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Abstract. We define the disposition polynomial Rm(x1, x2, . . . , xn) as
∏m−1

k=0 (x1 + x2 +
· · ·+xn+k). When m = n−1, this polynomial becomes the generating function of plane
trees with respect to the number of younger children and the number of elder children
obtained by Guo and Zeng. They asked for a combinatorial proof of the formula. We
find a combinatorial interpretation of the disposition polynomials in terms of the number
of right-to-left minima of each linear order in a disposition. Then we establish a bijection
between plane trees on n vertices and dispositions from {1, 2, . . . , n− 1} to {1, 2, . . . , n}
in the spirit of the Prüfer correspondence, which gives an answer to the question of Guo
and Zeng. This bijection also provides an answer to another question of Guo and Zeng
concerning an identity on the plane tree expansion of a polynomial introduced by Gessel
and Seo.
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1 Introduction

The notion of dispositions was introduced by Mullin and Rota [4], see also, Joni, Rota
and Sagan [3]. Assume that x is a nonnegative integer. Then the rising factorial x(x +
1) · · · (x+n−1) can be interpreted as the number of dispositions from [n] = {1, 2, . . . , n}
to [x] = {1, 2, . . . , x}, where a disposition from [n] to [x] is a function from [n] to [x] in
which the pre-image of each i ∈ [x] is endowed with a linear order. In other words, a
disposition from [n] to [x] can be viewed as a decomposition of a permutation of [n] into
x parts with empty parts allowed.

In this paper, we introduce the disposition polynomials Rm(x1, x2, . . . , xn) as a multi-
variate extension of the rising factorials by considering the number of right-to-left minima
of each linear order in a disposition from [m] to [n]. More precisely,

Rm(x1, x2, . . . , xn) =
m−1∏
k=0

(x1 + x2 + · · ·+ xn + k). (1.1)
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We are led to the above definition of the disposition polynomials by the special case
of Rm(x1, x2, . . . , xn) for m = n − 1 as introduced by Guo and Zeng [2] in connection
with the enumeration of plane trees.

Let Pn denote the set of plane trees on [n], where a plane tree on [n] is a labeled

rooted tree on [n] for which the children of each vertex are linearly ordered, and let P(r)
n

denote the set of plane trees on [n] with root r. For T ∈ Pn, let i be a vertex of T
and j be a child of i. Assume that e1, e2, . . . , ek are the brothers of j lying on its right.
Denote by βj(T ) the smallest descendant of j in T . If βj(T ) is smaller than βet(T ) for
any 1 ≤ t ≤ k, then we say that j is a younger child of i. Otherwise, j is called an elder
child of i.

Denote by youngT (i) the number of younger children of i in T , and denote by eld(T )
the total number of elder children in T . Guo and Zeng [2] obtained the following formulas∑

T∈Pn

teld(T )

n∏
i=1

x
youngT (i)
i =

n−2∏
k=0

(x1 + x2 + · · ·+ xn + kt) (1.2)

and ∑
T∈P(r)

n

teld(T )

n∏
i=1

x
youngT (i)
i = xr

n−2∏
k=1

(x1 + x2 + · · ·+ xn + kt). (1.3)

Guo and Zeng proved the above formulas (1.2) and (1.3) by induction and asked
for combinatorial proofs. In answer to their questions, we first give a combinatorial
interpretation of the disposition polynomials. Then, for the case m = n−1, we establish
a bijection between plane trees and dispositions in the spirit of the Prüfer correspondence,
which implies combinatorial interpretations of both relations (1.2) and (1.3).

Replacing n by n+1, t by t−z and setting r = 1, x1 = x and xi = z for 2 ≤ i ≤ n+1,
the right hand side of (1.3) becomes the polynomial

x

n−1∏
k=1

(x+ (n− k)z + kt),

which is the polynomial Pn(t, z, x) introduced by Gessel and Seo [1] for the enumeration
of labeled trees by the number of proper vertices. By using generating functions, several
expansions of the polynomial Pn(t, z, x) have been given by Gessel and Seo [1] in terms
of rooted trees with proper vertices, k-ary trees with proper vertices, k-colored ordered
forests with proper vertices and parking functions with lucky cars. Combinatorial proofs
of some of these relations have been found by Seo and Shin [5], Shin [6] and Shin and
Zeng [7].

