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Abstract

The problem of determining the smallest number of edges, h(n;κ ≥ r), which
guarantees that any graph with n vertices and h(n;κ ≥ r) edges will contain a pair of
vertices joined by r internally disjoint paths was posed by Erdös and Gallai. Bollobás
considered the problem of determining the largest number of edges f(n;κ ≤ `) for
graphs with n vertices and local connectivity at most `. One can see that f(n;κ ≤
`) = h(n;κ ≥ ` + 1) − 1. These two problems had received a wide attention of many
researchers in the last few decades. In the above problems, only pairs of vertices
connected by internally disjoint paths are considered. In this paper, we study the
number of internally disjoint Steiner trees connecting sets of vertices with cardinality
at least 3.
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ity, generalized local connectivity.
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1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book

[5] for graph theoretical notation and terminology not described here. We call the number

of vertices in a graph as the order of the graph and the number of edges of it as its size. For

two distinct vertices in a connected graph G, we can connect them by a path. Two paths

are called internally disjoint if they have no common vertex except the end vertices. For any

two distinct vertices x and y in G, the local connectivity κG(x, y) is the maximum number

of internally disjoint paths connecting x and y. Then min{κG(x, y)|x, y ∈ V (G), x 6= y} is
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usually the connectivity of G. In contrast to this parameter, κ(G) = max{κG(x, y)|x, y ∈
V (G), x 6= y}, introduced by Bollobás, is called the maximum local connectivity of G. The

problem of determining the smallest number of edges, h(n; κ ≥ r), which guarantees that

any graph with n vertices and h(n; κ ≥ r) edges will contain a pair of vertices joined by r

internally disjoint paths was posed by Erdös and Gallai, see [1] for details.

Bollobás [2] considered the problem of determining the largest number of edges, f(n; κ ≤
`), for graphs with n vertices and local connectivity at most `, that is, f(n; κ ≤ `) =

max{e(G)||V (G)| = n and κ(G) ≤ `}. Motivated by determining the precise value of

f(n; κ ≤ `), this problem has obtained wide attention and many results have been worked

out, see [2, 3, 4, 7, 8, 9, 16, 17, 18]. One can see that h(n; κ ≥ ` + 1) = f(n; κ ≤ `) + 1.

For κ ≤ `, it was showed that f(n; κ ≤ `) ≥ b `+1
2

(n−1)c. Since f(n; κ ≤ `) = b `+1
2

(n−1)c
for ` = 2, 3, Bollobás and Erdös conjectured that the equality holds, but this was disproved

by Leonard [7] for ` = 4, and later Mader [16] constructed graphs disproving it for every

` ≥ 4.

For a graph G(V, E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or an

Steiner tree connecting S (or simply, an S-tree) is a such subgraph T (V ′, E ′) of G that is

a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S are said to be internally

disjoint if E(T ) ∩ E(T ′) = ∅ and V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2,

the generalized local connectivity κG(S) is the maximum number of internally disjoint trees

connecting S in G. The generalized connectivity, introduced by Chartrand et al. in 1984

[6], is defined as κk(G) = min{κ(S)|S ⊆ V (G), |S| = k}. There have been many results

on the generalized connectivity, see [10, 11, 12, 13, 14]. Similar to the classical maximal

local connectivity, we introduce another parameter κk(G) = max{κ(S)|S ⊆ V (G), |S| = k},
which is called the maximum generalized local connectivity of G. It is easy to check that

0 ≤ κk(G) ≤ κk(Kn) ≤ n− dk/2e for a connected graph G.

In this paper, we mainly study the problem of determining the largest number of edges,

f(n; κk ≤ `), for graphs with n vertices and maximum generalized local connectivity at most

`, where 0 ≤ ` ≤ n− dk/2e. That is, f(n; κk ≤ `) = max{e(G)||V (G)| = n and κk(G) ≤ `}.
We also study the smallest number of edges, h(n; κk ≥ r), which guarantees that any graph

with n vertices and h(n; κk ≥ r) edges will contain a set S of k vertices such that there

are r internally disjoint S-trees, where 0 ≤ r ≤ n − dk/2e. It is not difficult to see that

h(n; κk ≥ ` + 1) = f(n; κk ≤ `) + 1 for 0 ≤ ` ≤ n − dk/2e. For k = 3 and ` = 2, we prove

that f(n; κ3 ≤ 2) = 2n − 3 for n ≥ 3 and n 6= 4, and f(n; κ3 ≤ 2) = 2n − 2 for n = 4.

