On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices

Hengzhe Li, Xueliang Li, Yaping Mao
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lhz2010@mail.nankai.edu.cn; lxl@nankai.edu.cn; maoyaping@ymail.com.

Abstract

The problem of determining the smallest number of edges, $h(n ; \bar{\kappa} \geq r)$, which guarantees that any graph with n vertices and $h(n ; \bar{\kappa} \geq r)$ edges will contain a pair of vertices joined by r internally disjoint paths was posed by Erdös and Gallai. Bollobás considered the problem of determining the largest number of edges $f(n ; \bar{\kappa} \leq \ell)$ for graphs with n vertices and local connectivity at most ℓ. One can see that $f(n ; \bar{\kappa} \leq$ $\ell)=h(n ; \bar{\kappa} \geq \ell+1)-1$. These two problems had received a wide attention of many researchers in the last few decades. In the above problems, only pairs of vertices connected by internally disjoint paths are considered. In this paper, we study the number of internally disjoint Steiner trees connecting sets of vertices with cardinality at least 3 .

Keywords: connectivity, Steiner tree, internally disjoint trees, generalized connectivity, generalized local connectivity.

AMS subject classification 2010: 05C40; 05C05; 05C35; 05C75.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book [5] for graph theoretical notation and terminology not described here. We call the number of vertices in a graph as the order of the graph and the number of edges of it as its size. For two distinct vertices in a connected graph G, we can connect them by a path. Two paths are called internally disjoint if they have no common vertex except the end vertices. For any two distinct vertices x and y in G, the local connectivity $\kappa_{G}(x, y)$ is the maximum number of internally disjoint paths connecting x and y. Then $\min \left\{\kappa_{G}(x, y) \mid x, y \in V(G), x \neq y\right\}$ is
usually the connectivity of G. In contrast to this parameter, $\bar{\kappa}(G)=\max \left\{\kappa_{G}(x, y) \mid x, y \in\right.$ $V(G), x \neq y\}$, introduced by Bollobás, is called the maximum local connectivity of G. The problem of determining the smallest number of edges, $h(n ; \bar{\kappa} \geq r)$, which guarantees that any graph with n vertices and $h(n ; \bar{\kappa} \geq r)$ edges will contain a pair of vertices joined by r internally disjoint paths was posed by Erdös and Gallai, see [1] for details.

Bollobás [2] considered the problem of determining the largest number of edges, $f(n ; \bar{\kappa} \leq$ ℓ), for graphs with n vertices and local connectivity at most ℓ, that is, $f(n ; \bar{\kappa} \leq \ell)=$ $\max \{e(G)||V(G)|=n$ and $\bar{\kappa}(G) \leq \ell\}$. Motivated by determining the precise value of $f(n ; \bar{\kappa} \leq \ell)$, this problem has obtained wide attention and many results have been worked out, see $[2,3,4,7,8,9,16,17,18]$. One can see that $h(n ; \bar{\kappa} \geq \ell+1)=f(n ; \bar{\kappa} \leq \ell)+1$.

For $\bar{\kappa} \leq \ell$, it was showed that $f(n ; \bar{\kappa} \leq \ell) \geq\left\lfloor\frac{\ell+1}{2}(n-1)\right\rfloor$. Since $f(n ; \bar{\kappa} \leq \ell)=\left\lfloor\frac{\ell+1}{2}(n-1)\right\rfloor$ for $\ell=2,3$, Bollobás and Erdös conjectured that the equality holds, but this was disproved by Leonard [7] for $\ell=4$, and later Mader [16] constructed graphs disproving it for every $\ell \geq 4$.

For a graph $G(V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or an Steiner tree connecting S (or simply, an S-tree) is a such subgraph $T\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Two Steiner trees T and T^{\prime} connecting S are said to be internally disjoint if $E(T) \cap E\left(T^{\prime}\right)=\varnothing$ and $V(T) \cap V\left(T^{\prime}\right)=S$. For $S \subseteq V(G)$ and $|S| \geq 2$, the generalized local connectivity $\kappa_{G}(S)$ is the maximum number of internally disjoint trees connecting S in G. The generalized connectivity, introduced by Chartrand et al. in 1984 [6], is defined as $\kappa_{k}(G)=\min \{\kappa(S)|S \subseteq V(G),|S|=k\}$. There have been many results on the generalized connectivity, see $[10,11,12,13,14]$. Similar to the classical maximal local connectivity, we introduce another parameter $\bar{\kappa}_{k}(G)=\max \{\kappa(S)|S \subseteq V(G),|S|=k\}$, which is called the maximum generalized local connectivity of G. It is easy to check that $0 \leq \bar{\kappa}_{k}(G) \leq \bar{\kappa}_{k}\left(K_{n}\right) \leq n-\lceil k / 2\rceil$ for a connected graph G.

