A sharp upper bound for the rainbow 2-connection number of a 2 -connected graph*

Xueliang Li, Sujuan Liu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; sjliu0529@126.com

Abstract

A path in an edge-colored graph is called rainbow if no two edges of it are colored the same. For an ℓ-connected graph G and an integer k with $1 \leq k \leq \ell$, the rainbow k-connection number $\operatorname{rc}_{k}(G)$ of G is defined to be the minimum number of colors required to color the edges of G such that every two distinct vertices of G are connected by at least k internally disjoint rainbow paths. Fujita et. al. proposed a problem: What is the minimum constant $\alpha>0$ such that for every 2 -connected graph G on n vertices, we have $r c_{2}(G) \leq \alpha n$? In this paper, we prove that the minimum constant $\alpha=1$ and $r c_{2}(G)=n$ if and only if G is a cycle of order n, which solves the problem of Fujita et. al.

Keywords: rainbow edge-coloring, rainbow k-connection number, 2-connected graph, ear decomposition.

AMS subject classification 2010: 05C40, 05C15.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy and Murty [2]. A path in an edge-colored graph is called rainbow if every two edges on it have distinct colors. Let G be an edge-colored ℓ connected graph, where ℓ is a positive integer. For $1 \leq k \leq \ell, G$ is rainbow k-connected if every pair of distinct vertices of G are connected by at least k internally disjoint rainbow

[^0]paths. The minimum number of colors required to color the edges of G to make G rainbow k-connected is called the rainbow k-connection number of G, denoted by $r c_{k}(G)$. Particularly, $r c_{1}(G)$ is equal to $r c(G)$, the rainbow connection number. For more results on this topic, see a recent book by Li and Sun [12] and a survey paper [11].

A graph G is minimally k-connected if G is k-connected but $G-e$ is not k-connected for every $e \in E(G)$. Let G^{\prime} be a subgraph of a graph G. An ear of G^{\prime} in G is a nontrivial path in G whose end vertices lie in G^{\prime} but whose internal vertices are not. An ear decomposition of a 2-connected graph G is a sequence $G_{0}, G_{1}, \cdots, G_{k}$ of 2-connected subgraphs of G such that (1) G_{0} is a cycle of G; (2) $G_{i}=G_{i-1} \bigcup P_{i-1}(1 \leq i \leq k)$, where P_{i-1} is an ear of G_{i-1} in G; (3) $G_{i-1}(1 \leq i \leq k)$ is a proper subgraph of G_{i}; (4) $G_{k}=G$. It is obvious that every graph G_{i} in an ear decomposition is 2 -connected. Two paths P^{\prime} and $P^{\prime \prime}$ from v_{i} to v_{j} are internally disjoint if $V\left(P^{\prime}\right) \bigcap V\left(P^{\prime \prime}\right)=\left\{v_{i}, v_{j}\right\}$. For three distinct vertices $v^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$, the paths P^{\prime} and $P^{\prime \prime}$ from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively, are internally disjoint if $V\left(P^{\prime}\right) \bigcap V\left(P^{\prime \prime}\right)=\left\{v^{\prime}\right\}$. Two paths P^{\prime} and $P^{\prime \prime}$ are disjoint if $V\left(P^{\prime}\right) \bigcap V\left(P^{\prime \prime}\right)=\emptyset$.

The concept of rainbow k-connection number $r c_{k}(G)$ was introduced by Chartrand et. al. [5, 6]. It was shown in [7] that computing the rainbow connection number of a graph is NP-hard. Hence, bounds on rainbow connection number for graphs have been a subject of investigation. There are some results in this direction. For a connected graph G, $r c(G) \leq n-1$ in [3]. An upper bound for the rainbow connection number of a connected graph with minimum degree δ is $3 n /(\delta+1)+3$ in [4]. If G is a 2-connected graph of order n, then $r c(G) \leq\left\lceil\frac{n}{2}\right\rceil$ and $r c\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$, where C_{n} is an n-vertex cycle in [10]. An easy observation is that $r c_{2}\left(C_{n}\right)=n$. In [8], the authors proved the following theorem and proposed a problem.