Furthermore, we characterize the graphs attaining these values. For k = 3 and a general `,

we construct some graphs to show that f(n; κ3 ≤ `) ≥ `+2
2

(n− 2) + 1
2

for both n and ` odd,

and f(n; κ3 ≤ `) ≥ `+2
2

(n− 2) + 1 otherwise.
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2 Some basic results

As usual, the union of two graphs G and H is the graph, denoted by G∪H, with vertex

set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The disjoint union of k copies of the same

graph G is denoted by kG. The join G∨H of two disjoint graphs G and H is obtained from

G ∪H by joining each vertex of G to every vertex of H.

In this section, we first introduce a graph operation and two graph classes.

Let H be a connected graph, and u a vertex of H. We define the attaching operation at

the vertex u on H as follows: (1) identifying u and a vertex of a K4; (2) u is attached with

only one K4. The vertex u is called an attaching vertex.

H
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H
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r

H
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r
H
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r
H

6

r
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7

r

Figure 1. The graph class Gn.

Now, we introduce two new graph classes. For r ≥ 3, Gr = {H1
r , H2

r , H3
r , H4

r , H5
r , H6

r , H7
r }

is a class of graphs of order r (see Figure 1 for details). Let Hi
n (1 ≤ i ≤ 7) be the class

of graphs, each of them is obtained from a graph H i
r by the attaching operation at some

vertices of degree 2 on H i
r, where 3 ≤ r ≤ n and 1 ≤ i ≤ 7 (note that H i

n ∈ Hi
n). G∗n is

another class of graphs that contains Gn, given as follows: G∗3 = {K3}, G∗4 = {K4, K4 \ e},
G∗5 = {G1} ∪ (

⋃7
i=1Hi

5), G∗6 = {G3, G4} ∪ (
⋃7

i=1Hi
6), G∗7 =

⋃7
i=1Hi

7, G∗8 = {G2} ∪ (
⋃7

i=1Hi
8),

G∗n =
⋃7

i=1Hi
n for n ≥ 9 (see Figure 2 for details).

It is easy to see that the following three observations hold.

Observation 1. Let G and H be two connected graphs, and H ′ be a subdivision of H. If H ′

is a subgraph of G and κ3(H) ≥ 3, then κ3(G) ≥ 3.
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G1 G2 G3
G4

Figure 2. Some graphs in G∗n.

Observation 2. Let H be a graph, u and v be two vertices in H, and G be a graph obtained

from H by attaching a K4 at u. If there are three internally disjoint paths between u and v

in H, then κ3(G) ≥ 3.

Observation 3. For each graph in Figure 3, κ3 ≥ 3.

(a) A1 (c) A3

(d) A4

x

(b) A2

(e) A5
(f) A6

x x

x x

x

Figure 3. Graphs obtained from H1
5 and H3

5 .

Lemma 1. Let G be a graph containing a clique K4. If there exists a path connecting two

vertices of K4 in G \ E[K4], then κ3(G) ≥ 3.

Proof. Let K4 be a complete subgraph of G with vertex set {u1, · · · , u4}, and P be a path

connecting u1 and u2 in G \ E[K4]. It suffices to show that there exists a set S such that

κ(S) ≥ 3. Choose S = {u1, u2, u3}, clearly, T1 = u1u2 ∪ u1u3 and T2 = u4u1 ∪ u4u2 ∪ u4u3

and T3 = P ∪ u2u3 form three internally disjoint S-trees. Thus, κ3(G) ≥ 3.

Similarly, the following lemma holds.

Lemma 2. Let G be a graph obtained from H4
5 by adding a vertex x and two edges xy, xz,

where y, z ∈ V (H4
5 )(see Figure 4). Then κ3(G) ≥ 3 or G = H5

6 .
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(a) B1 (c) B3(b) B2

(d) B4 (f) B6(e) B5

x

x

xx

x

x

Figure 4. Graphs obtained from H4
5 by adding a vertex of degree 2.

Lemma 3. For any connected graph G with order 5 and size 8, κ3(G) ≥ 3.