With the above substitutions, (1.3) reduces to the relation∑
T∈P(1)

n+1

xyoungT (1)(t− z)eld(T )zn−youngT (1)−eld(T ) = x

n−1∏
k=1

(x+ (n− k)z + kt). (1.4)
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Guo and Zeng [2] obtained the above formula as another combinatorial interpretation of
the polynomial Pn(t, z, x) of Gessel and Seo, and they raised the question of finding a
combinatorial interpretation of (1.4).

Our correspondence between plane trees and dispositions can be used to give a com-
binatorial interpretation of (1.4). Moreover, the above relation holds for plane trees with
a given root r, that is,

∑
T∈P(r)

n+1

xyoungT (r)(t− z)eld(T )zn−youngT (r)−eld(T ) = x
n−1∏
k=1

(x+ (n− k)z + kt). (1.5)

This paper is organized as follows. In Section 2, we give a combinatorial explanation
of the disposition polynomials. Section 3 provides a bijection between plane trees and
dispositions which leads to combinatorial interpretations of (1.2) and (1.3). Section 4 is
devoted to a combinatorial proof of (1.5).

2 The generating function of dispositions

In this section, we give a combinatorial interpretation of the disposition polynomials

Rm(x1, x2, . . . , xn) =
m−1∏
k=0

(x1 + x2 + · · ·+ xn + k).

Recall that a disposition is a function from [m] to [n] for which the pre-image of each
i ∈ [n] is endowed with a linear order. We denote by Dm,n the set of dispositions from
[m] to [n]. For example, a disposition from [9] to [8] is given in Figure 2.1.

2,9 7,4 5 6,1,8 3

D1 D2 D3 D4 D5 D6 D7 D8

Figure 2.1: A disposition from [9] to [8].

For a disposition D from [m] to [n], we may write D as (D1, D2, . . . , Dn), where
D1D2 · · ·Dn forms a permutation of [m] and each segment Di is allowed to be empty.
Recall that, for a permutation π = π1π2 · · · πk of k elements, πi is said to be a right-to-left
minimum if πi < πj for any j > i. We denote by RLmin(Di) the number of right-to-left
minima in Di.
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For example, for the disposition in Figure 2.1, we have RLmin(D1) = 2, RLmin(D2) =
1, RLmin(D3) = 0, RLmin(D4) = 1, RLmin(D5) = 0, RLmin(D6) = 2, RLmin(D7) = 1,
RLmin(D8) = 0.

As will be seen, disposition polynomials can be interpreted as the generating functions
of dispositions with respect to the statistics RLmin(Di). The proof of the following
theorem is essentially the same argument for the combinatorial interpretation of the
rising factorials.

Theorem 2.1 For n ≥ 1, we have

∑
D∈Dm,n

n∏
i=1

x
RLmin(Di)
i =

m−1∏
k=0

(x1 + x2 + · · ·+ xn + k). (2.1)

Proof. We use induction on m. For m = 1, the assertion is obvious. Assume that (2.1)
holds for m− 1, that is,

∑
D∈Dm−1,n

n∏
i=1

x
RLmin(Di)
i =

m−2∏
k=0

(x1 + x2 + · · ·+ xn + k). (2.2)

We proceed to show that the theorem holds for m. A disposition from [m] to [n] can
be obtained by inserting the element m in a segment of a disposition from [m− 1] to [n].
Let (D1, D2, . . . , Dn) be a disposition from [m− 1] to [n]. Write Di = a1a2 · · · ari . There
are ri + 1 possible positions for the insertion of m into Di. Here are two cases. Case 1.
The element m is inserted at the end of Di. Let D′i = a1a2 · · · arim. It is clear that D′i
has one more right-to-left minima than Di, that is,

RLmin(D′i) = RLmin(Di) + 1.

Case 2. The elementm is inserted before an element inDi. LetD′i = a1a2 · · · at−1mat · · · ari ,
where 1 ≤ t ≤ ri. In this case, we have

RLmin(D′i) = RLmin(Di).