Theorem 1.1. [8] If $\ell \geq 2$ and G is an ℓ-connected graph of order $n \geq \ell+1$, then $r c_{2}(G) \leq(\ell+1) n / \ell$.

Problem 1.1. [8] What is the minimum constant $\alpha>0$ such that for all 2-connected graphs G on n vertices, we have $r c_{2}(G) \leq \alpha n$?

In a published version of [8], they stated the following theorem and problem.
Theorem 1.2. [9] If G is a 2 -connected graph of order $n \geq 3$, then $r c_{2}(G) \leq 3 n / 2$.
Problem 1.2. [9] For $1 \leq k \leq \ell$, derive a sharp upper bound for $r c_{k}(G)$, if G is an ℓ-connected graph on n vertices. Is there a constant $\alpha=\alpha(k, \ell)$ such that $\operatorname{rc}_{k}(G) \leq \alpha n$?

Problem 1.1 is restated in [12]. From Theorem 1.2 and $r c_{2}\left(C_{n}\right)=n$, it is obvious that $1 \leq \alpha \leq 3 / 2$. For a 2 -connected series-parallel graph G, the authors of $[8,9]$ showed the following result.

Theorem 1.3. [8, 9] If G is a 2-connected series-parallel graph on n vertices, then $r c_{2}(G) \leq n$.

In this paper, we will show that the above result holds for general 2-connected graphs.
Theorem 1.4. If G is a 2-connected graph on n vertices, then $r c_{2}(G) \leq n$ with equality if and only if G is a cycle of order n.

Therefore, the minimum constant $\alpha=1$ in Problem 1.1. The following classic results on minimally 2 -connected graphs are needed in the sequel.

Theorem 1.5. [1] Let G be a minimally 2-connected graph that is not a cycle. Let $D \subset V(G)$ be the set of vertices of degree two. Then $F=G-D$ is a forest with at least two components. A component P of $G[D]$ is a path and the end vertices of P are not joined to the same tree of the forest F.

Theorem 1.6. [1] Every 2-connected subgraph of a minimally 2-connected graph is minimally 2-connected.

2 Main results

We first give a lemma, which will be used later.
Lemma 2.1. Let G be a minimally 2-connected graph, but not a cycle. Then G has an ear decomposition $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ satisfying the following conditions:
(1) $G_{i}=G_{i-1} \bigcup P_{i-1}(1 \leq i \leq t)$, where P_{i-1} is an ear of G_{i-1} in G and at least one vertex of P_{i-1} has degree two in G;
(2) each of the two internally disjoint paths in G_{0} between the end vertices of P_{0} has at least one vertex of degree two in G.

Proof. We first construct a sequence of 2-connected subgraphs of G. Let $D \subset V(G)$ be the set of vertices of degree two in G. Let G_{0} be a cycle of G which contains as many vertices of D as possible. If $D \backslash V\left(G_{0}\right) \neq \emptyset$, then choose a vertex $v_{0} \in D \backslash V\left(G_{0}\right)$. Since G is 2 -connected, from Menger's Theorem there exist two internally disjoint paths P^{\prime} and $P^{\prime \prime}$ from v_{0} to two distinct vertices of G_{0} such that the internal vertices of P^{\prime} and $P^{\prime \prime}$ do not belong to G_{0}. Hence $P_{0}=P^{\prime} \bigcup P^{\prime \prime}$ is an ear of G_{0} which contains a vertex v_{0} in D. Let $G_{1}=G_{0} \bigcup P_{0}$. If $D \backslash V\left(G_{1}\right) \neq \emptyset$, then we continue the procedure. After a finite number of steps, we get a sequence $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ of 2-connected subgraphs of G such that $D \backslash V\left(G_{t}\right)=\emptyset$ and $G_{i}=G_{i-1} \bigcup P_{i-1}(1 \leq i \leq t)$, where P_{i-1} is an ear of G_{i-1}
containing at least one vertex in D. If $G_{t}=G$, then from the procedures of construction, the sequence $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ is an ear decomposition of G satisfying condition (1).

