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Abstract

The generalized k-connectivity κk(G) of a graph G was introduced by Chartrand et al.

in 1984. It is natural to introduce the concept of generalized k-edge-connectivity λk(G). For

general k, the generalized k-edge-connectivity of a complete graph is obtained. For k ≥ 3,

tight upper and lower bounds of κk(G) and λk(G) are given for a connected graph G of order

n, that is, 1 ≤ κk(G) ≤ n − ⌈k

2
⌉ and 1 ≤ λk(G) ≤ n − ⌈k

2
⌉. Graphs of order n such that

κk(G) = n − ⌈k

2
⌉ and λk(G) = n − ⌈k

2
⌉ are characterized, respectively. Nordhaus-Gaddum-

type results for the generalized k-connectivity are also obtained. For k = 3, we study the

relation between the edge-connectivity and the generalized 3-edge-connectivity of a graph.

Upper and lower bounds of λ3(G) for a graph G in terms of the edge-connectivity λ of G

are obtained, that is, 3λ−2

4
≤ λ3(G) ≤ λ, and two graph classes are given showing that the

upper and lower bounds are tight. From these bounds, we obtain λ(G) − 1 ≤ λ3(G) ≤ λ(G)

if G is a connected planar graph, and we also obtain the relation between the generalized

3-connectivity and generalized 3-edge-connectivity of a graph and its line graph.

Keywords: (edge-)connectivity, internally (edge-)disjoint trees, generalized (edge-)connectivity,

planar graph, line graph, complementary graph.
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1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to book [2] for graph

theoretical notation and terminology not described here. The generalized connectivity of a graph

G, introduced by Chartrand et al. in [4], is a natural and nice generalization of the concept of

(vertex-)connectivity. For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-

Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph T = (V ′, E′)

of G that is a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S are internally disjoint if

E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S. For S ⊆ V (G), the generalized local connectivity κ(S)

of S is the maximum number of internally disjoint trees connecting S in G. The generalized k-

connectivity of G, denoted by κk(G), is then defined as κk(G) = min{κ(S)|S ⊆ V (G) and |S| =
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k}. Thus, κ2(G) = κ(G). Set κk(G) = 0 when G is disconnected. Results on the generalized

connectivity can be found in [5, 14, 15, 16, 17, 18, 19, 21].

A natural idea is to introduce the concept of generalized edge-connectivity. For S ⊆ V (G),

the generalized local connectivity λ(S) of S is the maximum number of edge-disjoint Steiner

trees connecting S in G. Then the generalized k-edge-connectivity λk(G) of G is defined as

λk(G) = min{λ(S)|S ⊆ V (G) and |S| = k}. Thus λ2(G) = λ(G). Set λk(G) = 0 when G is

disconnected. In general, the parameters κk and λk are different. Take for example, let G be a

graph obtained from two copies of the complete graph K4 by identifying one vertex in each of

them. One can easily check that λ3(G) = 2 but κ3(G) = 1.

The generalized edge-connectivity is related to an important problem, which is called the

Steiner Tree Packing Problem. For a given graph G and S ⊆ V (G), this problem asks to find

a set of maximum number of edge-disjoint Steiner trees connecting S in G. The difference

between the Steiner Tree Packing Problem and the generalized edge-connectivity is as follows:

The Steiner Tree Packing Problem studies local properties of graphs since S is given beforehand,

but the generalized edge-connectivity focuses on global properties of graphs since it first needs

to find the maximum number λ(S) of edge-disjoint trees connecting S and then S runs over all

k-subsets of V (G) to get the minimum value of λ(S).

The problem for S = V (G) is called the Spanning Tree Packing Problem (Note that the

Steiner Tree Packing Problem is a generalization of the Spanning Tree Packing Problem). For

any graph G of order n, the spanning tree packing number or STP number, is the maximum

number of edge-disjoint spanning trees contained in G. For the spanning tree packing number,

Palmer gave a good survey (see [22]). One can see that the STP number of a graph G is just

κn(G) or λn(G).

In addition to being natural combinatorial measures, the generalized connectivity and gener-

alized edge-connectivity can be motivated by their interesting interpretation in practice as well

as theoretical consideration.

From a theoretical perspective, both extremes of this problem are fundamental theorems in

combinatorics. One extreme of the problem is when we have two terminals. In this case internally

(edge-)disjoint trees are just internally (edge-)disjoint paths between the two terminals, and so

the problem becomes the well-known Menger theorem. The other extreme is when all the vertices

are terminals. In this case internally disjoint trees and edge-disjoint trees are just spanning trees

of the graph, and so the problem becomes the classical Nash-Williams-Tutte theorem (for short

proofs, see [9]).

Theorem 1. (Nash-Williams [20],Tutte [24]) A multigraph G contains a system of k edge-

disjoint spanning trees if and only if

‖G/P‖ ≥ k(|P| − 1)

holds for every partition P of V (G), where ‖G/P‖ denotes the number of edges in G between

distinct blocks of P.

The following corollary is immediate from Theorem 1.
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Corollary 1. Every 2ℓ-edge-connected graph contains a system of ℓ edge-disjoint spanning trees.

Kriesell [11] conjectured that this corollary can be generalized for Steiner trees.

Conjecture 1. (Kriesell [11]) If a set S of vertices of G is 2k-edge-connected (See Section 2

for the definition), then there is a set of k edge-disjoint Steiner trees in G.

Motivated by this conjecture, the Steiner Tree Packing Problem has obtained wide attention

and many results have been worked out, see [10, 11, 12, 13, 25].

The generalized edge-connectivity and the Steiner Tree Packing Problem have applications

in V LSI circuit design, see [7, 8, 23]. In this application, a Steiner tree is needed to share an

electronic signal by a set of terminal nodes. Another application, which is our primary focus,

arises in the Internet Domain. Imagine that a given graph G represents a network. We choose

arbitrary k vertices as nodes. Suppose one of the nodes in G is a broadcaster, and all the other

nodes are either users or routers (also called switches). The broadcaster wants to broadcast as

many streams of movies as possible, so that the users have the maximum number of choices.