In this paper, we mainly study the problem of determining the largest number of edges, $f\left(n ; \bar{\kappa}_{k} \leq \ell\right)$, for graphs with n vertices and maximum generalized local connectivity at most ℓ, where $0 \leq \ell \leq n-\lceil k / 2\rceil$. That is, $f\left(n ; \bar{\kappa}_{k} \leq \ell\right)=\max \left\{e(G)| | V(G) \mid=n\right.$ and $\left.\bar{\kappa}_{k}(G) \leq \ell\right\}$. We also study the smallest number of edges, $h\left(n ; \bar{\kappa}_{k} \geq r\right)$, which guarantees that any graph with n vertices and $h\left(n ; \bar{\kappa}_{k} \geq r\right)$ edges will contain a set S of k vertices such that there are r internally disjoint S-trees, where $0 \leq r \leq n-\lceil k / 2\rceil$. It is not difficult to see that $h\left(n ; \bar{\kappa}_{k} \geq \ell+1\right)=f\left(n ; \bar{\kappa}_{k} \leq \ell\right)+1$ for $0 \leq \ell \leq n-\lceil k / 2\rceil$. For $k=3$ and $\ell=2$, we prove that $f\left(n ; \bar{\kappa}_{3} \leq 2\right)=2 n-3$ for $n \geq 3$ and $n \neq 4$, and $f\left(n ; \bar{\kappa}_{3} \leq 2\right)=2 n-2$ for $n=4$. Furthermore, we characterize the graphs attaining these values. For $k=3$ and a general ℓ, we construct some graphs to show that $f\left(n ; \bar{\kappa}_{3} \leq \ell\right) \geq \frac{\ell+2}{2}(n-2)+\frac{1}{2}$ for both n and ℓ odd, and $f\left(n ; \bar{\kappa}_{3} \leq \ell\right) \geq \frac{\ell+2}{2}(n-2)+1$ otherwise.

2 Some basic results

As usual, the union of two graphs G and H is the graph, denoted by $G \cup H$, with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The disjoint union of k copies of the same graph G is denoted by $k G$. The join $G \vee H$ of two disjoint graphs G and H is obtained from $G \cup H$ by joining each vertex of G to every vertex of H.

In this section, we first introduce a graph operation and two graph classes.
Let H be a connected graph, and u a vertex of H. We define the attaching operation at the vertex u on H as follows: (1) identifying u and a vertex of a $K_{4} ;(2) u$ is attached with only one K_{4}. The vertex u is called an attaching vertex.

Figure 1. The graph class \mathcal{G}_{n}.

Now, we introduce two new graph classes. For $r \geq 3, \mathcal{G}_{r}=\left\{H_{r}^{1}, H_{r}^{2}, H_{r}^{3}, H_{r}^{4}, H_{r}^{5}, H_{r}^{6}, H_{r}^{7}\right\}$ is a class of graphs of order r (see Figure 1 for details). Let $\mathcal{H}_{n}^{i}(1 \leq i \leq 7)$ be the class of graphs, each of them is obtained from a graph H_{r}^{i} by the attaching operation at some vertices of degree 2 on H_{r}^{i}, where $3 \leq r \leq n$ and $1 \leq i \leq 7$ (note that $H_{n}^{i} \in \mathcal{H}_{n}^{i}$). \mathcal{G}_{n}^{*} is another class of graphs that contains \mathcal{G}_{n}, given as follows: $\mathcal{G}_{3}^{*}=\left\{K_{3}\right\}, \mathcal{G}_{4}^{*}=\left\{K_{4}, K_{4} \backslash e\right\}$, $\mathcal{G}_{5}^{*}=\left\{G_{1}\right\} \cup\left(\bigcup_{i=1}^{7} \mathcal{H}_{5}^{i}\right), \mathcal{G}_{6}^{*}=\left\{G_{3}, G_{4}\right\} \cup\left(\bigcup_{i=1}^{7} \mathcal{H}_{6}^{i}\right), \mathcal{G}_{7}^{*}=\bigcup_{i=1}^{7} \mathcal{H}_{7}^{i}, \mathcal{G}_{8}^{*}=\left\{G_{2}\right\} \cup\left(\bigcup_{i=1}^{7} \mathcal{H}_{8}^{i}\right)$, $\mathcal{G}_{n}^{*}=\bigcup_{i=1}^{7} \mathcal{H}_{n}^{i}$ for $n \geq 9$ (see Figure 2 for details).

It is easy to see that the following three observations hold.
Observation 1. Let G and H be two connected graphs, and H^{\prime} be a subdivision of H. If H^{\prime} is a subgraph of G and $\bar{\kappa}_{3}(H) \geq 3$, then $\bar{\kappa}_{3}(G) \geq 3$.

Figure 2. Some graphs in \mathcal{G}_{n}^{*}.

Observation 2. Let H be a graph, u and v be two vertices in H, and G be a graph obtained from H by attaching a K_{4} at u. If there are three internally disjoint paths between u and v in H, then $\bar{\kappa}_{3}(G) \geq 3$.

Observation 3. For each graph in Figure 3, $\bar{\kappa}_{3} \geq 3$.

Figure 3. Graphs obtained from H_{5}^{1} and H_{5}^{3}.

Lemma 1. Let G be a graph containing a clique K_{4}. If there exists a path connecting two vertices of K_{4} in $G \backslash E\left[K_{4}\right]$, then $\bar{\kappa}_{3}(G) \geq 3$.

Proof. Let K_{4} be a complete subgraph of G with vertex set $\left\{u_{1}, \cdots, u_{4}\right\}$, and P be a path connecting u_{1} and u_{2} in $G \backslash E\left[K_{4}\right]$. It suffices to show that there exists a set S such that $\kappa(S) \geq 3$. Choose $S=\left\{u_{1}, u_{2}, u_{3}\right\}$, clearly, $T_{1}=u_{1} u_{2} \cup u_{1} u_{3}$ and $T_{2}=u_{4} u_{1} \cup u_{4} u_{2} \cup u_{4} u_{3}$ and $T_{3}=P \cup u_{2} u_{3}$ form three internally disjoint S-trees. Thus, $\bar{\kappa}_{3}(G) \geq 3$.