Proof. We claim that 2 ≤ δ(G) ≤ 3. In fact, if δ(G) = 1, without loss of generality, let

d(x) = 1, then |V (G − x)| = 4 and e(G − x) = 7, a contradiction. If δ(G) ≥ 4, then

16 = 2e(G) ≥ 5δ ≥ 20, a contradiction.

If δ(G) = 2, without loss of generality, let d(x) = 2, then |V (G−x)| = 4 and e(G−x) = 6,

which implies that G− x is a clique of order 4. From Lemma 1, κ3(G) ≥ 3. So we suppose

that δ(G) = 3. Since |V (G)| = 5, ∆(G) ≤ 4. Since 2e(G)
|V (G)| = 16

5
, there exists a vertex x in

G such that d(x) = 4. Set NG(x) = {u1, u2, u3, u4}. Since δ(G − x) ≥ 2 and e(G − x) = 4,

G− x is a cycle of order 4. Then G is a wheel of order 5 and the trees T1 = xu2 ∪ xu4 and

T2 = u3x∪u3u2∪u3u4 and T3 = u1x∪u1u4∪u1u2 form 3 internally disjoint {x, u2, u4}-trees,
namely, κ3(G) ≥ 3.

Lemma 4. For any connected graph G of order 5 and size 7, κ3(G) ≤ 2 and G ∈ {G1, H
1
5 , H

3
5 ,

H4
5}.

Proof. For each S ⊆ V (G) with |S| = 3, a tree with two edges connecting S is called Type

I, and the others with at least 3 edges are called Type II. One can see that three internally

disjoint trees connecting S will use at least 8 edges since we only have one tree of Type I.

So if G is a connected graph of order 5 and size 7, then κ3(G) ≤ 2.

Suppose that δ(G) ≥ 3. Then 14 = 2e(G) ≥ 5δ ≥ 15, a contradiction. Thus, δ(G) ≤ 2.

If δ(G) = 1, without loss of generality, let d(x) = 1, then |V (G− x)| = 4 and e(G− x) = 6,

which implies that G− x is a clique of order 4. Then G = G1 (see Figure 2).

If δ(G) = 2, without loss of generality, let d(x) = 2, then |V (G− x)| = 4 and e(G− x) =

5, which implies that G − x is a graph obtained from K4 by deleting an edge. Thus,

G ∈ {H1
5 , H

3
5 , H

4
5} (see Figure 1).

Lemma 5. For any connected graph G with order 6 and size 10, κ3(G) ≥ 3.
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Proof. If there exists a vertex x ∈ V (G) such that d(x) ≤ 2, then |V (G − x)| = 5 and

e(G− x) ≥ 8. From Lemma 3, κ3(G− x) ≥ 3, which results in κ3(G) ≥ 3.

Now we assume that δ(G) ≥ 3. If there exists a vertex x ∈ V (G) such that d(x) = 5,

then |V (G−x)| = 5 and e(G−x) = 5. Since δ(G−x) ≥ 2, G−x is a cycle of order 5, which

implies that G is a wheel of order 6. Clearly, κ3(G) ≥ 3. So we can assume that ∆(G) ≤ 4.

Let t be the number of vertices of degree 4 in G. Since 20 = 2e(G) = 4t + 3(6 − t), t = 2,

namely, there exist two vertices x, y ∈ V (G) such that d(x) = d(y) = 4.

(a)

x y

u1 u2 u3 u4

x y

u1
u2 u3 u4

x y

u1 u2 u3

u4

(b) (c)

Figure 5. Graphs for Lemma 5.

If xy /∈ E(G), then G must be the graph shown in Figure 5 (a) since δ(G) ≥ 3. Then the

trees T1 = u2x ∪ u2y ∪ u2u1 and T2 = u1x ∪ xu3 ∪ u3y and T3 = u1y ∪ yu4 ∪ u4x form three

{x, y, u1}-trees, namely, κ3(G) ≥ 3.

If xy ∈ E(G) and NG−xy(x) 6= NG−xy(y), then G must be the graph shown in Figure

5 (b) since δ(G) ≥ 3. Then the trees T1 = u2x ∪ xu3 ∪ u3y and T2 = yx ∪ yu2 and

T3 = u1x ∪ u1u2 ∪ u1u4 ∪ u4y form three {x, y, u2}-trees, namely, κ3(G) ≥ 3.