Each stream of movie is broadcasted via a tree connecting all the users and the broadcaster.

So, in essence we need to find the maximum number Steiner trees connecting all the users and

the broadcaster, namely, we want to get λ(S), where S is the set of the k nodes. Clearly, it is

a Steiner tree packing problem. Furthermore, if we want to know whether for any k nodes the

network G has the above properties, then we need to compute λk(G) = min{λ(S)} in order to

prescribe the reliability and the security of the network.

For general k, the generalized k-edge-connectivity of a complete graph is obtained. Tight

upper and lower bounds of κk(G) and λk(G) are given for a connected graph G of order n, that

is, 1 ≤ κk(G) ≤ n − ⌈k
2⌉ and 1 ≤ λk(G) ≤ n − ⌈k

2⌉.

By Nash-Williams-Tutte theorem, graphs of order n such that κk(G) = n−⌈k
2⌉ and λk(G) =

n − ⌈k
2⌉ are characterized, respectively. Nordhaus-Gaddum-type results for the generalized k-

connectivity are also obtained in Section 3. For k = 3, we study the relation between the

edge-connectivity and the generalized 3-edge-connectivity of a graph. Kriesell in [11] showed

that for any two natural numbers t, ℓ there exists a smallest natural number fℓ(t) (gℓ(t)) such

that for any fℓ(t)-edge-connected (gℓ(t)-edge-connected) vertex set S of a graph G with |S| ≤ ℓ

(|V (G) − S| ≤ ℓ) there exists a system T of t edge-disjoint trees such that S ⊆ V (T ) for

each T ∈ T . He determined f3(t) = ⌊8t+3
6 ⌋. In Section 4, we use his result to derive a tight

lower bound of λ3(G). We also give a tight upper bound of λk(G). Altogether we get that
3λ−2

4 ≤ λ3(G) ≤ λ. Two graph classes are given showing that the upper and lower bounds are

tight. From these bounds, we obtain two results: one is λ(G) − 1 ≤ λ3(G) ≤ λ(G) if G is a

connected planar graph, the other is the relation between the generalized 3-connectivity and

generalized 3-edge-connectivity of a graph and its line graph.

2 Preliminaries

For a graph G, let V (G), E(G), |G|, ‖G‖, L(G) and G denote the set of vertices, the set of

edges, the order, the size, the line graph and the complement graph of G, respectively. As usual,
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the union of two graphs G and H is the graph, denoted by G∪H, with vertex set V (G)∪V (H)

and edge set E(G)∪E(H). For S ⊆ V (G), we denote by G\S the subgraph obtained by deleting

from G the vertices of S together with the edges incident with them. If S = {v}, we simply

write G \ v for G \ {v}. If S is a subset of vertices of a graph G, the subgraph of G induced by

S is denoted by G[S]. If M is the edge subset of G, then G \M denotes the subgraph obtained

by deleting the edges of M from G. G \ {e} is abbreviated to G \ e. If M is a subset of edges of

a graph G, the subgraph of G induced by M is denoted by G[M ]. We denote by EG[X,Y ] the

set of edges of G with one end in X and the other in Y . If X = {x}, we simply write EG[x, Y ]

for EG[{x}, Y ].

Chartrand et al. in [5] obtained the first result in the generalized connectivity.

Theorem 2. [5] For every two integers n and k with 2 ≤ k ≤ n,

κk(Kn) = n − ⌈k/2⌉.

For distinct vertices x, y in G, let λ(x, y;G) denote the local edge-connectivity of x and y.

S ⊆ V (G) is called n-edge-connected, if λ(x, y;G) ≥ n for all x 6= y in S. In [11], Kriesell gave

the following result.

Lemma 1. [11] Let t ≥ 1 be a natural number, and G be a graph, and let {a, b, c} ⊆ V (G) be

⌊8t+3
6 ⌋-edge-connected in G. Then there exists a system of t edge-disjoint {a, b, c}-trees.

Chartrand et al. [6] investigated the relation between the connectivity and edge-connectivity

of a graph and its line graph.

Lemma 2. [6] If G is a connected graph, then

(1) κ(L(G)) ≥ λ(G) if λ(G) ≥ 2.

(2) λ(L(G)) ≥ 2λ(G) − 2.

(3) κ(L(L(G))) ≥ 2κ(G) − 2.

Palmer [22] gave the STP number of a complete bipartite graph.

Lemma 3. [22] The STP number of a complete bipartite graph Ka,b is ⌊ ab
a+b−1⌋.

3 Results of κk(G) and λk(G) for general k

After the preparation of the above section, we start to give our main results of this paper.

3.1 Results for complete graphs

The following two observations are easily seen.

Observation 1. If G be a connected graph, then κk(G) ≤ λk(G) ≤ δ(G).

Observation 2. If H is a spanning subgraph of G, then κk(H) ≤ κk(G) and λk(H) ≤ λk(G).
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For a general k and the complete graph Kn, κk(Kn) was determined by Chartrand et al.;

see Theorem 2. Now we give the result for λk(Kn).

Choose S ⊆ V (G) with |S| = k. Let T be a maximum set of edge-disjoint trees in G

connecting S. Let T1 be the set of trees in T whose edges belong to E(G[S]), and T2 be the

set of trees containing at least one edge of EG[S, S̄], where S̄ = V (G) \ S. Thus, T = T1 ∪ T2

(Throughout this paper, T , T1, T2 are always defined as this).

Lemma 4. Let S ⊆ V (G), |S| = k and T be a tree connecting S. If T ∈ T1, then T uses k − 1

edges of E(G[S]) ∪ EG[S, S̄]. If T ∈ T2, then T uses at least k edges of E(G[S]) ∪ EG[S, S̄].

