
The skew energy of random oriented graphs∗

Xiaolin Chen, Xueliang Li, Huishu Lian

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, P.R. China

E-mail: chxlnk@163.com; lxl@nankai.edu.cn; lhs6803@126.com

Abstract

Given a graph G, let Gσ be an oriented graph of G with the orientation σ and skew-
adjacency matrix S(Gσ). The skew energy of the oriented graph Gσ, denoted by ES(Gσ),
is defined as the sum of the absolute values of all the eigenvalues of S(Gσ). In this paper,
we study the skew energy of random oriented graphs and formulate an exact estimate of the
skew energy for almost all oriented graphs by generalizing Wigner’s semicircle law. More-
over, we consider the skew energy of random regular oriented graphs Gσ

n,d, and get an exact
estimate of the skew energy for almost all regular oriented graphs.
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1 Introduction

Let G be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn}, and let Gσ be
an oriented graph of G with the orientation σ, which assigns to each edge of G a direction so
that the induced graph Gσ becomes a directed graph. The skew-adjacency matrix of Gσ is the
n × n matrix S(Gσ) = [sij ], where sij = 1 and sji = −1 if 〈vi, vj〉 is an arc of Gσ, otherwise
sij = sji = 0. The skew energy [1] of Gσ is defined as the sum of the absolute values of all the
eigenvalues of S(Gσ), denoted by ES(Gσ). Obviously, S(Gσ) is a skew-symmetric matrix, and
thus all the eigenvalues are purely imaginary numbers.

Since the concept of the energy of simple undirected graphs was introduced by Gutman in [8],
there have been lots of research papers on this topic. We refer the survey [9] and the book [12]
to the reader for details. The energy of a graph has a close link to chemistry. An important
quantum-chemical characteristic of a conjugated molecule is its total π-electron energy. There
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are situations when chemists use digraphs rather than graphs. One such situation is when
vertices represent distinct chemical species and arcs represent the direction in which a particular
reaction takes place between the two corresponding species. So, people hope that this skew
energy will have similar applications as energy in chemistry.

Adiga et. al. [1] first defined the skew energy of an oriented graph, and obtained some
properties of the skew energy. They derived an upper bound for the skew energy and constructed
a family of infinitely many oriented graphs attaining the maximum. They also proved that the
skew energy of an oriented tree is independent of its orientation, and equal to the energy of
its underlying tree. Then, Shader et. al. [15] studied the relationship between the spectra of
a graph G and the skew-spectra of an oriented graph Gσ of G, which would be helpful to the
study of the relationship between the energy of G and the skew energy of Gσ. Hou and Lei [10]
characterized the coefficients of the characteristic polynomial of the skew-adjacency matrix of
an oriented graph. Moreover, other bounds and the extremal graphs of some classes of oriented
graphs have been established. In [11] and [16], Hou et. al. determined the oriented unicyclic
graphs with minimal and maximal skew energy and the oriented bicyclic graphs with minimal
and maximal shew energy, respectively. Gong and Xu [7] characterized the 3-regular oriented
graphs with optimum skew energy.

As well-known, it is very hard to give explicit expressions for the eigenvalues of a general
matrix, and by the extremal graphs one can hardly see the major behavior of the invariant ES(G)
for most oriented graphs with respect to other graph parameters. Therefore, in this paper, we
will study the skew energy in the setting of random oriented graphs. We first formulate an exact
estimate of the skew energy for almost all oriented graphs by generalizing Wigner’s semicircle
law. Moreover, we investigate the skew energy of random regular oriented graphs, and also
obtain an exact estimate.

Various energies of random graphs have been studied. Du et. al. considered the Laplacian
energy in [4] and the energy in [6]. Moreover, they also investigated other energies in [5], such as
the signless Laplacian energy, incidence energy, distance energy and the Laplacian-energy like
invariant. It is worth to point out that their results depend on the limiting spectral distribution
of a random real symmetric matrix. But our results on the skew energy of a random oriented
graph relies on the limiting spectral distribution of a random complex Hermitian matrix.

