Equivalence Classes of Full-Dimensional 0/1-Polytopes with Many Vertices

William Y.C. Chen ${ }^{1}$ and Peter L. Guo ${ }^{2}$
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ lguo@cfc.nankai.edu.cn

Abstract

Let Q_{n} denote the n-dimensional hypercube with the vertex set $V_{n}=\{0,1\}^{n}$. A $0 / 1$-polytope of Q_{n} is a convex hull of a subset of V_{n}. This paper is concerned with the enumeration of equivalence classes of full-dimensional 0/1-polytopes under the symmetries of the hypercube. With the aid of a computer program, Aichholzer completed the enumeration of equivalence classes of full-dimensional $0 / 1$-polytopes for Q_{4}, Q_{5}, and those of Q_{6} up to 12 vertices. In this paper, we present a method to compute the number of equivalence classes of full-dimensional 0/1-polytopes of Q_{n} with more than 2^{n-3} vertices. As an application, we finish the counting of equivalence classes of full-dimensional 0/1-polytopes of Q_{6} with more than 12 vertices.

Keywords: n-cube, full-dimensional 0/1-polytope, symmetry, hyperplane, Pólya theory. AMS Classification: 05A15, 52A20, 52B12, 05C25

1 Introduction

Let Q_{n} denote the n-dimensional hypercube with vertex set $V_{n}=\{0,1\}^{n}$. A $0 / 1$-polytope of Q_{n} is defined to be the convex hull of a subset of V_{n}. The study of $0 / 1$-polytopes has drawn much attention from different points of view, see, for example, [7, 8, ,12, 13, 14, 16, [22], see also the survey of Ziegler [21].

In this paper, we are concerned with the problem of determining the number of equivalence classes of n-dimensional 0/1-polytopes of Q_{n} under the symmetries of Q_{n}, which has been considered as a difficult problem, see Ziegler [21]. It is also listed by Zong [22, Problem 5.1] as one of the fundamental problems concerning 0/1-polytopes.

An n-dimensional 0/1-polytope of Q_{n} is also called a full-dimensional 0/1-polytope of Q_{n}. Two 0/1-polytopes are said to be equivalent if one can be transformed to the other by a symmetry of Q_{n}. Such a equivalence relation is also called the $0 / 1$-equivalence relation. Figure 1 gives representatives of $0 / 1$-equivalence classes of Q_{2}, among which (d) and (e) are full-dimensional.

Sarangarajan and Ziegler [21, Proposition 8] found an lower bound on the number of equivalence classes of full-dimensional 0/1-polytopes of Q_{n}. As far as exact enumeration is

Figure 1: 0/1-Polytopes of the square
concerned, full-dimensional 0/1-equivalence classes of Q_{4} were counted by Alexx Below, see Ziegler [21]. With the aid of a computer program, Aichholzer [1] completed the enumeration of full-dimensional 0/1-equivalence classes of of Q_{5}, and those of Q_{6} up to 12 vertices, see Aichholzer [3] and Ziegler [21]. The 5-dimensional hypercube Q_{5} has been considered as the last case that one can hope for a complete solution to the enumeration of full-dimensional 0/1-equivalence classes.

The objective of this paper is to present a method to compute the number of fulldimensional $0 / 1$-equivalence classes of Q_{n} with more than 2^{n-3} vertices. As an application, we solve the enumeration problem for full-dimensional $0 / 1$-equivalence classes of the 6 dimensional hypercube with more than 12 vertices.

To describe our approach, we introduce some notation. Denote by $\mathcal{A}_{n}(k)$ (resp., $\mathcal{F}_{n}(k)$) the set of (resp., full-dimensional) $0 / 1$-equivalence classes of Q_{n} with k vertices. Let $\mathcal{H}_{n}(k)$ be the set of $0 / 1$-equivalence classes of Q_{n} with k vertices that are not full-dimensional. The cardinalities of $\mathcal{A}_{n}(k), \mathcal{F}_{n}(k)$ and $\mathcal{H}_{n}(k)$ are denoted respectively by $A_{n}(k), F_{n}(k)$ and $H_{n}(k)$. It is clear that any full-dimensional 0/1-polytope of Q_{n} has at least $n+1$ vertices, i.e., $F_{n}(k)=0$ for $1 \leq k \leq n$.

The starting point of this paper is the following obvious relation

$$
\begin{equation*}
F_{n}(k)=A_{n}(k)-H_{n}(k) . \tag{1.1}
\end{equation*}
$$

The number $A_{n}(k)$ can be computed based on the cycle index of the hyperoctahedral group. We can deduce that $H_{n}(k)=0$ for $k>2^{n-1}$ based on a result duo to Saks. For the purpose of computing $H_{n}(k)$ for $2^{n-2}<k \leq 2^{n-1}$, we transform the computation of $H_{n}(k)$ to the determination of the number of equivalence classes of $0 / 1$-polytopes with k vertices that are contained in the spanned hyperplanes of Q_{n}. To be more specific, we show that $\mathcal{H}_{n}(k)$ for $2^{n-2}<k \leq 2^{n-1}$ can be decomposed into a disjoint union of equivalence classes of $0 / 1$-polytopes that are contained in the spanned hyperplanes of Q_{n}. In particular, for $n=6$ and $k>16$, we obtain the number of full-dimensional 0/1-equivalence classes of Q_{6} with k vertices.

Using a similar idea as in the case $2^{n-2}<k \leq 2^{n-1}$, we can compute $H_{n}(k)$ for $2^{n-3}<k \leq 2^{n-2}$. For $n=6$ and $13 \leq k \leq 16$, we obtain the number of full-dimensional $0 / 1$-equivalence classes of Q_{6} with k vertices. Together with the computation of Aichholzer up to 12 vertices, we have completed the enumeration of full-dimensional $0 / 1$-equivalence classes of the 6 -dimensional hypercube.

2 The cycle index of the hyperoctahedral group

The group of symmetries of Q_{n} is known as the hyperoctahedral group B_{n}. In this section, we review the cycle index of B_{n} acting on the vertex set V_{n}. Since $0 / 1$-equivalence classes of Q_{n} coincide with nonisomorphic vertex colorings of Q_{n} by using two colors, we may compute the number $A_{n}(k)$ from the cycle index of B_{n}.

Let G be a group acting on a finite set X. For any $g \in G, g$ induces a permutation on X. The cycle type of a permutation is defined to be a multiset $\left\{1^{c_{1}}, 2^{c_{2}}, \ldots\right\}$, where c_{i} is the number of cycles of length i that appear in the cycle decomposition of the permutation. For $g \in G$, denote by $c(g)=\left\{1^{c_{1}}, 2^{c_{2}}, \ldots\right\}$ the cycle type of the permutation on X induced by g. Let $z=\left(z_{1}, z_{2}, \ldots\right)$ be a sequence of indeterminants, and let

$$
z^{c(g)}=z_{1}^{c_{1}} z_{2}^{c_{2}} \cdots
$$

The cycle index of G is defined as follows

$$
\begin{equation*}
Z_{G}(z)=Z_{G}\left(z_{1}, z_{2}, \ldots\right)=\frac{1}{|G|} \sum_{g \in G} z^{c(g)} \tag{2.1}
\end{equation*}
$$

According to Pólya's theorem, the cycle index in (2.1) can be applied to count nonisomorphic colorings of X by using a given number of colors.