Similarly, the following lemma holds.
Lemma 2. Let G be a graph obtained from H_{5}^{4} by adding a vertex x and two edges $x y, x z$, where $y, z \in V\left(H_{5}^{4}\right)$ (see Figure 4). Then $\bar{\kappa}_{3}(G) \geq 3$ or $G=H_{6}^{5}$.

Figure 4. Graphs obtained from H_{5}^{4} by adding a vertex of degree 2 .

Lemma 3. For any connected graph G with order 5 and size $8, \bar{\kappa}_{3}(G) \geq 3$.
Proof. We claim that $2 \leq \delta(G) \leq 3$. In fact, if $\delta(G)=1$, without loss of generality, let $d(x)=1$, then $|V(G-x)|=4$ and $e(G-x)=7$, a contradiction. If $\delta(G) \geq 4$, then $16=2 e(G) \geq 5 \delta \geq 20$, a contradiction.

If $\delta(G)=2$, without loss of generality, let $d(x)=2$, then $|V(G-x)|=4$ and $e(G-x)=6$, which implies that $G-x$ is a clique of order 4 . From Lemma $1, \bar{\kappa}_{3}(G) \geq 3$. So we suppose that $\delta(G)=3$. Since $|V(G)|=5, \Delta(G) \leq 4$. Since $\frac{2 e(G)}{|V(G)|}=\frac{16}{5}$, there exists a vertex x in G such that $d(x)=4$. Set $N_{G}(x)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Since $\delta(G-x) \geq 2$ and $e(G-x)=4$, $G-x$ is a cycle of order 4. Then G is a wheel of order 5 and the trees $T_{1}=x u_{2} \cup x u_{4}$ and $T_{2}=u_{3} x \cup u_{3} u_{2} \cup u_{3} u_{4}$ and $T_{3}=u_{1} x \cup u_{1} u_{4} \cup u_{1} u_{2}$ form 3 internally disjoint $\left\{x, u_{2}, u_{4}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$.

Lemma 4. For any connected graph G of order 5 and size $7, \bar{\kappa}_{3}(G) \leq 2$ and $G \in\left\{G_{1}, H_{5}^{1}, H_{5}^{3}\right.$, $\left.H_{5}^{4}\right\}$.

Proof. For each $S \subseteq V(G)$ with $|S|=3$, a tree with two edges connecting S is called Type I, and the others with at least 3 edges are called Type $I I$. One can see that three internally disjoint trees connecting S will use at least 8 edges since we only have one tree of Type I. So if G is a connected graph of order 5 and size 7 , then $\bar{\kappa}_{3}(G) \leq 2$.

Suppose that $\delta(G) \geq 3$. Then $14=2 e(G) \geq 5 \delta \geq 15$, a contradiction. Thus, $\delta(G) \leq 2$. If $\delta(G)=1$, without loss of generality, let $d(x)=1$, then $|V(G-x)|=4$ and $e(G-x)=6$, which implies that $G-x$ is a clique of order 4 . Then $G=G_{1}$ (see Figure 2).

If $\delta(G)=2$, without loss of generality, let $d(x)=2$, then $|V(G-x)|=4$ and $e(G-x)=$ 5, which implies that $G-x$ is a graph obtained from K_{4} by deleting an edge. Thus, $G \in\left\{H_{5}^{1}, H_{5}^{3}, H_{5}^{4}\right\}$ (see Figure 1).

Lemma 5. For any connected graph G with order 6 and size $10, \bar{\kappa}_{3}(G) \geq 3$.

Proof. If there exists a vertex $x \in V(G)$ such that $d(x) \leq 2$, then $|V(G-x)|=5$ and $e(G-x) \geq 8$. From Lemma $3, \bar{\kappa}_{3}(G-x) \geq 3$, which results in $\bar{\kappa}_{3}(G) \geq 3$.

Now we assume that $\delta(G) \geq 3$. If there exists a vertex $x \in V(G)$ such that $d(x)=5$, then $|V(G-x)|=5$ and $e(G-x)=5$. Since $\delta(G-x) \geq 2, G-x$ is a cycle of order 5 , which implies that G is a wheel of order 6 . Clearly, $\bar{\kappa}_{3}(G) \geq 3$. So we can assume that $\Delta(G) \leq 4$. Let t be the number of vertices of degree 4 in G. Since $20=2 e(G)=4 t+3(6-t), t=2$, namely, there exist two vertices $x, y \in V(G)$ such that $d(x)=d(y)=4$.

Figure 5. Graphs for Lemma 5.

If $x y \notin E(G)$, then G must be the graph shown in Figure $5(a)$ since $\delta(G) \geq 3$. Then the trees $T_{1}=u_{2} x \cup u_{2} y \cup u_{2} u_{1}$ and $T_{2}=u_{1} x \cup x u_{3} \cup u_{3} y$ and $T_{3}=u_{1} y \cup y u_{4} \cup u_{4} x$ form three $\left\{x, y, u_{1}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$.