The rest of the paper is organized as follows: In Section 2, we will list some notations and
collect a few auxiliary results. Then in Section 3, we will consider the skew energy of random
oriented graphs. Finally, in Section 4, we will be devoted to estimating the skew energy of
random regular oriented graphs.
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2 Preliminaries

In this section, we state some notations and collect a few results that will be used in the
sequel of the paper.

Given an Hermitian matrix M on order n, denote its n eigenvalues by

λ1(M), λ2(M), . . . , λn(M),

and the empirical spectral distribution (ESD) of the matrix M by

FM
n (x) =

1
n

∣∣∣{λi(M)|λi(M) ≤ x, i = 1, 2, . . . , n}
∣∣∣

where | I| means the cardinality of the set I. The distribution to which the ESD of the random
matrix M converges as n →∞ is called the limiting spectral distribution (LSD) of M .

The study on the spectral distribution of random matrices plays a critical role in estimating
the skew energy of random oriented graphs. One pioneer work in the field of the spectral
distribution of random matrices [2,14] is Wigner’s semicircle law discovered by Wigner in [18,19],
which characterizes the limiting spectral distribution of a sort of random matrices. This sort of
random matrices is so-called the Wigner matrices, denoted by Xn, which satisfies that

• Xn is a Hermitian matrix, i.e., xij = xji, 1 ≤ i ≤ j ≤ n, where xji means the conjugate of
xji,

• the upper-triangular entries xij , 1 ≤ i < j ≤ n, are independently identically distributed
(i.i.d.) complex random variables with mean zero and unit variance,

• the diagonal entries xii, 1 ≤ i ≤ n, are i.i.d. real random variances, independent of the
upper-triangular entries, with mean zero,

• for each positive integer k, max
(
E(|x11|k),E(|x12|k)

)
< ∞.

Then the Wigner’s semicircle law can be stated as follows.

Theorem 2.1 [19] Let Xn be a Wigner matrix. Then the empirical spectral distribution
Fn−1/2Xn

n (x) converges to the standard semicircle distribution whose density is given by

ρsc(x) :=
1
2π

√
4− x2 |x|≤2.

Given a random graph model G(n, p), we say that almost every graph G(n, p) ∈ G(n, p) has
a certain property P if the probability that G(n, p) has the property P tends to 1 as n → ∞,
or we say G(n, p) almost surely (a.s.) satisfies the property P. In the sequel, we shall consider
two random graph models: the random oriented graph model Gσ(n, p) and the random regular
oriented graph model Gσ

n,d, the definitions of which will be given later.
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In this paper, we use the following standard asymptotic notations: as n →∞, f(n) = o(g(n))
means that f(n)/g(n) → 0; f(n) = ω(g(n)) means that f(n)/g(n) →∞; f(n) = O(g(n)) means
that there exists a constant C such that |f(n)| ≤ Cg(n); f(n) = Ω(g(n)) means that there exists
a constant c > 0 such that f(n) ≥ cg(n).

3 The skew energy of Gσ(n, p)

In this section, we consider random oriented graphs and obtain an estimate of the skew
energy for almost all oriented graphs by generalizing Wigner’s semicircle law.

We first give the definition of a random oriented graph Gσ(n, p). Given p = p(n), 0 ≤ p ≤ 1,
a random oriented graph on n vertices is obtained by drawing an edge between each pair of
vertices, randomly and independently, with probability p and then orienting each existing edge,
randomly and independently, with probability 1/2. That is to say, for a given oriented graph
G = Gσ(n, p) with m arcs, P (G) = pm(1 − p)(

n
2)−m · 2−m. Apparently, the skew-adjacency

matrix S(Gσ(n, p)) = [sij ] (or Sn, for brevity) of Gσ(n, p) is a random matrix such that

• Sn is skew-symmetric, i.e., sij = −sji for 1 ≤ i ≤ j ≤ n, and in particular, sii = 0 for
1 ≤ i ≤ n;

• the upper-triangular entries sij , 1 ≤ i < j ≤ n are i.i.d. random variables such that sij = 1
with probability 1

2p, sij = −1 with probability 1
2p, and sij = 0 with probability 1− p.