Proof. It is easy to see that for each tree T in T1, T uses k − 1 edges in E(G[S]), namely, T

uses k − 1 edges of E(G[S]) ∪ EG[S, S̄].

For T ∈ T2, by deleting all the vertices of T from S̄, we obtain some components of T in

S, denoted by C1, C2, · · · , Cs. Let |Ci| = ci. Then |E(Ci)| = ci − 1 and
∑s

i=1(ci − 1) = k − s.

Since there exists one edge of T between each Ci and S̄, where 1 ≤ i ≤ s, T uses (k− s)+ s = k

edges in E(G[S]) ∪ EG[S, S̄].

Theorem 3. For every two integers n and k with 2 ≤ k ≤ n,

λk(Kn) = n − ⌈k/2⌉.

Proof. Let G = Kn. We choose S ⊆ V (G) such that |S| = k. Let |T | = y and |T1| =

x. From Lemma 4, each tree T ∈ T1 uses k − 1 edges in E(G[S]) ∪ EG[S, S̄], |T1| = x ≤

⌊
(k
2

)

/(k − 1)⌋ = ⌊k
2⌋. Since each tree T ∈ T2 uses k edges in E(G[S]) ∪ EG[S, S̄], we have

|T1|(k − 1) + |T2|k ≤ |EG[S, S̄]| + |E(G[S])|, that is, x(k − 1) + (y − x)k ≤
(k
2

)

+ k(n − k). So

λk(G) ≤ y ≤ k−1
2 + n − k + x

k = n − ⌈k
2⌉ + x

k since x ≤ ⌊k
2⌋ and y is an integer.

From the above arguments, we conclude that λk(Kn) ≤ n − ⌈k
2⌉. Combining this with

Theorem 2 and Observation 1, we have λk(Kn) = n − ⌈k
2⌉.

From Theorems 2 and 3, we get that λk(G) = κk(G) for a complete graph G = Kn. However,

this is a very special case. Actually, λk(G) − κk(G) could be very large. For example, let G be

a graph obtained from two copies of the complete graph Kn by identifying one vertex in each

of them. Then for k < n, λk(G) = n − ⌈k
2⌉, but κk(G) = 1.

3.2 Graphs with κk(G) = n − ⌈k/2⌉ and λk(G) = n − ⌈k/2⌉, respectively

At first, we give the tight bounds for κk(G) and λk(G):

Proposition 1. For a connected graph G of order n and 3 ≤ k ≤ n, 1 ≤ κk(G) ≤ n − ⌈k/2⌉.

Moreover, the upper and lower bounds are tight.

Proof. From Observation 2 and Theorem 2, we have κk(G) ≤ κk(Kn) = n − ⌈k
2⌉. Since G is

connected, then κk(G) ≥ 1. The result holds.

One can easily check that the complete graph Kn attains the upper bound and any tree Tn

on n vertices attains the lower bound.
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The same upper and lower bounds can be established for the generalized k-edge-connectivity.

Proposition 2. For a connected graph G of order n and 3 ≤ k ≤ n, 1 ≤ λk(G) ≤ n − ⌈k/2⌉.

Moreover, the upper and lower bounds are tight.

Next, we will characterize graphs with κk(G) = n − ⌈k
2⌉ and λk(G) = n − ⌈k

2⌉, respectively.

Let us start with some lemmas, which will be used later.

Lemma 5. For an even k with 4 ≤ k ≤ n, λk(Kn \ e) < n − k
2 for any e ∈ E(Kn).

Proof. Let G = Kn \ e. We choose S ⊆ V (G) such that |S| = k and Kn[S] containing e. Let

|T | = y and |T1| = x. Since every tree T ∈ T1 uses k−1 edges in E(G[S])∪EG[S, S̄], |T1| = x ≤
((k

2

)

−1
)

/(k−1) = k
2 −

1
k−1 . From Lemma 4, each tree T ∈ T2 uses k edges of E(G[S])∪EG[S, S̄].

Thus |T1|(k−1)+ |T2|k ≤ |EG[S, S̄]|+ |E(G[S])|, that is, x(k−1)+(y−x)k ≤
(k
2

)

+k(n−k)−1.

So λk(G) = y ≤ k−1
2 + n − k + x−1

k ≤ n − k
2 − 1

k−1 < n − k
2 .

Lemma 6. If k is odd with 3 ≤ k ≤ n, and M is an edge set of the complete graph Kn such

that |M | ≥ k+1
2 , then λk(Kn \ M) < n − k+1

2 .

Proof. Let G = Kn \ M . We can choose S ⊆ V (G) such that |S| = k and |M ∩
(

E(Kn[S]) ∪

EKn
[S, S̄])| ≥ k+1

2 . Let |T | = y and |T1| = x. Since each tree T ∈ T1 uses k − 1 edges

in E(G[S]) ∪ EG[S, S̄], |T1| = x ≤
(k
2

)

/(k − 1) = k−1
2 . From Lemma 4, each tree T ∈ T2

uses k edges of E(G[S]) ∪ EG[S, S̄]. Thus |T1|(k − 1) + |T2|k ≤ |EG[S, S̄]| + |E(G[S])|, that

is, x(k − 1) + (y − x)k ≤
(k
2

)

+ k(n − k) − k+1
2 . So λk(G) = y ≤ k−1

2 + n − k + x
k − k+1

2k ≤

n − k+1
2 − 1

2k < n − k+1
2 .

Lemma 7. If n is odd and M is an edge set of the complete graph Kn such that 0 ≤ |M | ≤ n−1
2 ,

then G = Kn \ M contains n−1
2 edge-disjoint spanning trees.