For a vertex coloring of Q_{n} with two colors, say, black and white, the black vertices can be considered as vertices of a $0 / 1$-polytope of Q_{n}. This establishes a one-to-one correspondence between equivalence classes of vertex colorings and 0/1-equivalence classes of Q_{n}. Let $Z_{n}(z)$ denote the cycle index of B_{n} acting on the vertex set V_{n}. Then, by Pólya's theorem

$$
\begin{equation*}
A_{n}(k)=\left[u_{1}^{k} u_{2}^{2^{n}-k}\right] C_{n}\left(u_{1}, u_{2}\right) \tag{2.2}
\end{equation*}
$$

where $C_{n}\left(u_{1}, u_{2}\right)$ is the polynomial obtained from $Z_{n}(z)$ by substituting z_{i} with $u_{1}^{i}+u_{2}^{i}$, and $\left[u_{1}^{p} u_{2}^{q}\right] C_{n}\left(u_{1}, u_{2}\right)$ denotes the coefficient of $u_{1}^{p} u_{2}^{q}$ in $C_{n}\left(u_{1}, u_{2}\right)$.

Clearly, the total number of $0 / 1$-equivalence classes of Q_{n} is given by

$$
\begin{equation*}
\sum_{k=1}^{2^{n}} A_{n}(k)=C_{n}(1,1) \tag{2.3}
\end{equation*}
$$

It should be noted that $C_{n}(1,1)$ also equals the number of types of Boolean functions, see Chen [10] and references therein. This number is also related to configurations of n-dimensional Orthogonal Pseudo-Polytopes, see, e.g., Aguila [5]. The computation of $Z_{n}(z)$ has been studied by Chen [10], Harrison and High [15], and Pólya [18], etc. Explicit expressions of $Z_{n}(z)$ for $n \leq 6$ can be found in [5], and we list them bellow.

$$
Z_{1}(z)=z_{1}
$$

$$
\begin{aligned}
& Z_{2}(z)=\frac{1}{8}\left(z_{1}^{4}+2 z_{1}^{2} z_{2}+3 z_{2}^{2}+2 z_{4}\right) \\
& Z_{3}(z)=\frac{1}{48}\left(z_{1}^{8}+6 z_{1}^{4} z_{2}^{2}+13 z_{2}^{4}+8 z_{1}^{2} z_{3}^{2}+12 z_{4}^{2}+8 z_{2} z_{6}\right), \\
& Z_{4}(z)=\frac{1}{384}\binom{z_{1}^{16}+12 z_{1}^{8} z_{2}^{4}+12 z_{1}^{4} z_{2}^{6}+51 z_{2}^{8}+48 z_{8}^{2}}{+48 z_{1}^{2} z_{2} z_{4}^{3}+84 z_{4}^{4}+96 z_{2}^{2} z_{6}^{2}+32 z_{1}^{4} z_{3}^{4}}, \\
& Z_{5}(z)=\frac{1}{3840}\left(\begin{array}{l}
z_{1}^{32}+20 z_{1}^{16} z_{2}^{8}+60 z_{1}^{8} z_{2}^{12}+231 z_{2}^{16}+80 z_{1}^{8} z_{3}^{8}+240 z_{1}^{4} z_{2}^{2} z_{4}^{6} \\
+240 z_{2}^{4} z_{4}^{6}+520 z_{4}^{8}+384 z_{1}^{2} z_{5}^{6}+160 z_{1}^{4} z_{2}^{2} z_{3}^{4} z_{6}^{2}+720 z_{2}^{4} z_{6}^{4} \\
+480 z_{8}^{4}+384 z_{2} z_{10}^{3}+320 z_{4}^{2} z_{12}^{2}
\end{array}\right) \\
& Z_{6}(z)=\frac{1}{46080}\left(\begin{array}{l}
z_{1}^{64}+30 z_{1}^{32} z_{2}^{16}+180 z_{1}^{16} z_{2}^{24}+120 z_{1}^{8} z_{2}^{28}+1053 z_{2}^{32}+160 z_{1}^{16} z_{3}^{16}+ \\
640 z_{1}^{4} z_{3}^{20}+720 z_{1}^{8} z_{2}^{4} z_{4}^{12}+1440 z_{1}^{4} z_{2}^{6} z_{4}^{12}+2160 z_{2}^{8} z_{4}^{12}+4920 z_{4}^{16}+ \\
2304 z_{1}^{4} z_{5}^{12}+960 z_{1}^{8} z_{2}^{4} z_{3}^{8} z_{6}^{4}+5280 z_{2}^{8} z_{6}^{8}+3840 z_{1}^{2} z_{2} z_{3}^{2} z_{6}^{9}+5760 z_{8}^{8} \\
+1920 z_{2}^{2} z_{6}^{10}+6912 z_{2}^{2} z_{10}^{6}+3840 z_{4}^{4} z_{12}^{4}+3840 z_{4} z_{12}^{5}
\end{array}\right)
\end{aligned}
$$

The method of Chen for computing $Z_{n}(z)$ is based on the cycle structure of a power of a signed permutation. Let us recall the notation of a signed permutation. A signed permutation on $\{1,2, \ldots, n\}$ is a permutation on $\{1,2, \ldots, n\}$ with a + or a - sign attached to each element $1,2, \ldots, n$. Following the notation in Chen [10] or Chen and Stanley [11], we may write a signed permutation in terms of the cycle decomposition and ignore the plus sign + . For example, $(\overline{2} 4 \overline{5})(3)(1 \overline{6})$ represents a signed permutation, where $(245)(3)(16)$ is called its underlying permutation. The action of a signed permutation w on the vertices of Q_{n} is defined as follows. For a vertex $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of Q_{n}, we define $w\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ to be the vertex $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ as given by

$$
y_{i}= \begin{cases}x_{\pi(i)}, & \text { if } i \text { has the sign }+, \tag{2.4}\\ 1-x_{\pi(i)}, & \text { if } i \text { has the sign }-,\end{cases}
$$

where π is the underlying permutation of w.
For the purpose of this paper, we define the cycle type of a signed permutation $w \in B_{n}$ as the cycle type of its underlying permutation. For example, $(\overline{2} 4 \overline{5})(3)(1 \overline{6})(7)$ has cycle type $\left\{1^{2}, 2,3\right\}$. We should note that the above definition of a cycle type of a signed permutation is different from the definition in terms of double partitions as in [10] because it will be shown in Section 5 that any signed permutation that fixes a spanned hyperplane of Q_{n} either have all positive cycles or all negative cycles.

We end this section with the following formula of Chen [10], which will be used in Section 6 to compute the cycle index of the group that fixes a spanned hyperplane of Q_{n}.