If xy ∈ E(G) and NG−xy(x) = NG−xy(y), then G must be the graph shown in Figure 5

(c) since δ(G) ≥ 3. Then the trees T1 = xu1 ∪ xu2 ∪ xu3 and T2 = yu1 ∪ yu2 ∪ yu3 and

T3 = u4u1 ∪ u4u2 ∪ u4u3 form three {u1, u2, u3}-trees, namely, κ3(G) ≥ 3.

Lemma 6. Let G be a connected graph of order 6 and size 9. If κ3(G) ≤ 2, then G ∈
{G3, G4} or G ∈ {H1

6 , H
2
6 , H

5
6} or G ∈ H3

6.

Proof. We claim that 2 ≤ δ(G) ≤ 3. Suppose that δ(G) ≥ 4. Then 18 = 2e(G) ≥ 6δ ≥ 24,

a contradiction. Suppose that δ(G) = 1, without loss of generality, let d(x) = 1, then

|V (G − x)| = 5 and e(G − x) = 8. From Lemma 3, κ3(G − x) ≥ 3. Clearly, κ3(G) ≥ 3 by

Observation 1.

If δ(G) = 3, then G is 3-regular. It is easy to check that G = G3 or G = G4. In

the following, we assume that δ(G) = 2. Without loss of generality, set d(x) = 2, then

|V (G− x)| = 5 and e(G− x) = 7, which implies that G− x = G1 or G− x ∈ {H1
5 , H

3
5 , H

4
5}

by Lemma 4.

If G−x = G1, then G ∈ H3
6. If G−x = H1

5 , then G = H1
6 or G = A2 or G = A6 (see Figure
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3), which results in G = H1
6 . If G − x = H3

5 , then G = H2
6 or G ∈ {A1, A2, A3, A4, A5},

which implies that G = H2
6 by Observation 3. If G − x = H4

5 , then G = H5
6 or G ∈

{B1, B2, B3, B4, B5, B6}, which implies that G = H5
6 by Lemma 2.

3 Main results

In this section, we give our main results. We first need some more lemmas. In Lemma 3

through Lemma 6, we have dealt with the cases n ≤ 6. Now we assume that n ≥ 7.

Lemma 7. Let G′ be a graph obtained from G by deleting a vertex of degree 2. If G′ ∈
G∗n−1(n ≥ 7), then G ∈ G∗n or κ3(G) ≥ 3.

Proof. Let x be the deleted vertex of degree 2 in G. Since n ≥ 7, G′ /∈ {K3, K4, G1}. From

Observation 2 and Lemma 1, if G′ ∈ {G2, G3, G4}, then we can check that G ∈ H3
9 or

κ3(G) ≥ 3. From now on, we consider G′ ∈ G∗n−1 \ {G2, G3, G4}.
Case 1. G′ ∈ H1

n−1.

First we consider the case that there is no K4 in G′. Thus, G′ = H1
n−1. Since n ≥ 7,

G = H1
n ∈ H1

n or G must contain an A2 or A6 as its subgraph, which implies that G ∈ G∗n or

κ3(G) ≥ 3 by Observation 1.

Next we consider the case that there exists at least one K4 in G′. For each K4, if

NG(x)∩ (K4 \ y) 6= ∅, then we have κ3(G) ≥ 3 by Lemma 1, where y is an attaching vertex

in G′. Suppose that NG(x)∩(K4\y) = ∅ for all K4 ⊆ G′. Clearly, we can consider the graph

G′ ∈ H1
n−1 as the join of K2 and r isolated vertices, and then doing the attaching operation

at some vertices of degree 2 on K2 ∨ rK1. So, we consider N(x) ⊆ K2 ∨ rK1 (r ≥ 1). For

r ≥ 3, it follows that G ∈ H1
n or G contains the graph A2 or A6 as its subgraph, which

implies that G ∈ G∗n or κ3(G) ≥ 3.

For r = 2, from Lemma 1, we only need to consider N(x) ⊆ V (K2∨2K1). By Observation

2, G ∈ H1
11 or G ∈ H1

8 or G ∈ H3
8 or κ3(G) ≥ 3. For r = 1, K2 ∨ K1 is a triangle and G′

is a graph obtained from this triangle by the attaching operation at some vertices of this

triangle since n ≥ 7. Thus, from Observation 2 and Lemma 1, we can get κ3(G) ≥ 3.

Case 2. G′ ∈ H2
n−1 or G′ ∈ H3

n−1.