Proof. Let P =
⋃p

i=1 Vi be a partition of V (G) with |Vi| = ni (1 ≤ i ≤ p), and Ep be the

set of edges between distinct blocks of P in G. The case p = 1 is trivial, thus we assume

p ≥ 2. Then |Ep| ≥
(n
2

)

−
∑p

i=1

(ni

2

)

− |M | ≥
(n
2

)

−
∑p

i=1

(ni

2

)

− n−1
2 . We will show that

(n
2

)

−
∑p

i=1

(ni

2

)

− n−1
2 ≥ n−1

2 (p − 1), that is, (n − p)n−1
2 ≥

∑p
i=1

(ni

2

)

. We only need to prove

that (n − p)n−1
2 ≥ max{

∑p
i=1

(ni

2

)

}. Since f(n1, n2, · · · , np) =
∑p

i=1

(ni

2

)

obtains its maximum

value when n1 = n2 = · · · = np−1 = 1 and np = n − p + 1, we need to show the inequality

(n − p)n−1
2 ≥

(

1
2

)

(p − 1) +
(

n−p+1
2

)

, that is (n − p)p−2
2 ≥ 0. It is easy to see that the inequality

holds. Thus, |Ep| ≥
(n
2

)

−
∑p

i=1

(ni

2

)

− |M | ≥ n−1
2 (p − 1). From Theorem 1, we know that there

exist n−1
2 edge-disjoint spanning trees (Note that we can use the result of Theorem 1, although

Nash-Williams and Tutte considered multigraphs but here we are concerned with the generalized

connectivity and generalized edge-connectivity for simple graphs).

Theorem 4. Let G be a connected graph of order n and k be an integer such that 3 ≤ k ≤ n.

Then κk(G) = n − ⌈k
2⌉ if and only if G = Kn for k even; G = Kn \ M for k odd, where M is

an edge set such that 0 ≤ |M | ≤ k−1
2 .
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Proof. First we consider the case that k is even. From Theorem 2, we have κk(Kn) = n − k
2 .

Actually, the complete graph Kn is the unique graph with this property. We only need to show

that κk(Kn \ e) < n − k
2 for any e ∈ E(Kn). From Lemma 5 and Observation 1, we know that

κk(Kn \ e) ≤ λk(Kn \ e) < n − k
2 for e ∈ E(Kn). Thus, the result holds for k even.

Next we consider the case that k is odd.

Necessity: Let G be a graph of order n such that κk(G) = n − k+1
2 . Since G is connected,

we can consider G as a graph obtained by deleting some edges from the complete graph Kn. If

G = Kn \ M such that |M | ≥ k+1
2 , then κk(Kn \ M) ≤ λk(Kn \ M) < n − k+1

2 by Observation

1 and Lemma 6, a contradiction. Thus, G = Kn \ M , where 0 ≤ |M | ≤ k−1
2 .

Sufficiency: We will show that κk(G) ≥ n − k+1
2 if G = Kn \ M such that 0 ≤ |M | ≤ k−1

2 .

It suffices to prove that κk(G) ≥ n − k+1
2 for |M | = k−1

2 .

Let S = {u1, u2, · · · , uk} ⊆ V (G) and S̄ = {w1, w2, · · · , wn−k}. We have the following two

cases to consider:

Case 1. M ⊆ E(Kn[S]) ∪ E(Kn[S̄]).

Let M ′ = M ∩ E(Kn[S]) and M ′′ = M ∩ E(Kn[S̄]). Then |M ′| + |M ′′| = |M | = k−1
2 and

0 ≤ |M ′|, |M ′′| ≤ k−1
2 . We can consider G[S] as a graph obtained by deleting |M ′| edges from

the complete graph Kk. From Lemma 7, there exist k−1
2 edge-disjoint spanning trees in G[S].

Actually, these k−1
2 edge-disjoint trees are all trees connecting S in G[S]. All these trees together

with the trees Ti = wiu1∪wiu2∪· · ·∪wiuk (1 ≤ i ≤ n−k) form n− k+1
2 internally disjoint trees

connecting S, namely, κ(S) ≥ n − k+1
2 (Note that the trees connecting S can be edge-disjoint

in G[S], but must be internally disjoint in G \ S).

Case 2. M * E(Kn[S]) ∪ E(Kn[S̄]).

In this case, there exist some edges of M in EKn
[S, S̄]. Let M ′ = M ∩ E(Kn[S]) and

M ′′ = M ∩ E(Kn[S̄]), and let |M ′| = m1 and |M ′′| = m2. Clearly, 0 ≤ mi ≤
k−3
2 (i = 1, 2).

For wi ∈ S̄, we let |EKn[M ][wi, S]| = xi, where 1 ≤ i ≤ n − k. Without loss of generality, let

x1 ≥ x2 ≥ · · · ≥ xn−k. Thus
∑n−k

i=1 xi + m1 + m2 = k−1
2 and |EG[wi, S]| = k − xi.

Our basic idea is to seek for some edges in G[S], and let them together with the edges of

EG[S, S̄] form n − k internally disjoint trees connecting S.

For w1 ∈ S̄, without loss of generality, let S1 = {u1, u2, · · · , ux1
} such that ujw1 ∈ M (1 ≤

j ≤ x1) and S2 = S \S1 = {ux1+1, ux1+2, · · · , uk}. Clearly, S = S1 ∪ S2 and ujw1 ∈ E(G) (x1 +

1 ≤ j ≤ k), namely, S2 = NG(w1) ∩ S. One can see that the tree T ′
1 = w1ux1+1 ∪ w1ux1+2 ∪

· · · ∪ w1uk is a Steiner tree connecting S2. Our idea is to seek for x1 edges in EG[S1, S2] and

add them to T ′
1 to form a Steiner tree connecting S. For each uj ∈ S1 (1 ≤ j ≤ x1), we claim

that |EG[uj, S2]| ≥ 1. Otherwise, let |EG[uj, S2]| = 0. Then |EKn[M ][uj , S2]| = k − x1 and

|M | ≥ |EKn[M ][uj , S2]| + dKn[M ](w1) ≥ (k − x1) + x1 = k, which contradicts to |M | = k−1
2 .