Theorem 2.1 Let G be a group that acts on some finite set X. For any $g \in G$, the number of i-cycles of the permutation on X induced by g is given by

$$
\frac{1}{i} \sum_{j \mid i} \mu(i / j) \psi\left(g^{j}\right),
$$

where μ is the classical number-theoretic Möbius function and $\psi\left(g^{j}\right)$ is the number of fixed points of g^{j} on X.

3 0/1-Polytopes with many vertices

In this section, we find an inequality concerning the dimension of a 0/1-polytope of Q_{n} and the number of its vertices. This inequality plays a key role in the computation of $F_{n}(k)$ for $k>2^{n-3}$.

The main theorem of this section is given below.
Theorem 3.1 Let P be a 0/1-polytope of Q_{n} with more than 2^{n-s} vertices, where $1 \leq$ $s \leq n$. Then we have

$$
\operatorname{dim}(P) \geq n-s+1
$$

The above theorem can be deduced from the following assertion.

Theorem 3.2 For any $1 \leq s \leq n$, the intersection of s hyperplanes in \mathbb{R}^{n} with linearly independent normal vectors contains at most 2^{n-s} vertices of Q_{n}.

Indeed, it is not difficult to see that Theorem 3.2 implies Theorem 3.1. Let P be a $0 / 1-$ polytope of Q_{n} with more than 2^{n-s} vertices. Suppose to the contrary that $\operatorname{dim}(P) \leq n-s$. It is known that the affine space spanned by P can be expressed as the intersection of a collection of hyperplanes. Since $\operatorname{dim}(P) \leq n-s$, there exist s hyperplanes $H_{1}, H_{2}, \ldots, H_{s}$ whose normal vectors are linearly independent such that the intersection of $H_{1}, H_{2}, \ldots, H_{s}$ contains P. Let $V(P)$ denote the vertex set of P. By Theorem 3.2, we have

$$
|V(P)| \leq\left|\left(\bigcap_{i=1}^{s} H_{i}\right) \bigcap V_{n}\right| \leq 2^{n-s}
$$

which is a contradiction to the assumption that P contains more than 2^{n-s} vertices of Q_{n}. So we conclude that $\operatorname{dim}(P) \geq n-s+1$.
Proof of Theorem 3.2. Assume that, for $1 \leq i \leq s$,

$$
H_{i}: a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}=b_{i}
$$

are s hyperplanes in \mathbb{R}^{n}, whose normal vectors $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ are linearly independent. We aim to show that the intersection of $H_{1}, H_{2}, \ldots, H_{s}$ contains at most 2^{n-s} vertices of Q_{n}. We may express the intersection of $H_{1}, H_{2}, \ldots, H_{s}$ as the solution of a system of linear equations, that is,

$$
\begin{equation*}
\bigcap_{i=1}^{s} H_{i}=\left\{x^{T}: A x=b\right\} \tag{3.1}
\end{equation*}
$$

where A denotes the matrix $\left(a_{i j}\right)_{1 \leq i \leq s, 1 \leq j \leq n}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$, and $b=\left(b_{1}, \ldots, b_{s}\right)^{T}$, T denotes the transpose of a vector. Then Theorem 3.2 is equivalent to the following inequality

$$
\begin{equation*}
\left|V_{n} \bigcap\left\{x^{T}: A x=b\right\}\right| \leq 2^{n-s} \tag{3.2}
\end{equation*}
$$

We now proceed to prove (3.2) by induction on n and s. We first consider the case $s=1$. Suppose that $H: c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=c$ is a hyperplane in \mathbb{R}^{n}. Assume that among the coefficients $c_{1}, c_{2}, \ldots, c_{n}$ there are i of them that are nonzero. Without loss of generality, we may assume that $c_{1}, c_{2}, \ldots, c_{i}$ are nonzero, and $c_{i+1}=c_{i+2}=\cdots=c_{n}=0$. Clearly, H reduces to a hyperplane in the i-dimensional Euclidean space \mathbb{R}^{i}. Such a hyperplane with nonzero coefficients is called a skew hyperplane. Now the vertices of Q_{n} contained in H are of the form $\left(d_{1}, \ldots, d_{i}, d_{i+1}, \ldots, d_{n}\right)$ where $\left(d_{1}, \ldots, d_{i}\right)$ are vertices of Q_{i} contained in the skew hyperplane $H^{\prime}: c_{1} x_{1}+c_{2} x_{2}+\cdots c_{i} x_{i}=b$. Clearly, for each vertex $\left(d_{1}, d_{2}, \ldots, d_{i}\right)$ in H^{\prime}, there are 2^{n-i} choices for $\left(d_{i+1}, d_{i+2}, \ldots, d_{n}\right)$ such that $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is contained in H. Using Sperner's lemma (see, for example, Lubell [17]), Saks [19, Theorem 3.64] has shown that the number of vertices of Q_{i} contained in a skew hyperplane does not exceed $\binom{i}{\left\lfloor\frac{i}{2}\right\rfloor}$. Let

$$
f(n, i)=2^{n-i}\binom{i}{\left\lfloor\frac{i}{2}\right\rfloor}
$$

Thus the number of vertices of Q_{n} contained in H is at most $f(n, i)$. It is easy to check that

$$
\frac{f(n, i)}{f(n, i+1)}= \begin{cases}\frac{i+2}{i+1}, & \text { if } i \text { is even } \\ 1, & \text { if } i \text { is odd }\end{cases}
$$

This yields $f(n, i) \geq f(n, i+1)$ for any $i=1,2, \ldots, n-1$. Hence H contains at most $f(n, 1)=2^{n-1}$ vertices of Q_{n}, which implies (3.2) for $s=1$.

We now consider the case $s=n$. In this case, since the normal vectors a_{1}, \ldots, a_{n} are linearly independent, the square matrix A is nonsingular. It follows that $A x=b$ has exactly one solution. Therefore, inequality (3.2) holds when $s=n$.

So we are left with cases of n, s such that $1<s<n$. We shall use induction to complete the proof. Suppose that (3.2) holds for n^{\prime}, s^{\prime} such that $n^{\prime} \leq n, s^{\prime} \leq s$ and $\left(n^{\prime}, s^{\prime}\right) \neq(n, s)$.

Since the normal vector a_{1} is nonzero, there exists some $j_{0}\left(1 \leq j_{0} \leq n\right)$ such that $a_{1 j_{0}} \neq 0$. Without loss of generality, we may assume $a_{i j_{0}}=0$ for $2 \leq i \leq s$ since
one can apply elementary row transformations to the system of linear equations $A x=b$ to ensure that the assumption is valid. For a vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, let $v^{j}=$ $\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right) \in \mathbb{R}^{n-1}$ be the vector obtained from v by deleting the j-th coordinate. We now have two cases.