We only prove the conclusion for G′ ∈ H2
n−1, the same can be showed for G′ ∈ H3

n−1

similarly. Without loss of generality, let H2
n−1 be the graph class obtained from H2

r by the

attaching operation at some vertices of degree 2 on H2
r , where r = n−1, n−4, n−7. One can

see that u1 and v r
2

can be the attaching vertices. From Lemma 1, we only need to consider

the case that NG(x) ⊆ H2
r . Set NG(x) = {x1, x2}. Thus x1, x2 ∈ V (H2

r ).
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If dH2
r
(x1) = dH2

r
(x2) = 2, without loss of generality, let x1 = u1 and x2 = v r

2
, then

neither u1 nor v r
2

is an attaching vertex by Observation 2. We can choose a path P :=

u3u4 · · ·u r
2
v r

2
xu1 connecting u1 and u3 in G \ {u2, v1, v2}. Thus, G contains a subdivision of

A3 as its subgraph (see Figures 3 and 6 (a)), which results in κ3(G) ≥ 3.

If dH2
r
(x1) = 2 and dH2

r
(x2) = 3, without loss of generality, let x1 = u1, then we can find

a path connecting u1 and u3 and obtain κ3(G) ≥ 3 for x2 ∈ Hr \ {u2, v1, v2}. For x2 = u2

and x2 = v2, G contains an A1 and A4 as its subgraph, which implies κ3(G) ≥ 3. If x2 = v1,

then G ∈ H3
n and so G ∈ G∗n.

(a) (b)

x

u1

v1

u2

v2

u r

2

v r

2

P
u3

v3

w1

w2

u1

v1

u r

2

v r

2

u2

v2

w3

Figure 6. Graphs for Lemma 7.

For 3 ≤ dH2
r
(xi) ≤ 4 (i = 1, 2), one can check that G contains a subdivision of one of

{A1, A2, · · · , A5}, which implies κ3(G) ≥ 3.

Case 3. G′ ∈ H4
n−1 or G′ ∈ H5

n−1.

Note that only v r
2

can be an attaching vertex in H4
r (see Figure 6 (b)), where r = n−1, n−4.

From Lemma 1, we only need to consider N(x) ⊆ H4
r . We can consider H4

r as a graph

obtained from H4
5 and H2

r−3 by identifying one edge u1v1 in each of them.

Consider N(x) ∩ {w1, w2, w3} 6= ∅. If N(x) 6= {w2, v1}, then G contains a subdivision

of one of {B1, · · · , B6} as its subgraph. So, κ3(G) ≥ 3 by Lemma 2. If N(x) = {w2, v1},
then one can also get that κ3(G) ≥ 3. Now we can assume that N(x) ∩ {w1, w2, w3} = ∅.

For |{u1, v1} ∩ N(x)| = 2, G contains an A2 as its subgraph, which results in κ3(G) ≥ 3.

For |{u r
2
, v r

2
} ∩N(x)| = 2, if v r

2
is not an attaching vertex in H4

r , then G ∈ H5
n; if v r

2
is an

attaching vertex in H4
r , then κ3(G) ≥ 3 by Observation 2. For the other cases, we can also

check that κ3(G) ≥ 3.

Case 4. G′ ∈ H6
n−1 or G′ ∈ H7

n−1.

From the above Case 2 and Lemma 2, we can get κ3(G) ≥ 3 in this case.

Similarly, we have the following lemma.

Lemma 8. Let G′ be a graph obtained from G by deleting a vertex of degree 3. If G′ ∈
G∗n−1(n ≥ 7), then κ3(G) ≥ 3.
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Lemma 9. Let G be a graph obtained from G′ by deleting an edge e = x1x2 and adding a

vertex x such that NG(x) = {x1, x2, x3}, where x3 ∈ V (G′) \ {x1, x2}. If G′ ∈ G∗n−1 (n ≥ 7),

then G ∈ G∗n or κ3(G) ≥ 3.

Proof. Since n ≥ 7, G′ /∈ {K3, K4, G1}. From Observation 2 and Lemma 1, if G′ ∈
{G2, G3, G4}, we can easily check that κ3(G) ≥ 3 or G ∈ G∗n. Thus we consider G′ ∈
G∗n−1 \ {G2, G3, G4}.