Since r1+r2+· · ·+rn = m−1, considering all possible insertions ofm into (D1, D2, . . . , Dn),
we obtain that∑

D∈Dm,n

n∏
i=1

x
RLmin(Di)
i = (x1 + r1 + · · ·+ xn + rn)

∑
D∈Dm−1,n

n∏
i=1

x
RLmin(Di)
i

= (x1 + x2 + · · ·+ xn +m− 1)
∑

D∈Dm−1,n

n∏
i=1

x
RLmin(Di)
i .

Thus, by the induction hypothesis, we find that the theorem holds for m. This completes
the proof.
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We define the homogenous disposition polynomials as follows

Qm(x1, x2, . . . , xn, t) =
m−1∏
k=0

(x1 + x2 + · · ·+ xn + kt).

For m = n−1, Guo and Zeng [2] has shown that the homogenous disposition polynomials
are the generating functions of plane trees with respect to the number of younger children
and the number of elder children.

To give a combinatorial interpretation of the homogenous disposition polynomials,
we recall a permutation statistic introduced by Guo and Zeng [2]. Given a permutation
π = π1π2 · · · πm, a general descent is defined as an index i such that πi > πj for some
j > i. Let gdes(π) denote the number of general descents of π. For a disposition
D = (D1, D2, . . . , Dn) from [m] to [n], we define the statistic gdes(D) to be the total
number of general descents of Di for 1 ≤ i ≤ n, that is,

gdes(D) =
n∑

i=1

gdes(Di).

It is easily checked that

gdes(D) = m−
n∑

i=1

RLmin(Di).

By Theorem 2.1, the homogeneous disposition polynomials have the following combina-
torial interpretation

Qm(x1, x2, . . . , xn, t) =
∑

D∈Dm,n

tgdes(D)

n∏
i=1

x
RLmin(Di)
i . (2.3)

In the next section, we shall construct a bijection between the two interpretations of
the homogeneous disposition polynomials.

3 A bijection between plane trees and dispositions

The objective of this section is to establish a correspondence between plane trees and
dispositions. Let us give an overview of notation and terminology. Given two vertices i
and j of a plane tree T , we say that j is a descendant of i if i lies on the unique path
from the root to j. In particular, each vertex is a descendant of itself. Denote by βT (i)
the smallest descendant of i. A child of i means a descendant j such that (i, j) is an
edge of T . A vertex i is called the father of a vertex j if j is a child of i. Vertices having
the same father are called brothers of each other. A child j of i in a plane tree T is
called an elder child if j has a brother k to its right such that βT (k) < βT (j); Otherwise,
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j is called a younger child of i. Denote by eldT (v) the number of elder children of v
in T , and denote by youngT (v) the number of younger children of v in T . It is not
difficult to see that youngT (v) equals the number of right-to-left minima of the sequence
{βT (v1), βT (v2), . . . , βT (vm)}, where v1, v2, . . . , vm are the children of v listed from left to
right. Moreover, we denote by eld(T ) the total number of elder children in T .

For example, in Figure 3.1, each younger child of a vertex is represented by a square,
whereas each elder child of a vertex is represented by a solid dot.

8

u5u2 �
�
�

3@
@
@

u14 �
�
�

12@
@
@

16

1

4
��

��
��

6
,
,
,,u
11
�
�
�

9
L
L
L u

17
l

l
ll

13
HH

HH
HH

15
u

10
�
�
�

7
T
T
T

Figure 3.1: Younger and elder children in a plane tree.

Theorem 3.1 There is a bijection ϕ between plane trees on [n] and dispositions from
[n − 1] to [n]. Let T be a plane tree in Pn, and let D = (D1, D2, . . . , Dn) be the corre-
sponding disposition under the bijection ϕ. Then for any 1 ≤ i ≤ n,

youngT (i) = RLmin(Di).

Proof. The map ϕ from Pn to Dn−1,n can be described as follows. Let T be a plane
tree in Pn. We proceed to construct a disposition D = (D1, D2, . . . , Dn) through the
following procedure.