Case 1. The vectors $a_{1}^{j_{0}}, \ldots, a_{s}^{j_{0}}$ are linearly dependent. Since a_{2}, \ldots, a_{s} are linearly independent and $a_{i j_{0}}=0$ for $2 \leq i \leq s$, it is clear that $a_{2}^{j_{0}}, \ldots, a_{s}^{j_{0}}$ are linearly independent. So the vector $a_{1}^{j_{0}}$ can be expressed as a linear combination of $a_{2}^{j_{0}}, \ldots, a_{s}^{j_{0}}$. Assume that $a_{1}^{j_{0}}=\alpha_{2} a_{2}^{j_{0}}+\ldots+\alpha_{s} a_{s}^{j_{0}}$, where $\alpha_{k} \in \mathbb{R}$ for $2 \leq k \leq s$. For $2 \leq k \leq s$, multiplying the k-th row by α_{k} and subtracting it from the first row, then the first equation $a_{11} x_{1}+a_{12} x_{2}+$ $\cdots+a_{1 n} x_{n}=b_{1}$ becomes

$$
\begin{equation*}
a_{1 j_{0}} x_{j_{0}}=b_{1}-\sum_{k=2}^{s} \alpha_{k} b_{k} . \tag{3.3}
\end{equation*}
$$

Let $A^{\prime}=\left(a_{2}, \ldots, a_{s}\right)^{T}$ and $b^{\prime}=\left(b_{2}, \ldots, b_{s}\right)^{T}$. Note that all entries in the j_{0}-th column of A^{\prime} are zero since we have assumed $a_{i j_{0}}=0$ for $2 \leq i \leq s$. Let $A_{j_{0}}^{\prime}$ be the matrix obtained from A^{\prime} by removing this zero column. From equation (3.3), the value $x_{j_{0}}$ in the j_{0}-th coordinate of the solutions of $A x=b$ is fixed. Then solutions of $A x=b$ can be obtained from the solutions of $A_{j_{0}}^{\prime} x=b^{\prime}$ by adding the value of $x_{j_{0}}$ to the j_{0}-th coordinate. Concerning the number of vertices of Q_{n} contained in $\left\{x^{T}: A x=b\right\}$, we consider the following two cases.
(1). The value $x_{j_{0}}$ is not equal to 0 or 1 . In this case, no vertex of Q_{n} is contained in $\left\{x^{T}: A x=b\right\}$. Hence inequality (3.2) holds.
(2). The value $x_{j_{0}}$ is equal to 0 or 1 . Since every vertex of Q_{n} contained in $\left\{x^{T}: A x=b\right\}$ is obtained from a vertex of Q_{n-1} contained in $\left\{x^{T}: A_{j_{0}}^{\prime} x=b^{\prime}\right\}$ by adding $x_{j_{0}}$ in the j_{0}-th coordinate, it follows that

$$
\begin{equation*}
\left|V_{n} \bigcap\left\{x^{T}: A x=b\right\}\right|=\left|V_{n-1} \bigcap\left\{x^{T}: A_{j_{0}}^{\prime} x=b^{\prime}\right\}\right| . \tag{3.4}
\end{equation*}
$$

By the induction hypothesis, we find

$$
\left|V_{n-1} \bigcap\left\{x^{T}: A_{j_{0}}^{\prime} x=b^{\prime}\right\}\right| \leq 2^{(n-1)-(s-1)}=2^{n-s}
$$

In view of (3.4), we obtain (3.2).
Case 2. Suppose $a_{1}^{j_{0}}, \ldots, a_{s}^{j_{0}}$ are linearly independent. Assume that the value of $x_{j_{0}}$ in the solutions of $\left\{x^{T}: A x=b\right\}$ can be taken 0 or 1 . Then the vertices of Q_{n} contained in $\left\{x^{T}: A x=b\right\}$ can be decomposed into a disjoint union of the following two sets

$$
S_{0}=V_{n} \bigcap\left\{x^{T}: x_{j_{0}}=0, A x=b\right\}
$$

and

$$
S_{1}=V_{n} \bigcap\left\{x^{T}: x_{j_{0}}=1, A x=b\right\} .
$$

We first consider the set S_{0}. Let $A^{\prime \prime}=\left(a_{1}^{j_{0}}, \ldots, a_{s}^{j_{0}}\right)^{T}$ be the matrix obtained from A by deleting the j_{0}-th column. Then vertices of Q_{n} contained in S_{0} are obtained from the vertices of Q_{n-1} contained in $\left\{x^{T}: A^{\prime \prime} x=b\right\}$ by adding 0 to the j_{0}-th coordinate. So we have

$$
\left|S_{0}\right|=\left|V_{n-1} \bigcap\left\{x^{T}: A^{\prime \prime} x=b\right\}\right| \leq 2^{n-1-s}
$$

where the inequality follows from the induction hypothesis. Similarly, we get $\left|S_{1}\right| \leq$ 2^{n-1-s}. Hence

$$
\left|V_{n} \bigcap\left\{x^{T}: A x=b\right\}\right|=\left|S_{0}\right|+\left|S_{1}\right| \leq 2^{n-s} .
$$

Combining the above two cases, inequality (3.2) is true for $1 \leq s \leq n$. This completes the proof.

Note that the upper bound 2^{n-s} is sharp. For example, it is easy to see the intersection of hyperplanes $x_{i}=0(1 \leq i \leq s)$ contains exactly 2^{n-s} vertices of Q_{n}.

By Theorem 3.2, we see that every $0 / 1$-polytope of Q_{n} with more than 2^{n-1} vertices is full-dimensional. As a direct consequence, we obtain the following relation.

Corollary 3.3 For $k>2^{n-1}$, we have

$$
F_{n}(k)=A_{n}(k) .
$$

Form Corollary [3.3, the number $F_{n}(k)$ for $k>2^{n-1}$ can be computed from the cycle index of the hyperoctahedral group, that is, for $k>2^{n-1}$

$$
F_{n}(k)=\left[u_{1}^{k} u_{2}^{2^{n}-k}\right] C_{n}\left(u_{1}, u_{2}\right)
$$

For $n=4,5$ and 6 , the values of $F_{n}(k)$ for $k>2^{n-1}$ are given in Tables 1, 2 and 3 ,

k	9	10	11	12	13	14	15	16
$F_{4}(k)$	56	50	27	19	6	4	1	1

Table 1: $F_{4}(k)$ for $k>8$.

k	17	18	19	20	21	22	23	24
$F_{5}(k)$	158658	133576	98804	65664	38073	19963	9013	3779
k	25	26	27	28	29	30	31	32
$F_{5}(k)$	1326	472	131	47	29	5	1	1

Table 2: $F_{5}(k)$ for $k>16$.

k	$F_{6}(k)$	k	$F_{6}(k)$
33	38580161986426	49	3492397119
34	35176482187398	50	1052201890
35	30151914536933	51	290751447
36	24289841497881	52	73500514
37	18382330104696	53	16938566
38	13061946976545	54	3561696
39	8708686182967	55	681474
40	5443544478011	56	120843
41	3186944273554	57	19735
42	1745593733454	58	3253
43	893346071377	59	497
44	426539774378	60	103
45	189678764492	61	16
46	78409442414	62	6
47	30064448972	63	1
48	10666911842	64	1

Table 3: $F_{6}(k)$ for $k>32$.