If $x y \in E(G)$ and $N_{G-x y}(x) \neq N_{G-x y}(y)$, then G must be the graph shown in Figure $5(b)$ since $\delta(G) \geq 3$. Then the trees $T_{1}=u_{2} x \cup x u_{3} \cup u_{3} y$ and $T_{2}=y x \cup y u_{2}$ and $T_{3}=u_{1} x \cup u_{1} u_{2} \cup u_{1} u_{4} \cup u_{4} y$ form three $\left\{x, y, u_{2}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$.

If $x y \in E(G)$ and $N_{G-x y}(x)=N_{G-x y}(y)$, then G must be the graph shown in Figure 5 (c) since $\delta(G) \geq 3$. Then the trees $T_{1}=x u_{1} \cup x u_{2} \cup x u_{3}$ and $T_{2}=y u_{1} \cup y u_{2} \cup y u_{3}$ and $T_{3}=u_{4} u_{1} \cup u_{4} u_{2} \cup u_{4} u_{3}$ form three $\left\{u_{1}, u_{2}, u_{3}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$.

Lemma 6. Let G be a connected graph of order 6 and size 9. If $\bar{\kappa}_{3}(G) \leq 2$, then $G \in$ $\left\{G_{3}, G_{4}\right\}$ or $G \in\left\{H_{6}^{1}, H_{6}^{2}, H_{6}^{5}\right\}$ or $G \in \mathcal{H}_{6}^{3}$.

Proof. We claim that $2 \leq \delta(G) \leq 3$. Suppose that $\delta(G) \geq 4$. Then $18=2 e(G) \geq 6 \delta \geq 24$, a contradiction. Suppose that $\delta(G)=1$, without loss of generality, let $d(x)=1$, then $|V(G-x)|=5$ and $e(G-x)=8$. From Lemma 3, $\bar{\kappa}_{3}(G-x) \geq 3$. Clearly, $\bar{\kappa}_{3}(G) \geq 3$ by Observation 1.

If $\delta(G)=3$, then G is 3 -regular. It is easy to check that $G=G_{3}$ or $G=G_{4}$. In the following, we assume that $\delta(G)=2$. Without loss of generality, set $d(x)=2$, then $|V(G-x)|=5$ and $e(G-x)=7$, which implies that $G-x=G_{1}$ or $G-x \in\left\{H_{5}^{1}, H_{5}^{3}, H_{5}^{4}\right\}$ by Lemma 4.

If $G-x=G_{1}$, then $G \in \mathcal{H}_{6}^{3}$. If $G-x=H_{5}^{1}$, then $G=H_{6}^{1}$ or $G=A_{2}$ or $G=A_{6}$ (see Figure
3), which results in $G=H_{6}^{1}$. If $G-x=H_{5}^{3}$, then $G=H_{6}^{2}$ or $G \in\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$, which implies that $G=H_{6}^{2}$ by Observation 3. If $G-x=H_{5}^{4}$, then $G=H_{6}^{5}$ or $G \in$ $\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}$, which implies that $G=H_{6}^{5}$ by Lemma 2 .

3 Main results

In this section, we give our main results. We first need some more lemmas. In Lemma 3 through Lemma 6, we have dealt with the cases $n \leq 6$. Now we assume that $n \geq 7$.

Lemma 7. Let G^{\prime} be a graph obtained from G by deleting a vertex of degree 2. If $G^{\prime} \in$ $\mathcal{G}_{n-1}^{*}(n \geq 7)$, then $G \in \mathcal{G}_{n}^{*}$ or $\bar{\kappa}_{3}(G) \geq 3$.

Proof. Let x be the deleted vertex of degree 2 in G. Since $n \geq 7, G^{\prime} \notin\left\{K_{3}, K_{4}, G_{1}\right\}$. From Observation 2 and Lemma 1, if $G^{\prime} \in\left\{G_{2}, G_{3}, G_{4}\right\}$, then we can check that $G \in \mathcal{H}_{9}^{3}$ or $\bar{\kappa}_{3}(G) \geq 3$. From now on, we consider $G^{\prime} \in \mathcal{G}_{n-1}^{*} \backslash\left\{G_{2}, G_{3}, G_{4}\right\}$.

Case 1. $\quad G^{\prime} \in \mathcal{H}_{n-1}^{1}$.
First we consider the case that there is no K_{4} in G^{\prime}. Thus, $G^{\prime}=H_{n-1}^{1}$. Since $n \geq 7$, $G=H_{n}^{1} \in \mathcal{H}_{n}^{1}$ or G must contain an A_{2} or A_{6} as its subgraph, which implies that $G \in \mathcal{G}_{n}^{*}$ or $\bar{\kappa}_{3}(G) \geq 3$ by Observation 1.

Next we consider the case that there exists at least one K_{4} in G^{\prime}. For each K_{4}, if $N_{G}(x) \cap\left(K_{4} \backslash y\right) \neq \varnothing$, then we have $\bar{\kappa}_{3}(G) \geq 3$ by Lemma 1, where y is an attaching vertex in G^{\prime}. Suppose that $N_{G}(x) \cap\left(K_{4} \backslash y\right)=\varnothing$ for all $K_{4} \subseteq G^{\prime}$. Clearly, we can consider the graph $G^{\prime} \in \mathcal{H}_{n-1}^{1}$ as the join of K_{2} and r isolated vertices, and then doing the attaching operation at some vertices of degree 2 on $K_{2} \vee r K_{1}$. So, we consider $N(x) \subseteq K_{2} \vee r K_{1}(r \geq 1)$. For $r \geq 3$, it follows that $G \in \mathcal{H}_{n}^{1}$ or G contains the graph A_{2} or A_{6} as its subgraph, which implies that $G \in \mathcal{G}_{n}^{*}$ or $\bar{\kappa}_{3}(G) \geq 3$.