First, we mark the vertices of T according to the Prüfer correspondence. More
precisely, we mark the vertices of T by the numbers 0, 1, 2, . . . , n− 1. We start with the
maximum leaf of T , and mark it by n−1. Then we remove the maximum leaf and repeat
the this process until the root is marked by 0. Such marks are called the Prüfer marks of
T , which represent the order that the vertices are removed in the Prüfer correspondence.
For example, Figure 3.2 gives the Prüfer marks of a plane tree, which are represented by
subscripts.

Using the Prüfer marks, the disposition D = (D1, D2, . . . , Dn) can be easily con-
structed by setting Di to be the set of the Prüfer marks of the children of vertex i
endowed with the linear order as in T . For example, for the plane tree T in Figure 3.2,
we have D1 = {4, 6, 10, 7, 16, 12}, D2 = {13, 11}, D3 = {2}, and so on.
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Figure 3.2: A plane tree with Prüfer marks T ∈ P17.

The above map ϕ turns out to be a bijection. The inverse map can be described as
follows. From a disposition D, one can easily recover the Prüfer marks. We begin with
the rightmost empty segment Di, and set the Prüfer mark of i to be n − 1. Then we
remove the empty segment Di and the element n − 1 in the disposition D. Repeating
this procedure we get the Prüfer marks.

For example, for the disposition in Figure 3.3, the rightmost empty segment is D6,
thus, we mark 6 by 5. Deleting D6 and removing 5 from D4, we see that D4 becomes
the rightmost empty segment. So we mark 4 by 4. Iterating this process, we obtain the
marks 65, 44, 33, 12, 51, 20, where the subscripts stand for the marks.

u2
u4 �
�
� u5TTT

u
6

u
3
�
�
� u

1
T
T
T

D1 D2 D3 D4 D5 D6

4,1 5 3,2

⇓ {65, 44, 33, 12, 51, 20}

Figure 3.3: An example of the map ϕ−1 for n = 6.

Using the marks, we may construct the plane tree T by setting the root to be the
element r marked by 0. If Dr is empty, then r must be 1 and T consists of the single
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vertex 1. Otherwise, we assume that Dr = a1a2 · · · at, and assume that ui is marked
by ai. Set the children of r to be u1, u2, . . . , ut, listed from left to right. Repeating the
above process with respect the vertices u1, u2, . . . , ut, we may get plane trees rooted at
u1, u2, . . . , ut, so that we finally obtain a plane tree T on [n].

For example, we consider the disposition from [5] to [6] in Figure 3.3. The Prüfer
marks are 65, 44, 33, 12, 51, 20. Notice that the element 2 is marked by 0, which indicates
that 2 is the root of the corresponding plane tree. The elements in D2 are 4, 1, which are
the marks of 4, 5. Thus, the children of 2 are 4 and 5 (listed from left to right). Now,
D4 contains a single element 5, which is the mark of the element 6. Thus, the only child
of 4 is 6. Repeating this process, we get the plane tree as shown in Figure 3.3.

We now proceed to show that the above map is the inverse of ϕ. It suffices to
prove that the marks obtained from the disposition D are the same as the Prüfer marks
obtained from the plane tree T . Observe that the largest leaf l in a plane tree on [n]
is marked by n − 1. On the other hand, Dl must be the rightmost segment in the
corresponding disposition, and so l is marked by n − 1 as well. We may repeat this
argument for the element marked by n−2, if there is any segment left in the disposition.
Hence we reach the conclusion that the marks obtained from the disposition D are the
same as the marks obtained from the plane tree T .

Next we verify the relation youngT (i) = RLmin(Di), where D = (D1, D2, . . . , Dn) is
the corresponding disposition under the map ϕ. It is not difficult to see that the degree
of a vertex i in T equals the number of elements of Di. Moreover, let Di = a1a2 · · · am
and let u1, u2, . . . , um be the children of i in T . We claim that for 1 ≤ j < k ≤ m,
aj < ak if and only if β(uj) < β(uk). This property follows from the fact that the Prüfer
mark of a vertex is the smallest among all its descendants. Hence we deduce that the
number of younger children of a vertex i in T equals the number of right-to-left minima
of Di. This completes the proof.