$4 \quad H_{n}(k)$ for $2^{n-2}<k \leq 2^{n-1}$

In this section, we shall aim to compute $H_{n}(k)$ for $2^{n-2}<k \leq 2^{n-1}$. We shall show that in this case the number $H_{n}(k)$ is determined by the number of (partial) 0/1-equivalence classes of a spanned hyperplane of Q_{n} with k vertices. To this end, it is necessary to consider all possible spanned hyperplanes of Q_{n}. More precisely, we need representatives of equivalence classes of such spanned hyperplanes.

Recall that a spanned hyperplane of Q_{n} is a hyperplane in \mathbb{R}^{n} spanned by n affinely independent vertices of Q_{n}, that is, the affine space spanned by the vertices of Q_{n} contained in this hyperplane is of dimension $n-1$. Let

$$
H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

be a spanned hyperplane of Q_{n}, where $\left|a_{1}\right|, \ldots,\left|a_{n}\right|,|b|$ are positive integers with greatest common divisor 1. Let

$$
\operatorname{coeff}(n)=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
$$

It is clear that coeff $(2)=\operatorname{coeff}(3)=1$. The study of upper and lower bounds on the number coeff (n) has drawn much attention, see, for example, [4, 6, 9, 21]. The following are known bounds on coeff (n) and $|b|$, see, e.g., [21, Corollary 26] and [4, Theorem 5],

$$
\frac{(n-1)^{(n-1) / 2}}{2^{2 n+o(n)}} \leq \operatorname{coeff}(n) \leq \frac{n^{n / 2}}{2^{n-1}} \quad \text { and } \quad|b| \leq 2^{-n}(n+1)^{\frac{n+1}{2}}
$$

Using the above bounds, Aichholzer and Aurenhammer [4] obtained the exact values of coeff (n) for $n \leq 8$ by computing all possible spanned hyperplanes of Q_{n} up to dimension 8. For example, they showed that coeff $(4)=2$, $\operatorname{coeff}(5)=3$, and $\operatorname{coeff}(6)=5$.

As will be seen, in order to compute $H_{n}(k)$ for $2^{n-2}<k \leq 2^{n-1}$, we need to consider equivalence classes of spanned hyperplanes of Q_{n} under the symmetries of Q_{n}. Note that the symmetries of Q_{n} can be expressed by permuting the coordinates and changing x_{i} to $1-x_{i}$ for some indices i. Therefore, for each equivalence class of spanned hyperplanes of Q_{n}, we can choose a representative of the following form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b \tag{4.1}
\end{equation*}
$$

where $t \leq n$ and $0<a_{1} \leq a_{2} \leq \cdots \leq a_{t} \leq \operatorname{coeff}(n)$.
A complete list of spanned hyperplanes of Q_{n} for $n \leq 6$ can been found in [2]. The following hyperplanes are representatives of equivalence classes of spanned hyperplanes of Q_{4} :

$$
\begin{aligned}
& x_{1}=0, \\
& x_{1}+x_{2}=1, \\
& x_{1}+x_{2}+x_{3}=1, \\
& x_{1}+x_{2}+x_{3}+x_{4}=1 \text { or } 2, \\
& x_{1}+x_{2}+x_{3}+2 x_{4}=2 .
\end{aligned}
$$

In addition to the above hyperplanes of \mathbb{R}^{4}, which can also be viewed as spanned hyperplanes of Q_{5}, we have the following representatives of equivalence classes of spanned hyperplanes of Q_{5} :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1 \text { or } 2, \\
& x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=2 \text { or } 3, \\
& x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5}=2 \text { or } 3, \\
& x_{1}+x_{2}+2 x_{3}+2 x_{4}+2 x_{5}=3 \text { or } 4, \\
& x_{1}+x_{2}+x_{3}+x_{4}+3 x_{5}=3, \\
& x_{1}+x_{2}+x_{3}+2 x_{4}+3 x_{5}=3, \\
& x_{1}+x_{2}+2 x_{3}+2 x_{4}+3 x_{5}=4
\end{aligned}
$$

When $n=6$, for the purpose of computing $F_{6}(k)$ for $16<k \leq 32$, we need the representatives of equivalence classes of spanned hyperplanes of Q_{6} containing more than 16 vertices of Q_{6}. There are 6 such representatives as given below:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{1}+x_{2}=1,
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1, \\
& x_{1}+x_{2}+x_{3}+x_{4}=2, \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2, \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=3 .
\end{aligned}
$$

Clearly, two spanned hyperplanes of Q_{n} in the same equivalence class contain the same number of vertices of Q_{n}. So we may say that an equivalence class of spanned hyperplanes of Q_{n} contains k vertices of Q_{n} if every hyperplane in this class contains k vertices of Q_{n}.

To state the main result of this section, we need to define the equivalence classes of $0 / 1$-polytopes contained in a set of points in \mathbb{R}^{n}. Given a set $\mathcal{S} \subset \mathbb{R}^{n}$, consider the set of 0/1-polytopes of Q_{n} that are contained in \mathcal{S}, denoted by $\mathcal{S}\left(Q_{n}\right)$. Restricting the 0/1equivalence relation to the set $\mathcal{S}\left(Q_{n}\right)$ indicates a equivalence relation on $\mathcal{S}\left(Q_{n}\right)$. More precisely, two 0/1-polytopes in $\mathcal{S}\left(Q_{n}\right)$ are equivalent if one can be transformed to the other by a symmetry of Q_{n}. We call equivalence classes of $0 / 1$-polytopes in $\mathcal{S}\left(Q_{n}\right)$ partial 0/1equivalence classes of \mathcal{S} for the reason that any partial equivalence class of \mathcal{S} is a subset of a (unique) $0 / 1$-equivalence class of Q_{n}. Notice that for a $0 / 1$-polytope P contained in \mathcal{S} and a symmetry $w, w(P)$ is not in the partial 0/1-equivalence class of P when $w(P)$ is not in $\mathcal{S}\left(Q_{n}\right)$. Denote by $\mathcal{P}(\mathcal{S}, k)$ the set of partial 0/1-equivalence classes of \mathcal{S} with k vertices. Let $N_{\mathcal{S}}(k)$ be the cardinality of $\mathcal{P}(\mathcal{S}, k)$.

Let $h(n, k)$ denote the number of equivalence classes of spanned hyperplanes of Q_{n} that contain at least k vertices of Q_{n}. Assume that $H_{1}, H_{1}, \ldots, H_{h(n, k)}$ are the representatives of equivalence classes of spanned hyperplanes of Q_{n} containing at least k vertices of Q_{n}. Recall that $\mathcal{H}_{n}(k)$ denotes the set of $0 / 1$-equivalence classes of Q_{n} with k vertices that are not full-dimensional. We shall define a map, denoted by Φ, from the (disjoint) union of $\mathcal{P}\left(H_{i}, k\right)$ for $1 \leq i \leq h(n, k)$ to $\mathcal{H}_{n}(k)$. Given a partial 0/1-equivalence class $\mathcal{P}_{i} \in \mathcal{P}\left(H_{i}, k\right)$ $(1 \leq i \leq h(n, k))$, then we define $\Phi\left(\mathcal{P}_{i}\right)$ to be the (unique) $0 / 1$-equivalence class in $\mathcal{H}_{n}(k)$ containing \mathcal{P}_{i}. Then we have the following theorem.