It is well known that all the eigenvalues of Sn are purely imaginary numbers. Assume that
iλ1, iλ2, . . . , iλn are all the eigenvalues of Sn where every λk is a real number and i is the
imaginary unit. Let S′n = (−i)Sn. Then S′n is an Hermitian matrix with eigenvalues exactly
λ1, λ2, . . . , λn. Therefore, the skew energy ES(Gσ(n, p)) can be evaluated once the spectral
distribution of the random Hermitian matrix S′n is known.

Usually, it is more convenience to study the normalized matrix Mn = 1√
pS′n = [mij ]. Ap-

parently, Mn is still an Hermitian matrix in which the diagonal entries mii = 0 and the upper-
triangular entries mij , 1 ≤ i < j ≤ n are i.i.d. copies of random variable ξ which takes value i√

p

with probability 1
2p, − i√

p with probability 1
2p, and 0 with probability 1 − p. It can be verified

that the random variable ξ has mean 0, variance 1, and expectation

E(ξs) =





0 if s is odd;
1

(
√

p)s−2 if s ≡ 0 mod 4;

− 1
(
√

p)s−2 if s ≡ 2 mod 4.

(3.1)

Observe that if p = o(1), then the matrix Mn is not a Wigner matrix since the moment
is unbounded as n → ∞, and thus the limiting spectral distribution of Mn cannot be directly
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derived by the Wigner’s semicircle law. However, by the moment method, we can establish
that the empirical spectral distribution of 1√

n
Mn also converges to the standard semicircle

distribution, which in fact generalize the Wigner’s semicircle law to a larger extent.

Theorem 3.1 For p = ω( 1
n), the empirical spectral distribution (ESD) of the matrix 1√

n
Mn

converges in distribution to the standard semicircle distribution which has a density ρsc(x) with
support on [−2, 2],

ρsc(x) :=
1
2π

√
4− x2.

We first estimate the skew energy ES(Gσ(n, p)) by applying the theorem above but leave the
proof of the theorem at the end of this section. Clearly, 1√

pλ1,
1√
pλ2, . . . , 1√

pλn and 1√
npλ1,

1√
npλ2,

. . . , 1√
npλn are the eigenvalues of Mn and 1√

n
Mn, respectively. By Theorem 3.1, we can deduce

that

ES(Gσ(n, p))
n3/2p1/2

=
1

n3/2p1/2

n∑

i=1

|λi|

=
1
n

n∑

i=1

| 1√
np

λi|

=
∫
|x| dFn−1/2Mn

n (x)

a.s.−→
∫
|x| ρsc(x) dx (n →∞)

=
1
2π

∫ 2

−2
|x|

√
4− x2dx

=
8
3π

.

Hence, we can immediately conclude that

Theorem 3.2 For p = ω( 1
n), the skew energy ES(Gσ(n, p)) of the random oriented graph

Gσ(n, p) enjoys a.s. the following equation:

ES(Gσ(n, p)) = n3/2p1/2

(
8
3π

+ o(1)
)

.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let Wn = 1√
n
Mn. To prove that the empirical spectral distribution

of Wn converges in distribution to the standard semicircle distribution, it suffices to show that
the moments of the empirical spectral distribution converge almost surely to the corresponding
moments of the semicircle distribution.

For a positive integer k, the k-th moment of the ESD of the matrix Wn is
∫

xkdFWn
n (x) =

1
n
E

(
Trace(W k

n )
)

,
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and the k-th moment of the standard semicircle distribution is
∫ 2

−2
xkρsc(x)dx.

Hence, we need to prove for every fixed integer k,

1
n
E

(
Trace(W k

n )
)
−→

∫ 2

−2
xkρsc(x)dx, as n →∞.

On one hand, we can determine that
for k = 2m + 1,

∫ 2
−2 xkρsc(x)dx = 0 due to symmetry;

for k = 2m,
∫ 2

−2
xkρsc(x)dx =

1
2π

∫ 2

−2
xk

√
4− x2dx =

1
π

∫ 2

0
x2m

√
4− x2dx

=
22m+1

π

∫ 1

0
ym−1/2(1− y)1/2dy (by setting x = 2

√
y)

=
22m+1

π
· Γ(m + 1/2)Γ(3/2)

Γ(m + 2)
=

1
m + 1

(
2m

m

)
.