It is clear that Theorem 3.1 gives a combinatorial interpretation of the following
relation ∑

T∈Pn

teld(T )

n∏
i=1

x
youngT (i)
i =

∑
D∈Dn−1,n

tgdes(D)

n∏
i=1

x
RLmin(Di)
i . (3.1)

Combining (3.1) and (2.3), we obtain a combinatorial proof of relation (1.2) in answer
to the question posed by Guo and Zeng [2].

Note that the above correspondence can be restricted to plane trees with a specific
root r. More precisely, a disposition D corresponds to a plane tree T with root r if and
only if the element 1 is contained in Dr. This leads to a combinatorial interpretation of
relation (1.3).

It should also be noted that the correspondence in Theorem 3.1 can be extended
to a bijection between dispositions from [n − r] to [n] and forests of r plane trees on
[n]. To be precise, the plane trees in a forest are not linearly ordered. This more
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general correspondence is stated in the following theorem. The proof is similar to that
of Theorem 3.1, and hence it is omitted.

Theorem 3.2 For n ≥ 1 and 1 ≤ r ≤ n − 1, let Dn−r,n denote the set of dispositions
from [n− r] to [n] and let F r

n denote the set of forests of r plane trees on [n]. Then we
have ∑

F∈Fr
n

teld(F )

n∏
i=1

x
youngF (i)
i =

(
n− 1

r − 1

) ∑
D∈Dn−r,n

tgdes(D)

n∏
i=1

x
RLmin(Di)
i , (3.2)

where the elder and younger children in forests of plane trees are defined as in the plane
trees.

To conclude this section, we remark that the correspondence ϕ is also valid for labeled
rooted trees. In this case, we disregard the linear order in each segment of a disposition.
In other words, ϕ becomes a correspondence between labeled rooted trees and decom-
positions of [n − 1] into n components. Under this correspondence, the empty sets in
a decomposition correspond to leaves of a labeled rooted tree, and more generally, the
number of elements in Di corresponds to the degree of the vertex i in the corresponding
rooted tree.

4 The Gessel-Seo polynomials

In this section, we use the correspondence between plane trees and dispositions to give
a combinatorial interpretation of relation (1.4) in answer to a question posed by Guo
and Zeng [2] concerning an expansion of the Gessel-Seo polynomials. In fact, we obtain
a more general relation as given below.

Theorem 4.1 For n ≥ 1 and 1 ≤ r ≤ n+ 1, we have

∑
T∈P(r)

n+1

xyoungT (r)(t− z)eld(T )zn−youngT (r)−eld(T ) = x
n−1∏
k=1

(x+ (n− k)z + kt), (4.1)

where P(r)
n+1 is the set of plane trees on [n+ 1] with root r.

Proof. Replacing t by t+ z, we may rewrite (4.1) as

∑
T∈P(r)

n+1

xyoungT (r)teld(T )zn−youngT (r)−eld(T ) = x
n−1∏
k=1

(x+ nz + kt). (4.2)
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We first give a combinatorial interpretation of the right hand side of (4.2). By the com-
binatorial interpretation of the disposition polynomials, we see that the Gessel-Seo poly-
nomial Pn(t + z, z, x) is the generating function of dispositions D = (D1, D2, . . . , Dn+1)
from [n] to [n + 1] with the element 1 contained in Dr, where a right-to-left minimum
in Dr is given a weight x, a right-to-left minimum in Di (i 6= r) is given a weight z, and
any other element is given a weight t.

For a disposition D = (D1, D2, . . . , Dn+1) in which the element 1 appears in Dr, let
T be the plane tree corresponding to D under the bijection ϕ in Theorem 3.1. It is easily
seen that r is the root of T , namely, T ∈ P(r)

n+1. Moreover, for 1 ≤ i ≤ n + 1, a younger
child of a vertex i of T corresponds to a right-to-left minimum in Di, and an elder child
of a vertex i of T corresponds to an element which is not a right-to-left minimum in Di.
Hence the weight of T is given by

xyoungT (r)teld(T )zn−youngT (r)−eld(T ).

This completes the proof.
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