We claim that if there exists a K4 in G′ such that e ∈ E(K4), then κ3(G) ≥ 3. Let

V (K4) = {u1, u2, u3, u4}. Without loss of generality, let x1 = u2 and x2 = u4.

If x3 ∈ V (K4), then x3 = u1 or x3 = u3. It follows that κ3(G) ≥ 3 (see Figure 7 (a)).

So we assume that x3 /∈ V (K4). From Lemma 1, if x3 belongs to another clique of order 4

such that x3 is not an attaching vertex, then κ3(G) ≥ 3 or G ∈ G∗n. So, we only need to

consider x3 ∈ H i
r(1 ≤ i ≤ 7). If neither u2 nor u4 is an attaching vertex, then u1 or u3 is an

attaching vertex, say u1. Then there must exist a path P connecting x3 and u1 such that

u2, u3, u4 /∈ V (P ) since H i
r(1 ≤ i ≤ 7) is connected. Then the trees T1 = xu2 ∪ xu4 ∪ P

and T2 = u1u2 ∪ u1u4 and T3 = u3u1 ∪ u3u2 ∪ u3u4 form three {u1, u2, u4}-trees, namely,

κ3(G) ≥ 3 (see Figure 7 (b)).

(b)

u1

u3

u1

x x

x3

(c)

P

x3

u3

P1

P2(a)

u1

u3(x3)

u2(x1)

x

u2(x1)
u2(x1)

u4(x2)
u4(x2)u4(x2)

Figure 7. Graphs for the claim.

Suppose that one of {u2, u4} is an attaching vertex, say u2. Thus there must exist two

paths P1 and P2 connecting x3 and u2 in H i
r since H i

r is 2-connected. Then the trees

T1 = xu2 ∪ xu4 ∪ xx3 and T2 = u4u1 ∪ u1u2 ∪ P1 and T3 = u4u3 ∪ u3u2 ∪ P2 form three

internally disjoint {u2, u4, x3}-trees, namely, κ3(G) ≥ 3 (see Figure 7 (c)).

x2

x1

x x3

P
x2

x1

x x3

P

x2

x1

x

x3

P

(c) C3(b) C2(a) C1

Figure 8. Graphs for Lemma 9.
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Now we consider e /∈ E(K4). Thus e ∈ E(H i
r)(1 ≤ i ≤ 7). We only consider e ∈ E(H1

r ),

and for e ∈ E(H i
r)(2 ≤ i ≤ 7) one can also check that G ∈ G∗n or κ3(G) ≥ 3. Since

H1
r = K2 ∨ (r − 2)K1, we suppose that e ∈ E(K2 ∨ (r − 2)K1)(r ≥ 3). For r ≥ 5, G must

contain one of {C1, C2, C3} as its subgraph. One can check that κ3(G) ≥ 3 by Observation

1 (see Figure 8). For r = 4, G ∈ H3
8 or G ∈ H4

8 or G ∈ H3
11 or κ3(G) ≥ 3. For r = 3, we can

obtain G ∈ H2
7 or G ∈ H2

10 or κ3(G) ≥ 3 by Lemma 1 and Observation 2.

Theorem 1. Let G be a connected graph of order n such that κ3(G) ≤ 2. Then

e(G) ≤
{

2n− 2 if n = 4,

2n− 3 if n ≥ 3, n 6= 4.

with equality if and only if G ∈ G∗n.

Proof. We apply induction on n(n ≥ 7). For n = 3, 4, it is easy to see that G∗n = {Kn}. For

n = 5 or n = 6, the assertion holds by Lemmas 4 and 6.

Suppose that the assertion holds for graphs of order less than n ≥ 7. Now we show

that the assertion holds for n ≥ 7. We claim that δ(G) ≤ 3. Otherwise, δ(G) ≥ 4. Let

G′ be the graph obtained from G by deleting a vertex x such that d(x) = δ(G). Then,

2e(G′) = 2e(G)− 2d(x) = 2e(G)− 2δ(G) ≥ (n− 2)δ(G) ≥ 4(n− 2). But, by the induction

hypothesis, 2e(G′) ≤ 2[2(n− 1)− 3] = 4n− 10, a contradiction.

If δ(G) = 1, then we let G′ be the graph obtained from G by deleting a pendant vertex.

Then by the induction hypothesis, e(G) ≤ e(G′) + 1 = 2(n− 1)− 3 + 1 = 2n− 4 < 2n− 3.