For $r=2$, from Lemma 1, we only need to consider $N(x) \subseteq V\left(K_{2} \vee 2 K_{1}\right)$. By Observation $2, G \in \mathcal{H}_{11}^{1}$ or $G \in \mathcal{H}_{8}^{1}$ or $G \in \mathcal{H}_{8}^{3}$ or $\bar{\kappa}_{3}(G) \geq 3$. For $r=1, K_{2} \vee K_{1}$ is a triangle and G^{\prime} is a graph obtained from this triangle by the attaching operation at some vertices of this triangle since $n \geq 7$. Thus, from Observation 2 and Lemma 1, we can get $\bar{\kappa}_{3}(G) \geq 3$.

Case 2. $G^{\prime} \in \mathcal{H}_{n-1}^{2}$ or $G^{\prime} \in \mathcal{H}_{n-1}^{3}$.
We only prove the conclusion for $G^{\prime} \in \mathcal{H}_{n-1}^{2}$, the same can be showed for $G^{\prime} \in \mathcal{H}_{n-1}^{3}$ similarly. Without loss of generality, let \mathcal{H}_{n-1}^{2} be the graph class obtained from H_{r}^{2} by the attaching operation at some vertices of degree 2 on H_{r}^{2}, where $r=n-1, n-4, n-7$. One can see that u_{1} and $v_{\frac{r}{2}}$ can be the attaching vertices. From Lemma 1 , we only need to consider the case that $N_{G}(x) \subseteq H_{r}^{2}$. Set $N_{G}(x)=\left\{x_{1}, x_{2}\right\}$. Thus $x_{1}, x_{2} \in V\left(H_{r}^{2}\right)$.

If $d_{H_{r}^{2}}\left(x_{1}\right)=d_{H_{r}^{2}}\left(x_{2}\right)=2$, without loss of generality, let $x_{1}=u_{1}$ and $x_{2}=v_{\frac{r}{2}}$, then neither u_{1} nor $v_{\frac{r}{2}}$ is an attaching vertex by Observation 2. We can choose a path $P:=$ $u_{3} u_{4} \cdots u_{\frac{r}{2}} v_{\frac{r}{2}} x u_{1}$ connecting u_{1} and u_{3} in $G \backslash\left\{u_{2}, v_{1}, v_{2}\right\}$. Thus, G contains a subdivision of A_{3} as its subgraph (see Figures 3 and $6(a)$), which results in $\bar{\kappa}_{3}(G) \geq 3$.

If $d_{H_{r}^{2}}\left(x_{1}\right)=2$ and $d_{H_{r}^{2}}\left(x_{2}\right)=3$, without loss of generality, let $x_{1}=u_{1}$, then we can find a path connecting u_{1} and u_{3} and obtain $\bar{\kappa}_{3}(G) \geq 3$ for $x_{2} \in H_{r} \backslash\left\{u_{2}, v_{1}, v_{2}\right\}$. For $x_{2}=u_{2}$ and $x_{2}=v_{2}, G$ contains an A_{1} and A_{4} as its subgraph, which implies $\bar{\kappa}_{3}(G) \geq 3$. If $x_{2}=v_{1}$, then $G \in \mathcal{H}_{n}^{3}$ and so $G \in \mathcal{G}_{n}^{*}$.

Figure 6. Graphs for Lemma 7.

For $3 \leq d_{H_{r}^{2}}\left(x_{i}\right) \leq 4(i=1,2)$, one can check that G contains a subdivision of one of $\left\{A_{1}, A_{2}, \cdots, A_{5}\right\}$, which implies $\bar{\kappa}_{3}(G) \geq 3$.

Case 3. $G^{\prime} \in \mathcal{H}_{n-1}^{4}$ or $G^{\prime} \in \mathcal{H}_{n-1}^{5}$.
Note that only $v_{\frac{r}{2}}$ can be an attaching vertex in H_{r}^{4} (see Figure $6(b)$), where $r=n-1, n-4$. From Lemma 1, we only need to consider $N(x) \subseteq H_{r}^{4}$. We can consider H_{r}^{4} as a graph obtained from H_{5}^{4} and H_{r-3}^{2} by identifying one edge $u_{1} v_{1}$ in each of them.