Since |EG[uj , S2]| ≥ 1 for each uj (1 ≤ j ≤ x1), we can find a vertex ur (x1 + 1 ≤ r ≤ k) such

that e1j = ujur ∈ E(G[S]). Let M1 = {e11, e12, · · · , e1x1
} and G1 = G \ M1. Thus the tree

T1 = w1ux1+1 ∪ w1ux1+2 ∪ · · · ∪ w1uk ∪ e11 ∪ e12 ∪ · · · ∪ e1x1
is our desired one.

For w2 ∈ S̄, without loss of generality, let S1 = {u1, u2, · · · , ux2
} such that ujw2 ∈ M (1 ≤

j ≤ x2) and S2 = S \S1 = {ux2+1, ux2+2, · · · , uk}. Clearly, S = S1 ∪ S2 and ujw2 ∈ E(G) (x2 +
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1 ≤ j ≤ k), namely, S2 = NG(w2) ∩ S. One can see that the tree T ′
2 = w2ux2+1 ∪ w2ux2+2 ∪

· · · ∪ w2uk is a Steiner tree connecting S2. Our idea is to seek for x2 edges in EG1
[S1, S2] and

add them to T ′
2 to form a Steiner tree connecting S. For each uj ∈ S1 (1 ≤ j ≤ x2), we claim

that |EG1
[uj, S2]| ≥ 1. Otherwise, we let |EG1

[uj , S2]| = 0. For e /∈ EG1
[uj , S2], e ∈ M or

e ∈ M1 = {e11, e12, · · · , e1x1
}. Then |EKn[M ][uj , S2]| ≥ k−x2 −x1 and |M | ≥ |EKn[M ][uj , S2]|+

dKn[M ](w1) + dKn[M ](w2) ≥ (k − x2 − x1) + x1 + x2 = k, which contradicts to |M | = k−1
2 . Since

|EG1
[uj , S2]| ≥ 1 for each uj (1 ≤ j ≤ x2), we can find a vertex ur (x2 + 1 ≤ r ≤ k) such

that e2j = ujur ∈ E(G1[S]). Let M2 = {e21, e22, · · · , e2x2
} and G2 = G1 \ M2. Thus the tree

T2 = w2ux2+1 ∪ w2ux2+2 ∪ · · · ∪ w2uk ∪ e21 ∪ e22 ∪ · · · ∪ e2x2
is our desired tree. Clearly, T2 and

T1 are two edge-disjoint trees connecting S.

For wi ∈ S̄ (3 ≤ i ≤ n − k), without loss of generality, let S1 = {u1, u2, · · · , uxi
} such

that ujwi ∈ M (1 ≤ j ≤ xi) and S2 = S \ S1 = {uxi+1, uxi+2, · · · , uk}. Clearly, S = S1 ∪ S2

and wiuj ∈ E(G) (xi + 1 ≤ j ≤ k), namely, S2 = NG(wi) ∩ S. One can see the tree T ′
i =

wiuxi+1 ∪ wiuxi+2 ∪ · · · ∪ wiuk is a Steiner tree connecting S2. Our idea is to seek for xi

edges in EGi−1
[S1, S2] and add them to T ′

i to form a Steiner tree connecting S. For each

uj ∈ S1 (1 ≤ j ≤ xi), we claim that |EGi−1
[uj , S2]| ≥ 1. Otherwise, let |EGi−1

[uj , S2]| = 0. For

e /∈ EGi−1
[uj , S2], we have that e ∈ M or e ∈

⋃i−1
r=1 Mr. Then |EKn[M ][uj, S2]| ≥ k−xi−

∑i−1
r xr

and |M | ≥ |EKn[M ][uj , S2]| +
∑i

r dKn[M ](wr) ≥ (k −
∑i

r xr) +
∑i

r xr = k, which contradicts

to |M | = k−1
2 . Since |EGi−1

[uj , S2]| ≥ 1 for each uj (1 ≤ j ≤ xi), we can find a vertex

ur (xi + 1 ≤ r ≤ k) such that eij = ujur ∈ E(Gi−1[S]). Let Mi = {ei1, ei2, · · · , eixi
} and

Gi = Gi−1 \ Mi. Thus the tree Ti = wiuxi+1 ∪ wiuxi+2 ∪ · · · ∪ wiuk ∪ ei1 ∪ ei2 ∪ · · · ∪ eixi
is our

desired one (Note that if xi = 0 then we do not need to search for some edges of E(Gi−1[S])

and Ti = wiu1 ∪wiu2 ∪ · · · ∪wiuk is our desired tree). Clearly, Ti and Tj (1 ≤ j ≤ i− 1) are two

edge-disjoint trees connecting S.

We continue this procedure until we find out n− k trees connecting S, say T1, T2, · · · , Tn−k.

Now we terminate this procedure. Clearly, we can consider Gn−k[S] = G[S] \
⋃n−k

i=1 Mi as

a graph obtained by deleting |M ′| +
∑n−k

i=1 |Mi| edges from the complete graph Kk. Since
∑n−k

i=1 xi + m1 + m2 = k−1
2 , we have 1 ≤

∑n−k
i=1 |Mi| + m1 ≤ k−1

2 . From Lemma 7, there exist
k−1
2 edge-disjoint trees connecting S in G[S] (Note that these trees can be edge-disjoint by the

definition of generalized k-connectivity). These trees together with T1, T2, · · · , Tn−k form n− k+1
2

internally disjoint trees connecting S, namely, κ(S) ≥ n − k+1
2 .

From the above discussion, we get that κ(S) ≥ n − k+1
2 for S ⊆ V (G), which implies that

κk(G) ≥ n − k+1
2 . From this together with Proposition 1, we have κk(G) = n − k+1

2 .