We first show that $G_{t}=G$. Suppose on the contrary that $G_{t} \neq G$, i.e., G_{t} is a proper 2-connected subgraph of G. Since G is minimally 2-connected, we have $V(G) \backslash V\left(G_{t}\right) \neq \emptyset$. From Theorem 1.5, $G-D$ is a forest. Since $D \subseteq V\left(G_{t}\right), F=G-V\left(G_{t}\right) \subseteq G-D$ is also a forest with $|F| \geq 1$. Let T be a component of F with $|T| \geq 1$. Then T is a tree. If $|T|=1$ and $V(T)=\{v\}$, then there exist three distinct vertices v_{1}, v_{2}, v_{3} in G_{t} such that $v v_{j} \in E(G)(1 \leq j \leq 3)$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V\left(G_{t}\right) \bigcup\{v\}$ and $E^{\prime}=E\left(G_{t}\right) \bigcup\left\{v v_{j}: 1 \leq j \leq 3\right\}$. So G^{\prime} is a 2 -connected subgraph of G. Since $G^{\prime}-v v_{3}$ is also 2-connected, G^{\prime} is not minimally 2 -connected which contradicts to Theorem 1.6. Suppose $|T| \geq 2$. Then T has at least two leaves, say v^{\prime} and $v^{\prime \prime}$. Since $v^{\prime}, v^{\prime \prime} \notin D$ and $d_{T}\left(v^{\prime}\right)=d_{T}\left(v^{\prime \prime}\right)=1$, there exist four vertices $v_{i}\left(1 \leq i \leq 4, v_{1} \neq v_{2}, v_{3} \neq v_{4}\right)$ in G_{t} such that $v^{\prime} v_{1}, v^{\prime} v_{2}, v^{\prime \prime} v_{3}, v^{\prime \prime} v_{4} \in E(G)$. Let P be the path from v^{\prime} to $v^{\prime \prime}$ in T. Then $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V\left(G_{t}\right) \bigcup V(P)$ and $E^{\prime}=E\left(G_{t}\right) \bigcup E(P) \bigcup\left\{v^{\prime} v_{1}, v^{\prime} v_{2}, v^{\prime \prime} v_{3}, v^{\prime \prime} v_{4}\right\}$ is a 2 -connected subgraph of G. Since $G^{\prime}-v^{\prime} v_{1}$ is also 2-connected, G^{\prime} is not minimally 2-connected which contradicts to Theorem 1.6. Therefore, $G_{t}=G$.

Now we show that the ear decomposition $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ of G satisfies condition (2). Denote by P^{\prime} and $P^{\prime \prime}$ the two internally disjoint paths in G_{0} between the two end vertices of P_{0}. Suppose on the contrary that one of P^{\prime} and $P^{\prime \prime}$, say P^{\prime}, has no vertex of degree two in G, i.e., $V\left(P^{\prime}\right) \bigcap D=\emptyset$. From the procedure of construction, $V\left(P_{0}\right) \bigcap D \neq \emptyset$. Hence, $P^{\prime \prime} \bigcup P_{0}$ is a cycle of G, which contains more vertices in D than G_{0}, a contradiction. Therefore, the ear decomposition $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ of G satisfies condition (2).

For convenience, we give some more notations. If c is an edge-coloring of a graph G, then $c(G)$ denotes the set of colors appearing in G. Write $|G|$ for the order of a graph G. If P is a path and $v_{i}, v_{j} \in V(P)$, then $v_{i} P v_{j}$ denotes the segment of P from v_{i} to v_{j}.

Lemma 2.2. Let G ba a minimally 2-connected graph of order $n \geq 3$. If G is not a cycle, then $r c_{2}(G) \leq n-1$.