Consider $N(x) \cap\left\{w_{1}, w_{2}, w_{3}\right\} \neq \varnothing$. If $N(x) \neq\left\{w_{2}, v_{1}\right\}$, then G contains a subdivision of one of $\left\{B_{1}, \cdots, B_{6}\right\}$ as its subgraph. So, $\bar{\kappa}_{3}(G) \geq 3$ by Lemma 2. If $N(x)=\left\{w_{2}, v_{1}\right\}$, then one can also get that $\bar{\kappa}_{3}(G) \geq 3$. Now we can assume that $N(x) \cap\left\{w_{1}, w_{2}, w_{3}\right\}=\varnothing$. For $\left|\left\{u_{1}, v_{1}\right\} \cap N(x)\right|=2, G$ contains an A_{2} as its subgraph, which results in $\bar{\kappa}_{3}(G) \geq 3$. For $\left|\left\{u_{\frac{r}{2}}, v_{\frac{r}{2}}\right\} \cap N(x)\right|=2$, if $v_{\frac{r}{2}}$ is not an attaching vertex in H_{r}^{4}, then $G \in \mathcal{H}_{n}^{5}$; if $v_{\frac{r}{2}}$ is an attaching vertex in H_{r}^{4}, then $\bar{\kappa}_{3}(G) \geq 3$ by Observation 2. For the other cases, we can also check that $\bar{\kappa}_{3}(G) \geq 3$.

Case 4. $G^{\prime} \in \mathcal{H}_{n-1}^{6}$ or $G^{\prime} \in \mathcal{H}_{n-1}^{7}$.
From the above Case 2 and Lemma 2, we can get $\bar{\kappa}_{3}(G) \geq 3$ in this case.
Similarly, we have the following lemma.
Lemma 8. Let G^{\prime} be a graph obtained from G by deleting a vertex of degree 3. If $G^{\prime} \in$ $\mathcal{G}_{n-1}^{*}(n \geq 7)$, then $\bar{\kappa}_{3}(G) \geq 3$.

Lemma 9. Let G be a graph obtained from G^{\prime} by deleting an edge $e=x_{1} x_{2}$ and adding a vertex x such that $N_{G}(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$, where $x_{3} \in V\left(G^{\prime}\right) \backslash\left\{x_{1}, x_{2}\right\}$. If $G^{\prime} \in \mathcal{G}_{n-1}^{*}(n \geq 7)$, then $G \in \mathcal{G}_{n}^{*}$ or $\bar{\kappa}_{3}(G) \geq 3$.

Proof. Since $n \geq 7, G^{\prime} \notin\left\{K_{3}, K_{4}, G_{1}\right\}$. From Observation 2 and Lemma 1, if $G^{\prime} \in$ $\left\{G_{2}, G_{3}, G_{4}\right\}$, we can easily check that $\bar{\kappa}_{3}(G) \geq 3$ or $G \in \mathcal{G}_{n}^{*}$. Thus we consider $G^{\prime} \in$ $\mathcal{G}_{n-1}^{*} \backslash\left\{G_{2}, G_{3}, G_{4}\right\}$.

We claim that if there exists a K_{4} in G^{\prime} such that $e \in E\left(K_{4}\right)$, then $\bar{\kappa}_{3}(G) \geq 3$. Let $V\left(K_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Without loss of generality, let $x_{1}=u_{2}$ and $x_{2}=u_{4}$.

If $x_{3} \in V\left(K_{4}\right)$, then $x_{3}=u_{1}$ or $x_{3}=u_{3}$. It follows that $\bar{\kappa}_{3}(G) \geq 3$ (see Figure $7(a)$). So we assume that $x_{3} \notin V\left(K_{4}\right)$. From Lemma 1, if x_{3} belongs to another clique of order 4 such that x_{3} is not an attaching vertex, then $\bar{\kappa}_{3}(G) \geq 3$ or $G \in \mathcal{G}_{n}^{*}$. So, we only need to consider $x_{3} \in H_{r}^{i}(1 \leq i \leq 7)$. If neither u_{2} nor u_{4} is an attaching vertex, then u_{1} or u_{3} is an attaching vertex, say u_{1}. Then there must exist a path P connecting x_{3} and u_{1} such that $u_{2}, u_{3}, u_{4} \notin V(P)$ since $H_{r}^{i}(1 \leq i \leq 7)$ is connected. Then the trees $T_{1}=x u_{2} \cup x u_{4} \cup P$ and $T_{2}=u_{1} u_{2} \cup u_{1} u_{4}$ and $T_{3}=u_{3} u_{1} \cup u_{3} u_{2} \cup u_{3} u_{4}$ form three $\left\{u_{1}, u_{2}, u_{4}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$ (see Figure $7(b)$).

Figure 7. Graphs for the claim.

Suppose that one of $\left\{u_{2}, u_{4}\right\}$ is an attaching vertex, say u_{2}. Thus there must exist two paths P_{1} and P_{2} connecting x_{3} and u_{2} in H_{r}^{i} since H_{r}^{i} is 2-connected. Then the trees $T_{1}=x u_{2} \cup x u_{4} \cup x x_{3}$ and $T_{2}=u_{4} u_{1} \cup u_{1} u_{2} \cup P_{1}$ and $T_{3}=u_{4} u_{3} \cup u_{3} u_{2} \cup P_{2}$ form three internally disjoint $\left\{u_{2}, u_{4}, x_{3}\right\}$-trees, namely, $\bar{\kappa}_{3}(G) \geq 3$ (see Figure $7(c)$).

(a) C_{1}

(b) C_{2}

(c) C_{3}

Figure 8. Graphs for Lemma 9.

