (€ > s), where Gy is a cycle, Py is a path and V(Go) NV (F) =
{v1,v,} (3 <p < s—1). Since the ear decomposition G, Gy, -+, G, (t > 1) of G satisfies
the two conditions in Lemma 2.1, there exist three vertices vy, ,vp,,v,, € D (1 < p; <
p < p2 < s < psg </l in Gy. Define an edge-coloring ¢; of Gy by ¢1(vjvj41) = x; if
1<j<s—lors+1<j</l—1;c(vsv1) = c1(vpvpy) = x5 and ¢1(v10441) = T, where
X1, %9, -, T are distinct colors. It is obvious that ¢; uses |G1| —1 colors. Define a map
fi: DOV(Gy) — ¢1(Gy) by fi(vj) =xz;ifv; e DOV(Gy) and 1 < j < p1,p+1 <5 < py
or s+1<j<pgand fi(vj) = x;1 ifv; € DNV(Gy) and p; < j < p,pp < j < sor
ps < j < (. It can be checked that ¢; and f; satisfy the above conditions (A1)-(A5).

If t = 1, then ¢; is the rainbow 2-connected edge-coloring of G with n — 1 colors.
Consider the case t > 2. Assume that we have defined ¢;_; and f;_; of G;—; (2 <i <)
satisfying conditions (A1)-(A5) and the edge-coloring ¢;—1 of G;_; uses |G;_1| — 1 colors.
Now consider the graph G; = G;_1|J FP,—1. Suppose that P,y = vjvy---v, (¢ > 3),
where V(G;_1) NV (Pi—1) = {v1,v,}. It is obvious that v;,v, € D(V(Gi_1). Define
an edge-coloring ¢; of G; by ¢;(e) = ¢;—1(e) for e € E(Gi-1), ¢i(v4—1v,) = fi—1(v1) and
ci(vjvj1) = y; (1 < j <q—2), where y1,y2, - - ,yy—2 are distinct new colors. It is clear
that ¢; uses |G;| — 1 colors. From condition (1) of the Lemma 2.1, there exists a vertex
vy €D (2 < qy < q—1)in P_y. Define a map f; : D(\V(G;) — ¢(G;) as follows:
fi(v) = fiii(v) for v € [DOV(Gi—)\{v1}, fi(vj) = y; for v; € DOV (01 P_1v4—1) and
fi(vj) =y for v; € DOV (vg11Pi-1v4-1). The edge-coloring ¢; of G; has the following
two properties.

(B1) There exists a rainbow path P/_; from v; to v, in G;_; such that the color f;_(v;)
does not appear on it. In fact, since GG;_; is rainbow 2-connected, there are two internally
disjoint rainbow paths in G;_; connecting v;,v,. Since the map f;_; satisfies condition
(Ab), the color f;_1(vy) appears exactly once in G;_;. So f;_1(v;) does not appear on one

of the two rainbow paths, denoted by P/_;, from v; to v,.

(B2) Since ¢;_1 and f;_; satisfy condition (A5), the color f; 1(v;) does not appear on



any path in G;_; which does not contain v;.
We will distinguish some cases to show that ¢; and f; satisfy conditions (A1)-(A5).

(I) For any two distinct vertices v',v” € V(G;), we distinguish the following three cases
to show that (A1) is satisfied:

If v',v" € V(G;_1), there exist two internally disjoint rainbow paths connecting them

in G;_1, which are also rainbow paths in G; according to the definition of ¢;.

If v, 0" € V(P;_1), from property (B1) we have that P/_, | J P;,—; is a cycle whose colors
are distinct, and hence there are two internally disjoint rainbow paths from v’ to v” on
the cycle P/, |J P,—1.

If v € V(Gi—1)\{v1,v,} and v" € V(P,—1)\{v1,v,}, since ¢;_; satisfies condition (A2)
there exist two internally disjoint rainbow paths P’ and P” in G;_; from v’ to v; and
vy, Tespectively. From property (B2) and vy ¢ V(P”), we have fi_1(v1) ¢ ¢;(P"). So
V' P'vy P_1v" and o' P"v,P,_1v" are two internally disjoint rainbow paths from v" to v” in
G;.

Therefore, GG; is rainbow 2-connected.

(II) For any three distinct vertices v',v{,v5 € V(G;), we distinguish the following six
cases to show that (A2) is satisfied:

If ', v{,v§ € V(G,-1), then from condition (A2) of ¢;_; and the definition of ¢;, there
exist two internally disjoint rainbow paths P’ and P” in G;_; from v’ to v{ and 27,

respectively.

If o, 0], 08 € V(Pi_1), from property (B1) there exist two internally disjoint rainbow
paths on the cycle P/ ;|J P,—1 from v to v{ and v}, respectively.

If o', 0f € V(Gi—1)\{v1} and v € V(Pi_1)\{v,}, from condition (A2) of ¢;_; there exist
two internally disjoint rainbow paths P’ and P” in G;_; from v’ to v} and vy, respectively.
So P’ and v' P"vy P;_1v} are two internally disjoint rainbow paths in G; from v’ to v{ and
vy, respectively.