Theorem 4.1 If $2^{n-2}<k \leq 2^{n-1}$, then the map Φ is a bijection.

Proof. We proceed to show that Φ is injective. To this end, we shall prove that for any two distinct partial $0 / 1$-equivalence classes \mathcal{P}_{1} and \mathcal{P}_{2} with k vertices, their images, denoted by \mathcal{C}_{1} and \mathcal{C}_{2}, are distinct $0 / 1$-equivalence classes. Assume that $\mathcal{P}_{1} \in \mathcal{P}\left(H_{i}, k\right)$ and $\mathcal{P}_{2} \in \mathcal{P}\left(H_{j}, k\right)$, where $1 \leq i, j \leq h(n, k)$. Let P_{1} (resp. P_{2}) be any 0/1-polytope in \mathcal{P}_{1} (resp. \mathcal{P}_{2}). Evidently, P_{1} (resp. P_{2}) is a $0 / 1$-polytope in \mathcal{C}_{1} (resp. \mathcal{C}_{2}). To prove that $\mathcal{C}_{1} \neq \mathcal{C}_{2}$, it suffices to show that P_{1} and P_{2} are not in the same $0 / 1$-equivalence class. We have two cases.

Case 1. $i=j$. In this case, it is clear that P_{1} and P_{2} are not equivalent.
Case 2. $i \neq j$. Suppose to the contrary that P_{1} and P_{2} are in the same $0 / 1$-equivalence class. Then there exists a symmetry $w \in B_{n}$ such that $w\left(P_{1}\right)=P_{2}$. Since $2^{n-2}<k \leq 2^{n-1}$,
by Theorem 3.1 we see that P_{1} and P_{2} are of dimension $n-1$. Since P_{1} is contained in H_{i}, H_{i} coincides with the affine space spanned by P_{1}. Similarly, H_{j} is the affine space spanned by P_{2}. This implies that $w\left(H_{i}\right)=H_{j}$, contradicting the assumption that H_{i} and H_{j} belong to distinct equivalence classes of spanned hyperplanes of Q_{n}. Consequently, P_{1} and P_{2} are not in the same $0 / 1$-equivalence class.

It remains to show that Φ is surjective. For any $\mathcal{C} \in \mathcal{H}_{n}(k)$, we aim to find a partial $0 / 1$-equivalence class such that its image is \mathcal{C}. Let P be any $0 / 1$-polytope in \mathcal{C}. Since P is not full-dimensional, we can find a spanned hyperplane H of Q_{n} such that P is contained in H. It follows that H contains at leat k vertices of Q_{n}. Thus there exists a representative $H_{j}(1 \leq j \leq h(n, k))$ such that H is in the equivalence class of H_{j}. Assume that $w(H)=H_{j}$ for some $w \in B_{n}$. Then $w(P)$ is contained in H_{j}. It is easily seen that under the map Φ, \mathcal{C}_{i} is the image of the partial 0/1-equivalence class of H_{j} containing $w(P)$. Thus we conclude that the above map is a bijection. This completes the proof.

It should also be noted that in the above proof of Theorem 4.1, the condition $2^{n-2}<$ $k \leq 2^{n-1}$ is required only in Case 2 . When $k<2^{n-2}$, the map Φ may be no longer an injection. For the case $2^{n-3}<k \leq 2^{n-2}$, we will consider the computation of $H_{n}(k)$ in Section 8.

As a direct consequence of Theorem 4.1, we obtain that for $2^{n-2}<k \leq 2^{n-1}$,

$$
\begin{equation*}
H_{n}(k)=\sum_{i=1}^{h(n, k)} N_{H_{i}}(k) \tag{4.2}
\end{equation*}
$$

Thus, for $2^{n-2}<k \leq 2^{n-1}$ the computation of $H_{n}(k)$ is reduced to the determination of the number $N_{H}(k)$ of partial 0/1-equivalence classes of H with k vertices. In the rest of this section, we shall explain how to compute $N_{H}(k)$.

For $2^{n-2}<k \leq 2^{n-1}$, let H be a spanned hyperplane of Q_{n} containing at least k vertices. Let P and P^{\prime} be two distinct $0 / 1$-polytoeps of Q_{n} with k vertices that are contained in H. Assume that P and P^{\prime} belong to the same partial $0 / 1$-equivalence class of H. Then there exists a symmetry $w \in B_{n}$ such that $w(P)=P^{\prime}$. It is clear from Theorem 3.1 that both P and P^{\prime} have dimension $n-1$. Then H is the affine space spanned by P or P^{\prime}. So we deduce that $w(H)=H$. Let

$$
F(H)=\left\{w \in B_{n}: w(H)=H\right\}
$$

be the stabilizer subgroup of H, namely, the subgroup of B_{n} that fixes H. So we have shown that P and P^{\prime} belong to the same partial 0/1-equivalence class of H if and only if one can be transformed to the other by a symmetry in $F(H)$.

The above fact allows us to use Pólya's theorem to compute the number $N_{H}(k)$ for $2^{n-2}<k \leq 2^{n-1}$. Denote by $V_{n}(H)$ the set of vertices of Q_{n} that are contained in H. Let us consider the action of $F(H)$ on $V_{n}(H)$. Assume that each vertex in $V_{n}(H)$ is assigned one of the two colors, say, black and white. For such a 2-coloring of the
vertices in $V_{n}(H)$, consider the black vertices as vertices of a 0/1-polytope contained in H. Clearly, for $2^{n-2}<k \leq 2^{n-1}$, this establishes a one-to-one correspondence between partial 0/1-equivalence classes of H with k vertices and equivalence classes of 2-colorings of the vertices in $V_{n}(H)$ with k black vertices.

Write $Z_{H}(z)$ for the cycle index of $F(H)$, and let $C_{H}\left(u_{1}, u_{2}\right)$ denote the polynomial obtained from $Z_{H}(z)$ by substituting z_{i} with $u_{1}^{i}+u_{2}^{i}$.

Theorem 4.2 Assume that $2^{n-2}<k \leq 2^{n-1}$, and let H be a spanned hyperplane of Q_{n} containing at least k vertices of Q_{n}. Then we have

$$
N_{H}(k)=\left[u_{1}^{k} u_{2}^{\left|V_{n}(H)\right|-k}\right] C_{H}\left(u_{1}, u_{2}\right)
$$

We will compute the cycle index $Z_{H}(z)$ in Section 5 and Section 6. Section 5 is devoted to the characterization of the stabilizer $F(H)$. In Section 6, we will give an explicit expression for $Z_{H}(z)$.

5 The structure of the stabilizer $F(H)$

In this section, we aim to characterize the stabilizer $F(H)$ for a given spanned hyperplane H of Q_{n}.