Proof. Let G be a minimally 2-connected graph of order n, but not a cycle. We will prove the result by giving an edge-coloring of G with $n-1$ colors which makes G rainbow 2-connected. From Lemma 2.1, G has an ear decomposition $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ satisfying the two conditions in Lemma 2.1. Let $D \subseteq V(G)$ be the set of vertices of degree two in G and $\bar{D}=V(G) \backslash D$. In the following, for every graph $G_{i}(1 \leq i \leq t)$ we will define an edge-coloring c_{i} of G_{i} with $\left|G_{i}\right|-1$ colors and a map f_{i} from $\bar{D} \bigcap V\left(G_{i}\right)$ to $c_{i}\left(G_{i}\right)$ satisfying the following conditions:
(A1) G_{i} is rainbow 2-connected;
(A2) for any three distinct vertices $v^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i}\right), G_{i}$ has two internally disjoint rainbow paths P^{\prime} and $P^{\prime \prime}$ from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively;
(A3) for any four distinct vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i}\right), G_{i}$ has two disjoint rainbow paths P^{\prime} from v_{1}^{\prime} to one of $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, say $v_{1}^{\prime \prime}$, and $P^{\prime \prime}$ from v_{2}^{\prime} to the other vertex $v_{2}^{\prime \prime}$;
(A4) f_{i} is injective, i.e., for any two distinct vertices $v^{\prime}, v^{\prime \prime} \in \bar{D} \bigcap V\left(G_{i}\right), f_{i}\left(v^{\prime}\right) \neq f_{i}\left(v^{\prime \prime}\right)$;
(A5) for any vertex $v \in \bar{D} \bigcap V\left(G_{i}\right)$, the color $f_{i}(v)$ appears exactly once in c_{i} and the edge colored by $f_{i}(v)$ in G_{i} is incident with v.
We define c_{i} and f_{i} of $G_{i}(1 \leq i \leq t)$ by induction. First, consider the graph $G_{1}=G_{0} \bigcup P_{0}$. Without loss of generality, suppose that $G_{0}=v_{1} v_{2} \cdots v_{s} v_{1}$ and $P_{0}=$ $v_{1} v_{s+1} v_{s+2} \cdots v_{\ell} v_{p}(\ell>s)$, where G_{0} is a cycle, P_{0} is a path and $V\left(G_{0}\right) \bigcap V\left(P_{0}\right)=$ $\left\{v_{1}, v_{p}\right\}(3 \leq p \leq s-1)$. Since the ear decomposition $G_{0}, G_{1}, \cdots, G_{t}(t \geq 1)$ of G satisfies the two conditions in Lemma 2.1, there exist three vertices $v_{p_{1}}, v_{p_{2}}, v_{p_{3}} \in D\left(1<p_{1}<\right.$ $\left.p<p_{2} \leq s<p_{3} \leq \ell\right)$ in G_{1}. Define an edge-coloring c_{1} of G_{1} by $c_{1}\left(v_{j} v_{j+1}\right)=x_{j}$ if $1 \leq j \leq s-1$ or $s+1 \leq j \leq \ell-1 ; c_{1}\left(v_{s} v_{1}\right)=c_{1}\left(v_{\ell} v_{p}\right)=x_{s}$ and $c_{1}\left(v_{1} v_{s+1}\right)=x_{p}$, where $x_{1}, x_{2}, \cdots, x_{\ell-1}$ are distinct colors. It is obvious that c_{1} uses $\left|G_{1}\right|-1$ colors. Define a map $f_{1}: \bar{D} \bigcap V\left(G_{1}\right) \rightarrow c_{1}\left(G_{1}\right)$ by $f_{1}\left(v_{j}\right)=x_{j}$ if $v_{j} \in \bar{D} \bigcap V\left(G_{1}\right)$ and $1 \leq j<p_{1}, p+1 \leq j<p_{2}$ or $s+1 \leq j<p_{3}$ and $f_{1}\left(v_{j}\right)=x_{j-1}$ if $v_{j} \in \bar{D} \bigcap V\left(G_{1}\right)$ and $p_{1}<j \leq p, p_{2}<j \leq s$ or $p_{3}<j \leq \ell$. It can be checked that c_{1} and f_{1} satisfy the above conditions (A1)-(A5).