If ' € V(Giz1)\{v1, vy} and vf,v§ € V(P,_1), without loss of generality, v{, vj appear
on P,y in this order. From condition (A2) of ¢;_1, there exist two internally disjoint
rainbow paths P’ and P” in G;_; from ¢' to v; and v,, respectively. From property (B2)
and v; ¢ V(P"), we have f;_1(v1) ¢ ¢;(P"). So v'P'v1 P;_ 11)1’ and v'P"v,P;_1v} are two
internally disjoint rainbow paths in G; from v’ to v} and v}, respectively.

If of,vf € V(Gi—1)\{v1} and v' € V(P 1)\{v,}, from condition (A3) of ¢;_; there exist
two disjoint rainbow paths P’ from v{ to one of v; and v,, say vy, and P” from v} to
the other vertex v,. If v = v,, then P” = v]. From property (B2), v'P,_jv,P'v{ and

v'P,_1v,P"v} are two internally disjoint rainbow paths from v’ to v} and v}, respectively.



If off € V(Gi—1)\{v1} and v}, v € V(P,_;), without loss of generality, v{, v' appear on
P;_1 in this order. Since the color f;_1(v1) appears exactly once in G;_1, one of the two
internally disjoint rainbow paths in G;_; from v, to v4, denoted by P’, does not contain
the edge colored by f;—1(vy), i.e., fi—1(v1) € ¢;(P’). So v'P,_yv] and v'P,_ v, P'v} are two
internally disjoint rainbow paths in G; from v’ to v} and v}, respectively.

Therefore, ¢; satisfies condition (A2).

(III) For any four distinct vertices v}, vy, v{,v§ € V(G;), we distinguish the following
six cases to show that (A3) is satisfied:

If v}, v, v],v5 € V(G;_1), then there exist two required disjoint rainbow paths in G;_4
from condition (A3) of ¢;_; and the definition of ¢;.

If v}, vh,vY,v] € V(P;_1), then there exist two required disjoint rainbow paths on the
cycle P/_,|J P,—y from property (B1).

If vy, v, v] € V(Gi—1)\{v1} and v§ € V(P,_1)\{v,}, from condition (A3) of ¢;_; there
exist two disjoint rainbow paths P’ from v} to one of v; and v{, say v{, and P” from v} to
the other vertex v; in G;_1. Then P’ and vy, P"vy P;_1v} are two required disjoint rainbow
paths in G;.

If v}, vy € V(Gi—1)\{v1} and o}, v € V(P,_1)\{v,}, without loss of generality, v}, v}
appear on P;_; in this order. From condition (A3) of ¢;_1, there exist two disjoint rainbow
paths P’ from v] to v; and v, say vq, and P” from v} to the other vertex v, in G;_;. If
vy = vy, then P” = vj. Hence v| P'vi P,_1v] and vy P"v,P;_1v} are two required disjoint
rainbow paths in G;.

If vf,v) € V(Gi—1)\{v1} and v}, v§ € V(Pi_1)\{v,}, from condition (A1) of ¢;_; let P’
be a rainbow path from v| to v{ in G;_;. Then P’ and v4P;_1v} are two required disjoint
rainbow paths in G;.

If vj € V(G;—1)\{v1} and v5, vf, 05 € V(P,_1)\{v,}, without loss of generality, v}, v}, v}
appear on P;,_; in this order. From conditions (A1) and (A5) of ¢;_; and f;_1, there exists
one rainbow path P’ in G;_; from v] to v, such that f;_1(v1) ¢ ¢;(P’). Then viP'v,P,_ v
and v4,P;_jv are two required disjoint rainbow paths in G;.

Therefore, ¢; satisfies condition (A3).

(VI) From condition (A4) of f;_; and the definition of f;, f; is injective. Hence, f;
satisfies condition (A4).

(V) From condition (A4) of f;_1 and the definition of f;, f; satisfies condition (A5).

Therefore, we can get an edge-coloring ¢; of G (= G;) with n — 1 (= |G| — 1) colors
which makes G rainbow 2-connected. So rce(G) <n — 1. O

An easy observation is that if G’ is a spanning subgraph of a graph G and rc;(G) and



rcg(G') indeed exist, then we have re(G) < rep(G') (kK > 1).
Now we are ready to prove our main result Theorem 1.4.

Proof of Theorem 1.4: If G is an n-vertex cycle, then we have rcy(G) = n. Hence, to
prove the result we only need to show that rcy(G) < n — 1 for any 2-connected graph G

of order n but not a cycle. Let G be such a graph. Consider the following two cases.
Case 1. GG is Hamiltonian.

Let C = vvy---v,v; be a Hamiltonian cycle of G. Since G is not a cycle, C' must
have a chord, say viv; € E(G) (3 < j < n—1). Then ¢’ = (V(G), E(C)U{v1v,})
is a spanning 2-connected subgraph of G. Let xq,x9, -+ ,x,_1 be n — 1 distinct colors.
Define an edge-coloring ¢ of G’ with n — 1 colors as follows: c(v1v2) = c(vjv41) = 71,
c(v1vy,) = ¢(vj_1v;) = x9 and the other n—3 edges of G’ are colored by colors x3, - - - , z,_1.
It can be checked that G’ is rainbow 2-connected. From the above observation, rca(G) <
reo(G) <n—1.

Case 2. (G is not Hamiltonian.

Let G’ be a spanning minimally 2-connected subgraph of G. Since G is not Hamiltonian,
G’ is not a cycle. From Lemma 2.2 and the above observation, we have rcy(G) < reo(G') <
n— 1.

The proof is now complete. []
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