Theorem 5. For a connected graph G of order n and n ≥ k ≥ 3, λk(G) = n − ⌈k
2⌉ if and only

if G = Kn for k even; G = Kn \M for k odd, where M is an edge set such that 0 ≤ |M | ≤ k−1
2 .

Proof. First we consider the case that k is even. From Proposition 2 and Lemma 5, we have

that λk(Kn) = n − k
2 if and only if G = Kn.

Next we consider the case that k is odd. If G = Kn \ M (0 ≤ |M | ≤ k−1
2 ), then λk(G) ≥

κk(G) = n − k+1
2 by Observation 1 and Theorem 4. From this together with Proposition 2, we

know that λk(G) = n − k+1
2 . Conversely, assume that λk(G) = n − k+1

2 . Since G is connected,
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we can consider G as a graph obtained by deleting some edges from the complete graph Kn. If

G = Kn \ M such that |M | ≥ k+1
2 , then λk(G) < n − k+1

2 by Lemma 6, a contradiction. So

G = Kn \ M , where 0 ≤ |M | ≤ k−1
2 .

Remark 1. The graphs with κk(G) = n − ⌈k
2⌉ or λk(G) = n − ⌈k

2⌉ has been characterized by

Theorems 4 and 5. A natural question is, for the lower bounds, whether we can characterize the

graphs with κk(G) = 1 or λk(G) = 1. It seems not easy to solve such a problem. Note that the

minimal graphs with κk(G) = 1 or λk(G) = 1 are the trees of order n. So, an interesting problem

could be what is the maximal graphs with κk(G) = 1 or λk(G) = 1 ? Actually, one can check

that a connected graph G obtained from the complete graph Kn−1 by attaching a pendant edge

is a such graph, which is obviously a unique maximum such graph. However, to characterize all

the maximal graphs is left unsolved. Here maximal (minimal) means that adding (deleting) any

edge with destroy κk(G) = 1 or λk(G) = 1, whereas maximum means a such graph that has the

largest number of edges.

3.3 Nordhaus-Gaddum-type results

Alavi and Mitchem in [1] considered the Nordhaus-Gaddum-type results for the connectivity

and edge-connectivity. We are concerned with analogous inequalities involving the generalized

k-connectivity.

Theorem 6. For any graph G of order n, we have

(1) 1 ≤ κk(G) + κk(G) ≤ n − ⌈k/2⌉;

(2) 0 ≤ κk(G) · κk(G) ≤ [n−⌈k/2⌉
2 ]2.

Moreover, the upper and lower bounds are tight.

Proof. (1) To avoid confusion, we denote the generalized local connectivity of a k-subset S in

a graph G by κ(G;S). Since G ∪ G = Kn, for any k-subset S we have κ(G;S) + κ(G;S) ≤

κ(Kn;S). Suppose that κk(Kn) = κ(Kn;S0) for some k-subset S0. Then we have κk(Kn) =

κ(Kn;S0) ≥ κ(G;S0)+κ(G;S0) ≥ κk(G)+κk(G). This together with κk(Kn) = n−⌈k
2⌉ results

in κk(G) + κk(G) ≤ n − ⌈k
2⌉. If κk(G) + κk(G) = 0, then κk(G) = κk(G) = 0. Thus G and G

are all disconnected, which is impossible. So κk(G) + κk(G) ≥ 1.

(2) It follows immediately from (1).

To see that the lower bound of (1) is tight, it suffices to take G as the complete bipartite

graph K1,n−1 since κk(K1,n−1) + κk(K1,n−1) = 1 + 0 = 1.

The following observation indicates the graphs attaining the lower bound of (2).

Observation 3. κk(G) · κk(G) = 0 if and only if G or G is disconnected.

We construct a graph class to show that the two upper bounds of are tight for k = n.

Example 3. Let n, r be two positive integers such that n = 4r + 1. From Lemma 3, we know

that κn(K2r,2r+1) = λn(K2r,2r+1) = r. Let E be the set of the edges of these r spanning trees
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in K2r,2r+1. Then there exist 2r(2r + 1) − 4r2 = 2r remaining edges in K2r,2r+1 except the

edges in E . Let M be the set of these 2r edges. Set G = K2r,2r+1 \ M . Then κn(G) = r,

M ⊆ E(G) and G is a graph obtained from two cliques K2r and K2r+1 by adding 2r edges in

M between them, that is, one end of each edge belongs to K2r and the other belongs to K2r+1.

Note that E(G) = E(K2r) ∪ M ∪ E(K2r+1). Now we show that κn(G) ≥ r. As we know, K2r

contains r Hamiltonian paths, say P1, P2, · · · , Pr, and so does K2r+1, say P ′
1, P

′
2, · · · , P ′

r. Pick

up r edges from M , say e1, e2, · · · , er, let Ti = Pi ∪ P ′
i ∪ ei(1 ≤ i ≤ r). Then T1, T2, · · · , Tr

are r spanning trees in G, namely, κn(G) ≥ r. Since |E(G)| =
(2r

2

)

+
(2r+1

2

)

+ 2r = 4r2 + 2r

and each spanning tree uses 4r edges, these edges can form at most ⌊4r2+2r
4r ⌋ = r spanning

trees, that is, κn(G) ≤ r. So κn(G) = r. Clearly, κn(G) + κn(G) = 2r = n−1
2 = n − ⌈n

2 ⌉ and

κn(G) · κn(G) = r2 =
[n−⌈n/2⌉

2

]2
.

Remark 2. The above example only shows that the upper bound of (2) in Theorem 6 is tight

for the case k = n. A natural question is to find examples showing that the upper bounds of

Theorem 6 are tight for each k with 3 ≤ k < n. Note that the complete graph G = Kn can

attain the upper bound of (1), but clearly G is disconnected. Therefore, when we require that

both G and G are connected, is there a graph which can attain the upper bounds of Theorem

6 respectively or simultaneously for each k with 3 ≤ k ≤ n ?