Now we consider $e \notin E\left(K_{4}\right)$. Thus $e \in E\left(H_{r}^{i}\right)(1 \leq i \leq 7)$. We only consider $e \in E\left(H_{r}^{1}\right)$, and for $e \in E\left(H_{r}^{i}\right)(2 \leq i \leq 7)$ one can also check that $G \in \mathcal{G}_{n}^{*}$ or $\bar{\kappa}_{3}(G) \geq 3$. Since $H_{r}^{1}=K_{2} \vee(r-2) K_{1}$, we suppose that $e \in E\left(K_{2} \vee(r-2) K_{1}\right)(r \geq 3)$. For $r \geq 5, G$ must contain one of $\left\{C_{1}, C_{2}, C_{3}\right\}$ as its subgraph. One can check that $\bar{\kappa}_{3}(G) \geq 3$ by Observation 1 (see Figure 8). For $r=4, G \in \mathcal{H}_{8}^{3}$ or $G \in \mathcal{H}_{8}^{4}$ or $G \in \mathcal{H}_{11}^{3}$ or $\bar{\kappa}_{3}(G) \geq 3$. For $r=3$, we can obtain $G \in \mathcal{H}_{7}^{2}$ or $G \in \mathcal{H}_{10}^{2}$ or $\bar{\kappa}_{3}(G) \geq 3$ by Lemma 1 and Observation 2.

Theorem 1. Let G be a connected graph of order n such that $\bar{\kappa}_{3}(G) \leq 2$. Then

$$
e(G) \leq \begin{cases}2 n-2 & \text { if } n=4 \\ 2 n-3 & \text { if } n \geq 3, n \neq 4\end{cases}
$$

with equality if and only if $G \in \mathcal{G}_{n}^{*}$.
Proof. We apply induction on $n(n \geq 7)$. For $n=3,4$, it is easy to see that $\mathcal{G}_{n}^{*}=\left\{K_{n}\right\}$. For $n=5$ or $n=6$, the assertion holds by Lemmas 4 and 6 .

Suppose that the assertion holds for graphs of order less than $n \geq 7$. Now we show that the assertion holds for $n \geq 7$. We claim that $\delta(G) \leq 3$. Otherwise, $\delta(G) \geq 4$. Let G^{\prime} be the graph obtained from G by deleting a vertex x such that $d(x)=\delta(G)$. Then, $2 e\left(G^{\prime}\right)=2 e(G)-2 d(x)=2 e(G)-2 \delta(G) \geq(n-2) \delta(G) \geq 4(n-2)$. But, by the induction hypothesis, $2 e\left(G^{\prime}\right) \leq 2[2(n-1)-3]=4 n-10$, a contradiction.

If $\delta(G)=1$, then we let G^{\prime} be the graph obtained from G by deleting a pendant vertex. Then by the induction hypothesis, $e(G) \leq e\left(G^{\prime}\right)+1=2(n-1)-3+1=2 n-4<2 n-3$.

If $\delta(G)=2$, then we let G^{\prime} be the graph obtained from G by deleting a vertex of degree 2. If $e\left(G^{\prime}\right)<2(n-1)-3$, then $e(G)=e\left(G^{\prime}\right)+2<2(n-1)-3+2=2 n-3$. If $e\left(G^{\prime}\right)=2(n-1)-3$, then $e(G)=e\left(G^{\prime}\right)+2=2(n-1)-3+2=2 n-3$. Since $G^{\prime} \in \mathcal{G}_{n-1}^{*}$ and $\bar{\kappa}_{3}(G) \leq 2$, we can obtain $G \in \mathcal{G}_{n}^{*}$ by Lemma 7 .

Suppose that $\delta(G)=3$. Let G^{\prime} be the graph obtained from G by deleting a vertex of degree 3 , say x. If $e\left(G^{\prime}\right)=2(n-1)-3$, then $G^{\prime} \in \mathcal{G}_{n-1}^{*}$. We can get a contradiction by Lemma 8. If $e\left(G^{\prime}\right)<2(n-1)-3$, then $e(G)=e\left(G^{\prime}\right)+3 \leq 2(n-1)-4+3=2 n-3$.

Now we will show that $G \in \mathcal{G}_{n}^{*}$ for $e\left(G^{\prime}\right)=2(n-1)-4$. Suppose $N_{G}(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$. We have the following two cases to consider.

Case 1. $G\left[N_{G}(x)\right]$ is not a triangle.
In this case, there exists an edge $x_{i} x_{j} \notin E(G)(1 \leq i, j \leq 3)$. Let $G^{\prime \prime}=G^{\prime}+x_{i} x_{j}$. Then we claim that $\bar{\kappa}_{3}\left(G^{\prime \prime}\right) \leq 2$. In fact, suppose that $\bar{\kappa}_{3}\left(G^{\prime \prime}\right) \geq 3$. Then there exists a 3 -subset $S \subseteq V(G)$ such that $G^{\prime \prime}$ contains three internally disjoint S-trees, denoted by T_{1}, T_{2}, T_{3}. If $x_{i} x_{j} \notin \bigcup_{i=1}^{3} E\left(T_{i}\right)$, then T_{1}, T_{2}, T_{3} are $3 S$-trees in G, which contradicts $\bar{\kappa}_{3}(G) \leq 2$.

Assume that $x_{i} x_{j}$ belongs to some S-tree, without loss of generality, say $x_{i} x_{j} \in E\left(T_{1}\right)$, then $T_{1}^{\prime}=\left(T_{1}-x_{i} x_{j}\right) \cup x_{i} x \cup x x_{j}$ is an S-tree in G. Thus, $T_{1}^{\prime}, T_{2}, T_{3}$ are three internally disjoint S-trees in G, which implies that $\bar{\kappa}_{3}(G) \geq 3$, a contradiction.