If $t=1$, then c_{1} is the rainbow 2-connected edge-coloring of G with $n-1$ colors. Consider the case $t \geq 2$. Assume that we have defined c_{i-1} and f_{i-1} of $G_{i-1}(2 \leq i \leq t)$ satisfying conditions (A1)-(A5) and the edge-coloring c_{i-1} of G_{i-1} uses $\left|G_{i-1}\right|-1$ colors. Now consider the graph $G_{i}=G_{i-1} \bigcup P_{i-1}$. Suppose that $P_{i-1}=v_{1} v_{2} \cdots v_{q}(q \geq 3)$, where $V\left(G_{i-1}\right) \bigcap V\left(P_{i-1}\right)=\left\{v_{1}, v_{q}\right\}$. It is obvious that $v_{1}, v_{q} \in \bar{D} \bigcap V\left(G_{i-1}\right)$. Define an edge-coloring c_{i} of G_{i} by $c_{i}(e)=c_{i-1}(e)$ for $e \in E\left(G_{i-1}\right), c_{i}\left(v_{q-1} v_{q}\right)=f_{i-1}\left(v_{1}\right)$ and $c_{i}\left(v_{j} v_{j+1}\right)=y_{j}(1 \leq j \leq q-2)$, where $y_{1}, y_{2}, \cdots, y_{q-2}$ are distinct new colors. It is clear that c_{i} uses $\left|G_{i}\right|-1$ colors. From condition (1) of the Lemma 2.1, there exists a vertex $v_{q_{0}} \in D\left(2 \leq q_{0} \leq q-1\right)$ in P_{i-1}. Define a map $f_{i}: \bar{D} \bigcap V\left(G_{i}\right) \rightarrow c_{i}\left(G_{i}\right)$ as follows: $f_{i}(v)=f_{i-1}(v)$ for $v \in\left[\bar{D} \bigcap V\left(G_{i-1}\right)\right] \backslash\left\{v_{1}\right\}, f_{i}\left(v_{j}\right)=y_{j}$ for $v_{j} \in \bar{D} \bigcap V\left(v_{1} P_{i-1} v_{q_{0}-1}\right)$ and $f_{i}\left(v_{j}\right)=y_{j-1}$ for $v_{j} \in \bar{D} \bigcap V\left(v_{q_{0}+1} P_{i-1} v_{q-1}\right)$. The edge-coloring c_{i} of G_{i} has the following two properties.
(B1) There exists a rainbow path P_{i-1}^{\prime} from v_{1} to v_{q} in G_{i-1} such that the color $f_{i-1}\left(v_{1}\right)$ does not appear on it. In fact, since G_{i-1} is rainbow 2-connected, there are two internally disjoint rainbow paths in G_{i-1} connecting v_{1}, v_{q}. Since the map f_{i-1} satisfies condition (A5), the color $f_{i-1}\left(v_{1}\right)$ appears exactly once in G_{i-1}. So $f_{i-1}\left(v_{1}\right)$ does not appear on one of the two rainbow paths, denoted by P_{i-1}^{\prime}, from v_{1} to v_{q}.
(B2) Since c_{i-1} and f_{i-1} satisfy condition (A5), the color $f_{i-1}\left(v_{1}\right)$ does not appear on
any path in G_{i-1} which does not contain v_{1}.
We will distinguish some cases to show that c_{i} and f_{i} satisfy conditions (A1)-(A5).
(I) For any two distinct vertices $v^{\prime}, v^{\prime \prime} \in V\left(G_{i}\right)$, we distinguish the following three cases to show that (A1) is satisfied:

If $v^{\prime}, v^{\prime \prime} \in V\left(G_{i-1}\right)$, there exist two internally disjoint rainbow paths connecting them in G_{i-1}, which are also rainbow paths in G_{i} according to the definition of c_{i}.