Let

$$
H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

be a spanned hyperplane of Q_{n}. Given $w \in B_{n}$, let $s(w)$ be the set of entries of w that are assigned the minus sign. In view of (2.4), it is easy to see that $w(H)$ is of the following form

$$
\begin{equation*}
\sum_{i \notin s(w)} a_{\pi(i)} x_{i}+\sum_{j \in s(w)} a_{\pi(j)}\left(1-x_{j}\right)=b, \tag{5.1}
\end{equation*}
$$

where π is the underlying permutation of w. The hyperplane $w(H)$ in (5.1) can be rewritten as

$$
\begin{equation*}
s(w, 1) \cdot a_{\pi(1)} x_{1}+s(w, 2) \cdot a_{\pi(2)} x_{2}+\cdots+s(w, n) \cdot a_{\pi(n)} x_{n}=b-\sum_{j \in s(w)} a_{\pi(j)} \tag{5.2}
\end{equation*}
$$

where $s(w, j)=-1$ if $j \in s(w)$ and $s(w, j)=1$ otherwise.
As an example, let

$$
H: x_{1}-x_{2}-x_{3}+2 x_{4}=1
$$

be a spanned hyperplane of Q_{4}. Upon the action of the symmetry $w=(1)(\overline{2} \overline{3})(4) \in B_{4}$, H is transformed into the following hyperplane

$$
x_{1}+x_{2}+x_{3}+2 x_{4}=3
$$

As mentioned in Section 4, for every equivalence class of spanned hyperplanes of Q_{n}, we can choose a representative of the following form

$$
\begin{equation*}
H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b \tag{5.3}
\end{equation*}
$$

where $a_{1} \leq a_{2} \leq \cdots \leq a_{t}(t \leq n)$, and the coefficients a_{i} 's and b are positive integers. Note that this observation also follows from (5.2). From now on, we shall restrict our attention only to spanned hyperplanes of Q_{n} of the form as in (5.3). The following definition is required for the determination of $F(H)$.

Definition 5.1 Let H be a spanned hyperplane of the form as in (5.3). The type of H is defined to be a vector $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$, where α_{i} is the multiplicity of i occurring in the set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$.

For example, let

$$
\begin{equation*}
H: x_{1}+x_{2}+2 x_{3}+2 x_{4}+3 x_{5}=4 \tag{5.4}
\end{equation*}
$$

be a spanned hyperplane of Q_{5}. Then, the type of H is $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(2,2,1)$.
For positive integers i and j such that $i \leq j$, let $[i, j]$ denote the interval $\{i, i+1, \ldots, j\}$. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$ be the type of a spanned hyperplane. Under the assumption that $\alpha_{0}=0$, the following set

$$
\begin{equation*}
\left\{\left[\alpha_{1}+\cdots+\alpha_{i-1}+1, \alpha_{1}+\cdots+\alpha_{i-1}+\alpha_{i}\right]: 1 \leq i \leq \ell\right\} \tag{5.5}
\end{equation*}
$$

is a partition of the set $\{1,2, \ldots, t\}$. For example, let $\alpha=(2,2,1)$. Then the corresponding partition is $\{\{1,2\},\{3,4\},\{5\}\}$.

Since (5.5) is a partition of $\{1,2, \ldots, t\}$, we can define the corresponding Young subgroup S_{α} of the permutation group on $\{1,2, \ldots, t\}$, namely,

$$
\begin{equation*}
S_{\alpha}=S_{\alpha_{1}} \times S_{\alpha_{2}} \times \cdots \times S_{\alpha_{\ell}}, \tag{5.6}
\end{equation*}
$$

where \times denotes the direct product of groups, and for $i=1,2, \ldots, \ell, S_{\alpha_{i}}$ is the permutation group on the interval

$$
\begin{equation*}
\left[\alpha_{1}+\cdots+\alpha_{i-1}+1, \alpha_{1}+\cdots+\alpha_{i-1}+\alpha_{i}\right] \tag{5.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\bar{S}_{\alpha}=\bar{S}_{\alpha_{1}} \times \bar{S}_{\alpha_{2}} \times \cdots \times \bar{S}_{\alpha_{\ell}} \tag{5.8}
\end{equation*}
$$

where $\bar{S}_{\alpha_{i}}$ is the set of signed permutations on the interval (5.7) with all elements assigned the minus sign. Define

$$
P(H)= \begin{cases}S_{\alpha}, & \text { if } \quad \sum_{i=1}^{t} a_{i} \neq 2 b \tag{5.9}\\ S_{\alpha} \bigcup \bar{S}_{\alpha}, & \text { if } \quad \sum_{i=1}^{t} a_{i}=2 b\end{cases}
$$

The following theorem gives a characterization of the stabilizer of a spanned hyperplane.

Theorem 5.2 Let $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b$ be a spanned hyperplane of Q_{n}. Then

$$
F(H)=P(H) \times B_{n, t},
$$

where $B_{n, t}$ is the group of all signed permutations on the interval $[t+1, n]$.
Proof. Assume that $w \in F(H)$ and π is the underlying permutation of w. We aim to show that $w \in P(H) \times B_{n, t}$. Consider the expression of $w(H)$ as in (5.2), that is,

$$
\begin{equation*}
s(w, 1) \cdot a_{\pi(1)} x_{1}+s(w, 2) \cdot a_{\pi(2)} x_{2}+\cdots+s(w, n) \cdot a_{\pi(n)} x_{n}=b-\sum_{j \in s(w)} a_{\pi(j)} \tag{5.10}
\end{equation*}
$$

We claim that $s(w, j)$ are either all positive or all negative for $1 \leq j \leq t$. Suppose otherwise that there exist $1 \leq i, j \leq t(i \neq j)$ such that $s(w, i)>0$ and $s(w, j)<0$. Since the a_{i} 's are all positive, we see that the coefficients $s(w, i) a_{\pi(i)}$ and $s(w, j) a_{\pi(j)}$ for the hyperplane $w(H)$ have opposite signs. This implies that $w(H)$ and H are distinct, which contradicts the assumption that w fixes H. We now have the following two cases.

Case 1. The signs $s(w, j)$ are all positive for $1 \leq j \leq t$. In this case, since $w(H)=H$ it is clear that $w(H)$ is of the following form

$$
a_{\pi(1)} x_{1}+a_{\pi(2)} x_{2}+\cdots+a_{\pi(t)} x_{t}=b
$$

where $a_{\pi(j)}=a_{j}$ for $1 \leq j \leq t$. Hence we deduce that, for any $1 \leq j \leq t, \pi(j)$ is in the interval $\left[\alpha_{1}+\cdots+\alpha_{i-1}+1, \alpha_{1}+\cdots+\alpha_{i-1}+\alpha_{i}\right]$ that contains the element j. Thus we obtain that $w \in S_{\alpha} \times B_{n, t}$.