4 Results for λ3(G) and κ3(G)

4.1 Upper and lower bounds for λ3(G)

From now on, we focus our attention on the generalized 3-edge-connectivity. From Propo-

sition 2, we obtained tight upper and lower bounds of λ3(G), that is, 1 ≤ λ3(G) ≤ n − 2.

Now we give another tight upper and lower bounds of λ3(G) by the edge-connectivity, that is,
3λ−2

4 ≤ λ3(G) ≤ λ, which will be used in planar graph and line graph. At first we give a tight

upper bound for λk(G).

Proposition 3. For any graph G of order n, λk(G) ≤ λ(G). Moreover, the upper bound is

tight.

Proof. Let M be a λ(G)-edge-cut of G, where 1 ≤ λ(G) ≤ n − 1. Then G \ M has exactly two

components. We can choose S = {v1, v2, · · · , vk} so that S ⊆ V (G) and at least two of the k

vertices are in different components. Thus any tree connecting S must contain an edge in M .

By the definition of λ(S), we get λ(S) ≤ |M |. So λk(G) ≤ λ(S) ≤ |M | = λ(G).

Furthermore, we will show that the graph G = Kk ∨ (n − k)K1 (n ≥ 3k) satisfies that

κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k (see Figure 1).

Let W = {w1, w2, · · · , wk}, U = Kk \ W = {u1, u2, · · · , un−k}, and S be a k-subset of

vertices of G. Without loss of generality, let |S ∩ V (U)| = s (s ≤ k). Then |S ∩ V (W )| = k − s.

Without loss of generality, let ui ∈ S (1 ≤ i ≤ s) and wj ∈ S (1 ≤ j ≤ k − s). Then the

trees Ti = wiu1 ∪ wiu2 ∪ · · · ∪ wius ∪ uk+iw1 ∪ uk+iw2 ∪ · · · ∪ uk+iwk−s(i = 1, 2, · · · , k − s) and

Tj = wju1 ∪wju2 ∪ · · · ∪wjus ∪wjw1 ∪wjw2 ∪ · · · ∪wjwk−s (j = k− s+1, k− s+2, · · · , k) form

k pairwise edge-disjoint trees connecting S, namely λ(S) ≥ k. Combining this with λk(G) ≤
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Kk

u1 u2 us uk

w1 w2 wk−s wk

uk+1 uk+2u2k−s un−k

u1

u2

u3

uk
uk+1

uk+2

un−k

u2k

Figure 1: Graph G with κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k.

λ(G) = k, we get λk(G) = k. Since the above k trees are also internally disjoint trees connecting

S, we have κk(G) = k. So κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k. Clearly, the upper

bound of Proposition 3 is tight.

Next we give a tight lower bound for λ3(G).

Proposition 4. Let G be a connected graph with n vertices. For every two integers s and r

with s ≥ 0 and r ∈ {0, 1, 2, 3}, if λ(G) = 4s + r, then λ3(G) ≥ 3s + ⌈ r
2⌉. Moreover, the lower

bound is tight. We simply write λ3(G) ≥ 3λ−2
4 .

Proof. Let λ = ⌊8t+3
6 ⌋. From Lemma 1, we have λ3(G) ≥ t (Note that we can use the result of

Lemma 1, although Kriesell [11] considered graphs containing multiple edges but here we are

concerned with the generalized edge-connectivity for simple graphs).

If λ = 4s, since 8t+3
6 is not an integer, then 4s < 8t+3

6 . Thus λ3(G) ≥ t > 3s − 3
8 , which

implies λ3(G) ≥ 3s. With a similar method, we can obtain that λ3(G) ≥ 3s + 1 if λ = 4s + 1,

and λ3(G) ≥ 3s + 2 if λ = 4s + 3.

Note that there exists no integer t such that 4s + 2 = ⌊8t+3
6 ⌋ if λ = 4s + 2. But a graph G

with λ(G) = 4s + 2 is also (4s + 1)-edge-connected, and so we have λ3(G) ≥ 3s + 1.

λ3(G) ≥











3s if λ = 4s,

3s + 2 if λ = 4s + 3,

3s + 1 if λ = 4s + 1 or λ = 4s + 2.

So the result holds. Simply, we write λ3(G) ≥ 3λ−2
4 .

Now we give graphs attaining the lower bound.

For λ = 4s with s ≥ 1, we construct a graph G as follows (see Figure 2 (a)): Let P = X1∪X2

and Q = Y1 ∪Y2 be two cliques with |X1| = |Y1| = 2s and |X2| = |Y2| = 2s. Let u, v be adjacent

to every vertex in P,Q, respectively, and w be adjacent to every vertex in X1 and Y1. Finally,

we finish the construction of the graph G by adding a perfect matching between X2 and Y2. It

can be easily checked that λ = 4s.

We consider the case S = {u, v,w}. There exist two kinds of edge-disjoint trees connecting

S (see Figure 2 (b)): the tree of Type I is a path u-v1-w-v2-v; the tree of Type II is T1 or T2,

where T1 = uv5 ∪ v3v5 ∪ wv3 ∪ v5v7 ∪ v7v and T2 = uv6 ∪ v6v8 ∪ v8v4 ∪ v4w ∪ v8v, respectively.

We denote the numbers of trees of Type I and Type II by x and y, respectively. Note that
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u

w

v

X1

X2

Y1

Y2

P Q

u

w

v

X1

X2

Y1

Y2

P Q
v1

v4
v3

v2

v5 v7

v6 v8

Type I

Type II

Figure 2 (a): The graph with λ(G) = 4s and λ3(G) = 3s.

Figure 2 (b): Two types of trees connecting {u, v,w}.

|EG[w,X1 ∪Y1]| = 4s and each tree of Type I uses two edges of EG[w,X1 ∪Y1], we have x ≤ 2s.