If $v^{\prime}, v^{\prime \prime} \in V\left(P_{i-1}\right)$, from property (B1) we have that $P_{i-1}^{\prime} \bigcup P_{i-1}$ is a cycle whose colors are distinct, and hence there are two internally disjoint rainbow paths from v^{\prime} to $v^{\prime \prime}$ on the cycle $P_{i-1}^{\prime} \cup P_{i-1}$.

If $v^{\prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}, v_{q}\right\}$ and $v^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{1}, v_{q}\right\}$, since c_{i-1} satisfies condition (A2) there exist two internally disjoint rainbow paths P^{\prime} and $P^{\prime \prime}$ in G_{i-1} from v^{\prime} to v_{1} and v_{q}, respectively. From property (B2) and $v_{1} \notin V\left(P^{\prime \prime}\right)$, we have $f_{i-1}\left(v_{1}\right) \notin c_{i}\left(P^{\prime \prime}\right)$. So $v^{\prime} P^{\prime} v_{1} P_{i-1} v^{\prime \prime}$ and $v^{\prime} P^{\prime \prime} v_{q} P_{i-1} v^{\prime \prime}$ are two internally disjoint rainbow paths from v^{\prime} to $v^{\prime \prime}$ in G_{i}.

Therefore, G_{i} is rainbow 2-connected.
(II) For any three distinct vertices $v^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i}\right)$, we distinguish the following six cases to show that (A2) is satisfied:

If $v^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i-1}\right)$, then from condition (A2) of c_{i-1} and the definition of c_{i}, there exist two internally disjoint rainbow paths P^{\prime} and $P^{\prime \prime}$ in G_{i-1} from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.

If $v^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right)$, from property (B1) there exist two internally disjoint rainbow paths on the cycle $P_{i-1}^{\prime} \bigcup P_{i-1}$ from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.

If $v^{\prime}, v_{1}^{\prime \prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{2}^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, from condition (A2) of c_{i-1} there exist two internally disjoint rainbow paths P^{\prime} and $P^{\prime \prime}$ in G_{i-1} from v^{\prime} to $v_{1}^{\prime \prime}$ and v_{1}, respectively. So P^{\prime} and $v^{\prime} P^{\prime \prime} v_{1} P_{i-1} v_{2}^{\prime \prime}$ are two internally disjoint rainbow paths in G_{i} from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.
If $v^{\prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}, v_{q}\right\}$ and $v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right)$, without loss of generality, $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ appear on P_{i-1} in this order. From condition (A2) of c_{i-1}, there exist two internally disjoint rainbow paths P^{\prime} and $P^{\prime \prime}$ in G_{i-1} from v^{\prime} to v_{1} and v_{q}, respectively. From property (B2) and $v_{1} \notin V\left(P^{\prime \prime}\right)$, we have $f_{i-1}\left(v_{1}\right) \notin c_{i}\left(P^{\prime \prime}\right)$. So $v^{\prime} P^{\prime} v_{1} P_{i-1} v_{1}^{\prime \prime}$ and $v^{\prime} P^{\prime \prime} v_{q} P_{i-1} v_{2}^{\prime \prime}$ are two internally disjoint rainbow paths in G_{i} from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.
If $v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v^{\prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, from condition (A3) of c_{i-1} there exist two disjoint rainbow paths P^{\prime} from $v_{1}^{\prime \prime}$ to one of v_{1} and v_{q}, say v_{1}, and $P^{\prime \prime}$ from $v_{2}^{\prime \prime}$ to the other vertex v_{q}. If $v_{2}^{\prime \prime}=v_{q}$, then $P^{\prime \prime}=v_{2}^{\prime \prime}$. From property (B2), $v^{\prime} P_{i-1} v_{1} P^{\prime} v_{1}^{\prime \prime}$ and $v^{\prime} P_{i-1} v_{q} P^{\prime \prime} v_{2}^{\prime \prime}$ are two internally disjoint rainbow paths from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.