On the other hand, we expand the trace of W k
n into

1
n
E

(
Trace(W k

n )
)

=
1

n1+k/2
E

(
Trace(Mk

n)
)

=
1

n1+k/2

∑

1≤i1,...,ik≤n

E(mi1i2mi2i3 · · ·miki1). (3.2)

Every term in the sum above corresponds to a closed walk of length k in the complete graph
of order n. Recall that the matrix Mn satisfies that the entries mij , 1 ≤ i < j ≤ n, are i.i.d.
copies of the random variable ξ, which commits |E(ξs)| = 0 if s is odd and |E(ξs)| = 1

(
√

p)s−2 if
s is even. Besides, mij = mji = −mji. For convenience, we also regard mij as an edge and mji

the inverse edge of mij , or vice versa.

When k is odd, each walk in the Sum (3.2) contains such an edge that the total number of
times that this edge and its inverse edge appear in this walk is odd. Apparently, by Equ.(3.1)
and the independence of the variables, this term is zero. Thus

1
n
E

(
Trace(W k

n )
)

= 0.

When k is even, suppose k = 2m and let t be the number of distinct vertices in a closed
walk. All closed walks in the Sum (3.2) can be classified into the following two categories:

Category 1: There exists such an edge in the closed walk that the total number of times that
this edge and its inverse edge appear is odd. Similarly, by Equ.(3.1) this term is zero.

Category 2: Each edge in the closed walk satisfies that the total number of times that this
edge and its inverse edge appear is even. It is clear that the number of distinct vertices in this
walk t ≤ m + 1. We then continue to divide those walks into the following two subcategories:
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Subcategory 2.1: t ≤ m. It is clear that the number of such closed walks is at most nt · tk.
Then these terms will contribute

1
n1+k/2

m∑

t=1

∑

|{i1,...,ik}|=t

∣∣E(mi1i2mi2i3 · · ·miki1)
∣∣

≤ 1
n1+m

m∑

t=1

nt · tk ·
(

1√
p

)2m−2(t−1)

≤ 1
n1+m

·m · nm ·mt ·
(

1√
p

)2m−2(m−1)

=
mt+1

np
= O

(
1
np

)
.

The first inequality is obtained by merging the same edges and their inverse edges together and
then employing Equ.(3.1). The second inequality is due to the monotonicity.

Subcategory 2.2: t = m+1. In this case, each edge in the closed walk appears only once, and
so does its inverse edge. By E(ξξ̄) = −E(ξ2) = 1 and the independence of the variables, this
term is 1. And the number of such closed walk is given by the following lemma.

Lemma 3.3 [2] The number of the closed walks of length 2m which satisfy that each edge and
its inverse edge in the closed walk both appear once is 1

m+1

(
2m
m

)
.

From the above discussion, it follows that

1
n
E

(
Trace(W k

n )
)

=





0 if k = 2m + 1;
1

m+1

(
2m
m

)
+ O

(
1
np

)
if k = 2m,

which implies that if p = ω( 1
n), then

1
n
E

(
Trace(W k

n )
)
→

∫ 2

−2
xkρsc(x)dx, as n →∞.

The proof is thus completed.

4 The skew energy of Gσ
n,d

In this section, we consider the skew energy of random regular oriented graphs. We first
recall [3] the definition of a random regular graph Gn,d, where d = d(n) denotes the degree.
Gn,d is a random graph chosen uniformly from the set of all simple d-regular graphs on n

vertices. A random regular oriented graph, denoted by Gσ
n,d, is obtained by orienting each edge

of the random regular graph Gn,d, randomly and independently, with probability 1/2. Let An
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be the adjacency matrix of Gn,d and Rn be the skew-adjacency matrix of Gσ
n,d. The estimates

of the skew energy of Gσ
n,d are different in the cases of d fixed and d →∞. Therefore, we shall

discuss these two cases separately.