Since $e\left(G^{\prime \prime}\right)=e\left(G^{\prime}\right)+1=2(n-1)-3$ and $\bar{\kappa}_{3}(G) \leq 2$, we have $G^{\prime \prime} \in \mathcal{G}_{n-1}^{*}$. Furthermore, $G \in \mathcal{G}_{n}^{*}$ by Lemma 9 .

Case 2. $G\left[N_{G}(x)\right]$ is a triangle.
Clearly, $G\left[N_{G}[x]\right]$ is a clique of order 4 , where $N_{G}[x]=N_{G}(x) \cup\{x\}$. From Lemma 1, there is no path connecting any two vertices of $G\left[N_{G}[x]\right]$. So, $G \backslash E\left(G\left[N_{G}[x]\right]\right)$ has three connected components except x. We denote them by G_{1}, G_{2}, G_{3} (note that $G_{i} \neq K_{4}(i=1,2,3)$). By the induction hypothesis, $e(G)=\sum_{i=1}^{3} e\left(G_{i}\right)+6 \leq 2 \sum_{i=1}^{3}\left|G_{i}\right|-3=2(n-1)-3<2 n-3$.

Corollary 1.

$$
f\left(n ; \bar{\kappa}_{3} \leq 2\right)= \begin{cases}2 n-2 & \text { if } n=4 \\ 2 n-3 & \text { if } n \geq 3, n \neq 4\end{cases}
$$

Since for $0 \leq \ell \leq n-k+\lfloor k / 2\rfloor-1$, we have that $h\left(n ; \bar{\kappa}_{k} \geq \ell+1\right)=f\left(n ; \bar{\kappa}_{k} \leq \ell\right)+1$, the following corollary is immediate.

Corollary 2.

$$
h\left(n ; \bar{\kappa}_{3} \geq 3\right)= \begin{cases}2 n-1 & \text { if } n=4 \\ 2 n-2 & \text { if } n \geq 3, n \neq 4\end{cases}
$$

Remark. Let n, ℓ be odd, and G^{\prime} be a graph obtained from an $(\ell-3)$-regular graph of order $n-2$ by adding a maximum matching, and $G=G^{\prime} \vee K_{2}$. Then $\delta(G)=\ell-1, \bar{\kappa}_{3}(G) \leq \ell$ and $e(G)=\frac{\ell+2}{2}(n-2)+\frac{1}{2}$.

Otherwise, let G^{\prime} be an $(\ell-2)$-regular graph of order $n-2$ and $G=G^{\prime} \vee K_{2}$. Then $\delta(G)=\ell, \bar{\kappa}_{3}(G) \leq \ell$ and $e(G)=\frac{\ell+2}{2}(n-2)+1$.

Therefore,

$$
f\left(n ; \bar{\kappa}_{3} \leq \ell\right) \geq\left\{\begin{array}{l}
\frac{\ell+2}{2}(n-2)+\frac{1}{2} \quad \text { for } n, \ell \text { odd } \\
\frac{\ell+2}{2}(n-2)+1 \quad \text { otherwise } .
\end{array}\right.
$$

One can see that for $\ell=2$ this bound is the best possible $\left(f\left(n ; \bar{\kappa}_{3} \leq 2\right)=2 n-3\right)$. Actually, the graph constructed for this bound is $K_{2} \vee(n-2) K_{1}$, which belongs to \mathcal{G}_{n}^{*}.

References

[1] P. Bártfai, Solution of a problem proposed by P. Erdös(in Hungarian), Mat. Lapok (1960), 175-140.
[2] B. Bollobás, Extremal Graph Theory, Acdemic Press, 1978.
[3] B. Bollobás, On graphs with at most three independent paths connecting any two vertices, Studia Sci. Math. Hungar 1(1966), 137-140.
[4] B. Bollobás, Cycles and semi-topological configurations, in: "Theory and Applications of graphs"(Y. Alavi and D. R. Lick, eds) Lecture Notes in Maths 642, Springer 1978, 66-74.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[6] G. Chartrand, S. Kappor, L. Lesniak, D. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
[7] J. Leonard, On a conjecture of Bollobás and Edrös, Period. Math. Hungar. 3(1973), 281-284.
[8] J. Leonard, On graphs with at most four edge-disjoint paths connecting any two vertices, J. Combin. Theory Ser. B 13(1972), 242-250.
[9] J. Leonard, Graphs with 6-ways, Canad. J. Math. 25(1973), 687-692.
[10] H. Li, X. Li, Y. Sun, The generalied 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
[11] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104(2012), 65-79.
[12] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc., in press.
[13] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optim. 24(2012), 389-396.
[14] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147-2163.
[15] X. Li and Y. Sun, On the Strong Rainbow Connection of a Graph, Bull. Malays. Math. Sci. Soc. (2) 36(2) (2013), 299-311.
[16] W. Mader, Ein extremal problem des zusammenhangin endlichen graphen, Math. Z. 131(1973), 223-231.
[17] W. Mader, Grad und lokaler zusammenhangs von graphen, Math. Ann. 205(1973), 9-11.
[18] B. Sørensen, C. Thomassen, On k-rails in graphs, J. Combin. Theory 17(1974), 143-159.