If $v_{2}^{\prime \prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{1}^{\prime \prime}, v^{\prime} \in V\left(P_{i-1}\right)$, without loss of generality, $v_{1}^{\prime \prime}, v^{\prime}$ appear on P_{i-1} in this order. Since the color $f_{i-1}\left(v_{1}\right)$ appears exactly once in G_{i-1}, one of the two internally disjoint rainbow paths in G_{i-1} from v_{q} to $v_{2}^{\prime \prime}$, denoted by P^{\prime}, does not contain the edge colored by $f_{i-1}\left(v_{1}\right)$, i.e., $f_{i-1}\left(v_{1}\right) \notin c_{i}\left(P^{\prime}\right)$. So $v^{\prime} P_{i-1} v_{1}^{\prime \prime}$ and $v^{\prime} P_{i-1} v_{q} P^{\prime} v_{2}^{\prime \prime}$ are two internally disjoint rainbow paths in G_{i} from v^{\prime} to $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, respectively.

Therefore, c_{i} satisfies condition (A2).
(III) For any four distinct vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i}\right)$, we distinguish the following six cases to show that (A3) is satisfied:

If $v_{1}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(G_{i-1}\right)$, then there exist two required disjoint rainbow paths in G_{i-1} from condition (A3) of c_{i-1} and the definition of c_{i}.

If $v_{1}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right)$, then there exist two required disjoint rainbow paths on the cycle $P_{i-1}^{\prime} \bigcup P_{i-1}$ from property (B1).

If $v_{1}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime \prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{2}^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, from condition (A3) of c_{i-1} there exist two disjoint rainbow paths P^{\prime} from v_{1}^{\prime} to one of v_{1} and $v_{1}^{\prime \prime}$, say $v_{1}^{\prime \prime}$, and $P^{\prime \prime}$ from v_{2}^{\prime} to the other vertex v_{1} in G_{i-1}. Then P^{\prime} and $v_{2}^{\prime} P^{\prime \prime} v_{1} P_{i-1} v_{2}^{\prime \prime}$ are two required disjoint rainbow paths in G_{i}.

If $v_{1}^{\prime}, v_{2}^{\prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, without loss of generality, $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ appear on P_{i-1} in this order. From condition (A3) of c_{i-1}, there exist two disjoint rainbow paths P^{\prime} from v_{1}^{\prime} to v_{1} and v_{q}, say v_{1}, and $P^{\prime \prime}$ from v_{2}^{\prime} to the other vertex v_{q} in G_{i-1}. If $v_{2}^{\prime}=v_{q}$, then $P^{\prime \prime}=v_{2}^{\prime}$. Hence $v_{1}^{\prime} P^{\prime} v_{1} P_{i-1} v_{1}^{\prime \prime}$ and $v_{2}^{\prime} P^{\prime \prime} v_{q} P_{i-1} v_{2}^{\prime \prime}$ are two required disjoint rainbow paths in G_{i}.

If $v_{1}^{\prime}, v_{1}^{\prime \prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{2}^{\prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, from condition (A1) of c_{i-1} let P^{\prime} be a rainbow path from v_{1}^{\prime} to $v_{1}^{\prime \prime}$ in G_{i-1}. Then P^{\prime} and $v_{2}^{\prime} P_{i-1} v_{2}^{\prime \prime}$ are two required disjoint rainbow paths in G_{i}.

If $v_{1}^{\prime} \in V\left(G_{i-1}\right) \backslash\left\{v_{1}\right\}$ and $v_{2}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \in V\left(P_{i-1}\right) \backslash\left\{v_{q}\right\}$, without loss of generality, $v_{2}^{\prime}, v_{2}^{\prime \prime}, v_{1}^{\prime \prime}$ appear on P_{i-1} in this order. From conditions (A1) and (A5) of c_{i-1} and f_{i-1}, there exists one rainbow path P^{\prime} in G_{i-1} from v_{1}^{\prime} to v_{q} such that $f_{i-1}\left(v_{1}\right) \notin c_{i}\left(P^{\prime}\right)$. Then $v_{1}^{\prime} P^{\prime} v_{q} P_{i-1} v_{1}^{\prime \prime}$ and $v_{2}^{\prime} P_{i-1} v_{2}^{\prime \prime}$ are two required disjoint rainbow paths in G_{i}.