Although each tree of Type II uses one edge of EG[w,X1∪Y1], we have y ≤ 2s since each tree of

Type II uses one edge of EG[X2, Y2] and |EG[X2, Y2]| = 2s. Combining these with 2x + y ≤ 4s,

we can derive the optimal solution x = s and y = 2s by solving the following integer linear

programming:










Maximize : x + y

Subject to : x ≤ 2s, y ≤ 2s, 2x + y ≤ 4s,

and x, y ≥ 0.

Thus λ(S) ≥ 3s. We can check that for any other three vertices of G the number of edge-disjoint

trees connecting them is not less than 3s. So λ3(G) = 3s and the graph G attaining the lower

bound.

For λ = 4s + 1, let |X1| = |Y1| = 2s + 1 and |X2| = |Y2| = 2s; for λ = 4s + 2, let

|X1| = |Y1| = 2s + 1 and |X2| = |Y2| = 2s + 1; for λ = 4s + 3, let |X1| = |Y1| = 2s + 2 and

|X2| = |Y2| = 2s + 1, where s ≥ 1. Similarly, we can check that λ3(G) = 3s + 1 for λ = 4s + 1;

λ3(G) = 3s + 1 for λ = 4s + 2; λ3(G) = 3s + 2 for λ = 4s + 3.

For the case s = 0, we have G = Pn such that λ(G) = λ3(G) = 1; G = Cn such that

λ(G) = 2 and λ3(G) = 1; G = Ht such that λ(G) = 3 and λ3(G) = 2, where Ht denotes the

graph obtained from t copies of K4 by identifying a vertex from each of them in the way shown

in Figure 3.

Figure 3: λ(Ht) = 3, λ3(Ht) = 2.

As we know, every planar graph G has a vertex of degree at most 5, i.e., δ(G) ≤ 5. Since

λ(G) ≤ δ, we only need to consider a planar graph G with edge-connectivity λ(G) at most 5.

From Proposition 4, it can be deduced that for any graph (not necessarily planar) if λ(G) = 1,
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λ3(G) = 1; if λ(G) = 2, λ3(G) ≥ 1; if λ(G) = 3, λ3(G) ≥ 2; if λ(G) = 4, λ3(G) ≥ 3; and if

λ(G) = 5, λ3(G) ≥ 4. Therefore, the following corollary is obvious.

Corollary 2. If G is a connected planar graph, then λ(G) − 1 ≤ λ3(G) ≤ λ(G).

4.2 Results for line graphs

This section investigate the relation between the generalized 3-connectivity and generalized

3-edge-connectivity of a graph and its line graph.

Proposition 5. If G is a connected graph, then

(1) λ3(G) ≤ κ3(L(G)).

(2) λ3(L(G)) ≥ 3
2λ3(G) − 2.

(3) κ3(L(L(G)) ≥ 3
2κ3(G) − 2.

Proof. For (1), let e1, e2, e3 be three arbitrary distinct vertices of the line graph of G such that

λ3(G) = t with t ≥ 1. Let e1 = v1v
′
1, e2 = v2v

′
2 and e3 = v3v

′
3 be those edges of G corresponding

to the vertices e1, e2, e3 in L(G), respectively.

Consider three distinct vertices of the six end-vertices of e1, e2, e3. Without loss of generality,

let S = {v1, v2, v3} be three distinct vertices. Since λ3(G) = t, there exist t edge-disjoint trees

T1, T2, · · · , Tt connecting S in G. We define a minimal tree T connecting S as a tree connecting

S whose subtree obtained by deleting any edge of T does not connect S.

v1 v2 v3

v1

v1

v1

v1
v1

v2 v3

v2
v3

v3v3

v3

v2

v2

v2
v3

xx xy y

x

Type a Type b Type c

Type eType d Type f

Figure 4: Six possible types of Ti ∪ Tj .

Choosing any two edge-disjoint minimal trees Ti and Tj (1 ≤ i, j ≤ t) connecting S in G,

we will show that the trees T ′
i and T ′

j corresponding to Ti and Tj in L(G) are internally disjoint

trees. It is easy to see that Ti ∪ Tj has six possible types, as shown in Figure 4. Since Ti and

Tj are edge-disjoint in G, we can find internally disjoint trees T ′
i and T ′

j connecting e1, e2, e3 in

L(G). We give an example of Type c, see Figure 5. So κ3(L(G)) ≥ t and we know that the

result holds.

For (2), from Propositions 3 and 4 and (2) of Lemma 2 we have that λ3(L(G)) ≥ 3
4λ(L(G))−

1
2 ≥ 3

4 (2λ(G) − 2) − 1
2 = 3

2λ(G) − 2 ≥ 3
2λ3(G) − 2.
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v1
v2 v3

e1

e2

e3

(a)

v1
v2 v3

e1

e2

e3

(b)

Ti Tj Tj
Ti

Figure 5 (a): An example for Ti and Tj connecting S and their line graphs.

Figure 5 (b): An example for T ′
i and T ′

j corresponding to Ti and Tj .

For (3), from (1) and (2) of this proposition and Observation 1 we have that κ3(L(L(G))) ≥

λ3(L(G)) ≥ 3
2λ3(G) − 2 ≥ 3

2κ3(G) − 2.

One can check that (1) of this proposition is tight since G = Cn can attain this bound.

Let L0(G) = G and L1(G) = L(G). Then for k ≥ 2, the k-th iterated line graph Lk(G)

is defined by L(Lk−1(G)). The next statement follows immediately from Proposition 5 and a

routine application of recursions.

Corollary 3. λ3(L
k(G)) ≥ (3

2 )k(κ3(G) − 4) + 4, and κ3(L
k(G)) ≥ (3

2 )⌊
k

2
⌋(κ3(G) − 4) + 4.
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