4.1 The case that d ≥ 2 is a fixed integer

In this subsection, we estimate the skew energy of Gσ
n,d, where d ≥ 2 is a fixed integer. We

first recall the fact about the limiting spectral distribution of the random regular graph Gn,d

with d fixed (which means the limiting spectral distribution of the adjacent matrix An), which
was derived by McKay [13].

Lemma 4.1 [13] Let Gn,d be a random regular graph with the adjacency matrix An. If the
degree d is a fixed integer and d ≥ 2, then the empirical spectral distribution FAn

n approaches the
distribution F (x) whose density function is

ρd =





d
√

4(d−1)−x2

2π(d2−x2)
, if |x| ≤ 2

√
d− 1;

0, otherwise.

Remark 4.1. McKay [13] used the moment method to prove the lemma above, i.e., he proved
that for each k, the k-th moment of the ESD of the matrix An converges to the k-th moment of
the distribution F (x),

∫
xkdFAn

n (x) =
1
n
E

(
Trace(Ak

n)
)
−→

∫
xkρd(x)dx, as n →∞.

Note that Trace(Ak
n) is the number of closed walks of length k in An. When d is fixed, the graph

Gn,d is almost surely a locally d-regular tree.

Now we consider the random regular oriented graph Gσ
n,d. Set Tn = (−i)Rn = [tij ]. For a

fixed k,the limit of the k-th moment of the ESD of Tn is mk = lim
n→∞

1
nE

(
Trace(T k

n )
)
. We note

that when d is fixed and n →∞, the underlying graph is almost surely a locally d-regular tree.
If one oriented edge appears in a closed walk of length k, then its inverse oriented edge appears
with the same number of times. We can get that mk is equal to the number of closed walks of
length k in a d-regular tree starting at the root. Combining with Lemma 4.1 we conclude the
following theorem.

Theorem 4.2 Let Gσ
n,d be a random regular oriented graph with the adjacency matrix Rn, and

let Tn = (−i)Rn = [tij ]. If the degree d is a fixed integer and d ≥ 2, then the empirical spectral
distribution F Tn

n approaches the distribution F (x) which has the density function ρd with support
on

[−2
√

d− 1, 2
√

d− 1
]
,

ρd =
d
√

4(d− 1)− x2

2π(d2 − x2)
.
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We now turn to the estimate of the skew energy ES(Gσ
n,d). Note that ES(Gσ

n,d) also equals the
sum of the absolute values of all the eigenvalues of Rn. Suppose λ1, λ2, . . . , λn are the eigenvalues
of Rn. By Theorem 4.2, we can deduce that

ES(Gσ
n,d)

n
=

1
n

n∑

i=1

|λi|

=
∫
|x| dFRn

n (x)

a.s.−→
∫
|x| ρd(x) dx (n →∞)

= 2
∫ 2

√
d−1

0
x

d
√

4(d− 1)− x2

2π(d2 − x2)
dx

=
2d
√

d− 1
π

− d(d− 2)
π

· arctan
2
√

d− 1
d− 2

.

To summarize, we can obtain the following theorem.

Theorem 4.3 For any fixed integer d ≥ 2, the skew energy ES(Gσ
n,d) of the random regular

oriented graph Gσ
n,d enjoys a.s. the following equations:

ES(Gσ
n,d) = n

(
2d
√

d− 1
π

− d(d− 2)
π

· arctan
2
√

d− 1
d− 2

+ o(1)
)

.

In particular, when d = 2, ES(Gσ
n,d) = n (4/π + o(1)).

4.2 The case that d →∞

The estimate of the skew energy of Gσ
n,d with d →∞ depends on the following key lemmas.

Lemma 4.4 [17] If np → ∞, then the random graph G(n, p) is np-regular with probability at
least exp

(−O(n(np)1/2)
)
.

Next, we consider random oriented graphs. By the definitions of a random oriented graph
and a random regular oriented graph, we can generalize the lemma above into a result for random
oriented graphs as follows.