Therefore, c_{i} satisfies condition (A3).
(VI) From condition (A4) of f_{i-1} and the definition of f_{i}, f_{i} is injective. Hence, f_{i} satisfies condition (A4).
(V) From condition (A4) of f_{i-1} and the definition of f_{i}, f_{i} satisfies condition (A5).

Therefore, we can get an edge-coloring c_{t} of $G\left(=G_{t}\right)$ with $n-1\left(=\left|G_{t}\right|-1\right)$ colors which makes G rainbow 2-connected. So $r c_{2}(G) \leq n-1$.

An easy observation is that if G^{\prime} is a spanning subgraph of a graph G and $r c_{k}(G)$ and
$r c_{k}\left(G^{\prime}\right)$ indeed exist, then we have $r c_{k}(G) \leq r c_{k}\left(G^{\prime}\right)(k \geq 1)$.
Now we are ready to prove our main result Theorem 1.4.
Proof of Theorem 1.4: If G is an n-vertex cycle, then we have $r c_{2}(G)=n$. Hence, to prove the result we only need to show that $r c_{2}(G) \leq n-1$ for any 2-connected graph G of order n but not a cycle. Let G be such a graph. Consider the following two cases.

Case 1. G is Hamiltonian.
Let $C=v_{1} v_{2} \cdots v_{n} v_{1}$ be a Hamiltonian cycle of G. Since G is not a cycle, C must have a chord, say $v_{1} v_{j} \in E(G)(3 \leq j \leq n-1)$. Then $G^{\prime}=\left(V(G), E(C) \bigcup\left\{v_{1} v_{j}\right\}\right)$ is a spanning 2 -connected subgraph of G. Let $x_{1}, x_{2}, \cdots, x_{n-1}$ be $n-1$ distinct colors. Define an edge-coloring c of G^{\prime} with $n-1$ colors as follows: $c\left(v_{1} v_{2}\right)=c\left(v_{j} v_{j+1}\right)=x_{1}$, $c\left(v_{1} v_{n}\right)=c\left(v_{j-1} v_{j}\right)=x_{2}$ and the other $n-3$ edges of G^{\prime} are colored by colors x_{3}, \cdots, x_{n-1}. It can be checked that G^{\prime} is rainbow 2 -connected. From the above observation, $r c_{2}(G) \leq$ $r c_{2}\left(G^{\prime}\right) \leq n-1$.

Case 2. G is not Hamiltonian.
Let G^{\prime} be a spanning minimally 2-connected subgraph of G. Since G is not Hamiltonian, G^{\prime} is not a cycle. From Lemma 2.2 and the above observation, we have $r c_{2}(G) \leq r c_{2}\left(G^{\prime}\right) \leq$ $n-1$.

The proof is now complete.
Acknowledgment. The authors would like to thank the referees for valuable comments and suggestions, which helped to improve the presentation of the paper.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, New York, 2008.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection nuumber and connected dominating sets, Electronic Notes in Discrete Math. 38(2011), 239-244. Also see J. Graph Theory 71(2012), 206-218.
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Mathematica Bohemica 133(2008), 85-98.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54(2009), 75-81.
[7] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Combin. Optim. 21(2010), 330-347.
[8] S. Fujita, H. Liu, C. Magnant, Rainbow k-connection in dense graphs, preprint, availabel at www.cantab.net/users/henry.liu/maths.htm.
[9] S. Fujita, H. Liu, C. Magnant, Rainbow k-connection in dense graphs (Extended Abstract), Electronic Notes in Discrete Math. 38(2011), 361-366.
[10] X. Li, S. Liu, L.S. Chandran, R. Mathew, D. Rajendraprasad, Rainbow connection number and connectivity, Electron. J. Combin. 19(2012), \sharp P20.
[11] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29(1)(2013), 1-38.
[12] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math., Springer, New York, 2012.

[^0]: *Supported by NSFC No. 11071130 and the " 973 " project.