If δ(G) = 2, then we let G′ be the graph obtained from G by deleting a vertex of degree

2. If e(G′) < 2(n − 1) − 3, then e(G) = e(G′) + 2 < 2(n − 1) − 3 + 2 = 2n − 3. If

e(G′) = 2(n− 1)− 3, then e(G) = e(G′) + 2 = 2(n− 1)− 3 + 2 = 2n− 3. Since G′ ∈ G∗n−1

and κ3(G) ≤ 2, we can obtain G ∈ G∗n by Lemma 7.

Suppose that δ(G) = 3. Let G′ be the graph obtained from G by deleting a vertex of

degree 3, say x. If e(G′) = 2(n − 1) − 3, then G′ ∈ G∗n−1. We can get a contradiction by

Lemma 8. If e(G′) < 2(n− 1)− 3, then e(G) = e(G′) + 3 ≤ 2(n− 1)− 4 + 3 = 2n− 3.

Now we will show that G ∈ G∗n for e(G′) = 2(n − 1) − 4. Suppose NG(x) = {x1, x2, x3}.
We have the following two cases to consider.

Case 1. G[NG(x)] is not a triangle.

In this case, there exists an edge xixj /∈ E(G)(1 ≤ i, j ≤ 3). Let G′′ = G′ + xixj. Then

we claim that κ3(G
′′) ≤ 2. In fact, suppose that κ3(G

′′) ≥ 3. Then there exists a 3-subset

S ⊆ V (G) such that G′′ contains three internally disjoint S-trees, denoted by T1, T2, T3. If

xixj /∈ ⋃3
i=1 E(Ti), then T1, T2, T3 are 3 S-trees in G, which contradicts κ3(G) ≤ 2.
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Assume that xixj belongs to some S-tree, without loss of generality, say xixj ∈ E(T1),

then T ′
1 = (T1 − xixj) ∪ xix ∪ xxj is an S-tree in G. Thus, T ′

1, T2, T3 are three internally

disjoint S-trees in G, which implies that κ3(G) ≥ 3, a contradiction.

Since e(G′′) = e(G′) + 1 = 2(n− 1)− 3 and κ3(G) ≤ 2, we have G′′ ∈ G∗n−1. Furthermore,

G ∈ G∗n by Lemma 9.

Case 2. G[NG(x)] is a triangle.

Clearly, G[NG[x]] is a clique of order 4, where NG[x] = NG(x)∪{x}. From Lemma 1, there

is no path connecting any two vertices of G[NG[x]]. So, G\E(G[NG[x]]) has three connected

components except x. We denote them by G1, G2, G3 (note that Gi 6= K4(i = 1, 2, 3)). By

the induction hypothesis, e(G) =
∑3

i=1 e(Gi) + 6 ≤ 2
∑3

i=1 |Gi| − 3 = 2(n− 1)− 3 < 2n− 3.

Corollary 1.

f(n; κ3 ≤ 2) =

{
2n− 2 if n = 4,

2n− 3 if n ≥ 3, n 6= 4.

Since for 0 ≤ ` ≤ n− k + bk/2c− 1, we have that h(n; κk ≥ ` + 1) = f(n; κk ≤ `) + 1, the

following corollary is immediate.

Corollary 2.

h(n; κ3 ≥ 3) =

{
2n− 1 if n = 4,

2n− 2 if n ≥ 3, n 6= 4.

Remark. Let n, ` be odd, and G′ be a graph obtained from an (`−3)-regular graph of order

n − 2 by adding a maximum matching, and G = G′ ∨ K2. Then δ(G) = ` − 1, κ3(G) ≤ `

and e(G) = `+2
2

(n− 2) + 1
2
.

Otherwise, let G′ be an (` − 2)-regular graph of order n − 2 and G = G′ ∨ K2. Then

δ(G) = `, κ3(G) ≤ ` and e(G) = `+2
2

(n− 2) + 1.

Therefore,

f(n; κ3 ≤ `) ≥
{

`+2
2

(n− 2) + 1
2

for n, ` odd,
`+2
2

(n− 2) + 1 otherwise.

One can see that for ` = 2 this bound is the best possible (f(n; κ3 ≤ 2) = 2n − 3).

Actually, the graph constructed for this bound is K2 ∨ (n− 2)K1, which belongs to G∗n.

11



References
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