Lemma 4.5 If np →∞, then the random oriented graph Gσ(n, p) is np-regular with probability
at least exp

(−O(n(np)1/2)
)
.

Lemma 4.6 [17] Let M be an n × n Hermitian random matrix whose off-diagonal entries
ξij are i.i.d. random variables with mean zero, unit variance and |ξij | < K for some common
constant K. Fix δ > 0 and assume that the fourth moment M4 := supi,j E(|ξij |4) = o(n). Then
for any interval I ⊂ [−2, 2] whose length is at least Ω(δ−2/3(M4/n)1/3), there is a constant c
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such that the number NI of the eigenvalues of 1√
n
M which belong to I satisfies the following

concentration inequality

P

(∣∣∣∣NI − n

∫

I
ρsc(t)dt

∣∣∣∣ > δn

∫

I
ρsc(t)dt

)
≤ 4 exp

(
−c

δ4n2|I|5
K2

)
.

Consider the random oriented graph Gσ(n, p) with np → ∞ as n → ∞ and the skew-
adjacency matrix Sn. Recall that Mn = −i√

pSn. For an interval I let N ′
I be the number of

eigenvalues of Mn in I. Apparently, Mn satisfies the condition of Lemma 4.6 (M := Mn, K :=
1/
√

p). Thus, we can immediately obtain the following lemma.

Lemma 4.7 For any interval I ⊂ [−2, 2] with length at least ( log(np)

δ4(np)1/2 )1/5, we have

∣∣∣∣N ′
I − n

∫

I
ρsc(x)dx

∣∣∣∣ > δn

∫

I
ρsc(x)dx

with probability at most exp(−cn(np)1/2 log(np)).

By Lemmas 4.5 and 4.7, the probability that N ′
I fails to be close to the expected value in

the model Gσ(n, p) is much smaller than the probability that Gσ(n, p) is np-regular. Thus, the
probability that N ′

I fails to be close to the expected value in the model Gσ
n,d where d = np is the

ratio of the two former probabilities, which is O(exp(−cn
√

np log np)) for some small positive
constant c. Recall that Rn is the skew-adjacency matrix of Gσ

n,d. Set Ln = −i√
d/n

Rn and let N ′′
I

be the number of eigenvalues of Ln in I. Thus we can conclude that

Theorem 4.8 (Concentration for ESD of Gσ
n,d) Let δ > 0 and consider the random regular

oriented graph Gσ
n,d. If d tends to ∞ as n →∞, then for any interval I ⊂ [−2, 2] with length at

least δ−4/5d−1/10 log1/5 d, we have
∣∣∣∣N ′′

I − n

∫

I
ρsc(x)dx

∣∣∣∣ < δn

∫

I
ρsc(x)dx

with probability at least 1−O(exp(−cn
√

d log(d))).

Theorem 4.8 immediately implies a result as follows.

Theorem 4.9 If d →∞, then the ESD of n−1/2Ln converges to the standard semicircle distri-
bution.

Now we are ready to estimate the skew energy of the random regular oriented graph Gσ
n,d.

Suppose that iλ1, iλ2, . . . , iλn are the eigenvalues of Rn. Then, d−1/2λ1, d
−1/2λ2, . . . , d−1/2λn

are the all eigenvalues of n−1/2Ln. By Theorem 4.9, we can deduce that
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ES(Gσ
n,d)

nd1/2
=

1
nd1/2

n∑

i=1

|λi|

=
1
n

n∑

i=1

1√
d
|λi|

a.s.−→
∫
|x| ρsc dx (n →∞)

=
1
2π

∫ 2

−2
|x|

√
4− x2dx

=
8
3π

.

Therefore, the skew energy ES(Gσ
n,d) can be formulated as

ES(Gσ
n,d) = nd1/2

(
8
3π

+ o(1)
)

.

We can thus immediately obtain the following theorem.

Theorem 4.10 For d = d(n) → ∞, the skew energy ES(Gσ
n,d) of the random oriented graph

Gσ
n,d enjoys a.s. the following equation:

ES(Gσ
n,d) = nd1/2

(
8
3π

+ o(1)
)

.
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