Case 2. The signs $s(w, j)$ are all negative for $1 \leq j \leq t$. In this case, we see that $w(H)$ is of the following form

$$
-a_{\pi(1)} x_{1}-a_{\pi(2)} x_{2}-\cdots-a_{\pi(t)} x_{t}=b-\left(a_{1}+\cdots+a_{t}\right)
$$

Since $w(H)=H$, we have $a_{\pi(j)}=a_{j}$ for $1 \leq j \leq t$ and $b-\left(a_{1}+\cdots+a_{t}\right)=-b$. Thus we obtain $w \in \bar{S}_{\alpha} \times B_{n, t}$. Combining the above two cases, we conclude that $w \in P(H) \times B_{n, t}$.

On the other hand, from the expression (5.10) for $w(H)$, it is not difficult to check that every symmetry w in $P(H) \times B_{n, t}$ fixes H. This completes the proof.

As will been seen in Section 6, for the purpose of computing the cycle index $Z_{H}(z)$ with respect to a spanned hyperplane H of Q_{n}, it is often necessary to consider the structure of the subgroup $P(H)$ of $F(H)$. We sometimes write a symmetry $\pi \in P(H)$ as a product form $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$, which means that for $i=1,2 \ldots, \ell, \pi_{i} \in S_{\alpha_{i}}$ if $\pi \in S_{\alpha}$, and $\pi_{i} \in \bar{S}_{\alpha_{i}}$ if $\pi \in \bar{S}_{\alpha}$, where α is the type of H. We conclude this section with the following proposition, which will be required for the computation of $Z_{H}(z)$ in Section 6.

Proposition 5.3 Let H be a spanned hyperplane of Q_{n} of type α. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$ and $\pi^{\prime}=\pi_{1}^{\prime} \pi_{2}^{\prime} \cdots \pi_{\ell}^{\prime}$ be two symmetries in $P(H)$, and assume that both π and π^{\prime} are either in S_{α} or in \bar{S}_{α}. If π_{i} and π_{i}^{\prime} have the same cycle type for $1 \leq i \leq \ell$, then π and π^{\prime} are in the same conjugacy class of $P(H)$.

Proof. To prove that π and π^{\prime} are conjugate in $P(H)$, it suffices to show that there exists a symmetry $w \in P(H)$ such that $\pi=w \pi^{\prime} w^{-1}$. First, we consider the case when both π and π^{\prime} are in S_{α}. Since π_{i} and π_{i}^{\prime} are of the same cycle type, they are in the same conjugacy class. So there is a permutation $w_{i} \in S_{\alpha_{i}}$ such that $\pi_{i}=w_{i} \pi_{i}^{\prime} w_{i}^{-1}$. It follows that $\pi=\left(w_{1} \pi_{1}^{\prime} w_{1}^{-1}\right) \cdots\left(w_{\ell} \pi_{\ell}^{\prime} w_{\ell}^{-1}\right)=w \pi^{\prime} w^{-1}$, where $w=w_{1} \cdots w_{\ell} \in S_{\alpha}$. This implies that π and π^{\prime} are conjugate in $P(H)$.

It remains to consider the case when both π and π^{\prime} are in \bar{S}_{α}. Let π_{0} (resp. π_{0}^{\prime}) be the underlying permutation of π (resp. π^{\prime}). Then there is a symmetry $w \in S_{\alpha}$ such that $\pi_{0}=w \pi_{0}^{\prime} w^{-1}$. We claim that $\pi=w \pi^{\prime} w^{-1}$. Indeed, it is enough to show that $\pi\left(x_{1}, x_{2}, \ldots, x_{t}\right)=w \pi^{\prime} w^{-1}\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ for any point $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ in \mathbb{R}^{t}. Assume that $\pi\left(x_{1}, x_{2}, \ldots, x_{t}\right)=\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ and $w \pi^{\prime} w^{-1}\left(x_{1}, x_{2}, \ldots, x_{t}\right)=\left(z_{1}, z_{2}, \ldots, z_{t}\right)$. Since all elements of π are assigned the minus sign, we obtain from (2.4) that $y_{i}=1-x_{\pi_{0}(i)}$ for $1 \leq i \leq t$. On the other hand, using (2.4), it is not hard to check that $z_{i}=1-x_{w^{-1} \pi_{0}^{\prime} w(i)}$ for $1 \leq i \leq t$. Since $\pi_{0}=w \pi_{0}^{\prime} w^{-1}$, we deduce that $\pi_{0}(i)=w^{-1} \pi_{0}^{\prime} w(i)$. Therefore, we have $y_{i}=z_{i}$ for $1 \leq i \leq t$. So the claim is justified. This completes the proof.

6 The computation of $Z_{H}(z)$

In this section, we shall derive a formula for the cycle index $Z_{H}(z)$ for a spanned hyperplane H of Q_{n}. It turns out that $Z_{H}(z)$ depends only on the cycle structures of the symmetries in the subgroup $P(H)$ of $F(H)$.

Let

$$
\begin{equation*}
H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b \tag{6.1}
\end{equation*}
$$

be a spanned hyperplane of Q_{n}. Recall that $V_{n}(H)$ is the set of vertices of Q_{n} contained in H. To compute the cycle index $Z_{H}(z)$, we need to determine the cycle structures of permutations on $V_{n}(H)$ induced by the symmetries in $F(H)$. By Theorem 5.2, each symmetry in $F(H)$ can be written uniquely as a product πw, where $\pi \in P(H)$ and $w \in B_{n, t}$. We shall define two group actions for the subgroups $P(H)$ and $B_{n, t}$, and shall derive an expression for the cycle type of the permutation on $V_{n}(H)$ induced by πw in terms of the cycle types of the permutations induced by π and w.

Let H be a spanned hyperplane of Q_{n} as in (6.1). However, to define the action for $P(H)$, we shall consider H as a hyperplane in \mathbb{R}^{t}. Denoted by $V_{t}(H)$ the set of vertices of Q_{t} that are contained in H, namely,

$$
V_{t}(H)=\left\{\left(x_{1}, x_{2}, \ldots, x_{t}\right) \in V_{t}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b\right\} .
$$

Since the vertices of Q_{n} contained in H span a hyperplane in \mathbb{R}^{n}, it can be seen that the vertices in $V_{t}(H)$ span a hyperplane in \mathbb{R}^{t}. Since H is considered as a hyperplane in \mathbb{R}^{t}, we deduce that H is a spanned hyperplane of Q_{t}. Setting $n=t$ in Theorem 5.2, it follows that the stabilizer of H is $P(H)$. Therefore, $P(H)$ stabilizes the set $V_{t}(H)$. So any symmetry in $P(H)$ induces a permutation on $V_{t}(H)$.

We also need an action of the group $B_{n, t}$ on the set of vertices of Q_{n-t}. Assume that $w \in B_{n, t}$, namely, w is a signed permutation on the interval $[t+1, n]$. Subtracting each element of w by t, we get a signed permutation on $[1, n-t]$. In this way, each signed permutation in $B_{n, t}$ corresponds to a symmetry of Q_{n-t}. Hence $B_{n, t}$ is isomorphic to the group B_{n-t} of symmetries of Q_{n-t}. This leads to an action of the group $B_{n, t}$ on V_{n-t}.

Let $\pi \in P(H)$ and $w \in B_{n, t}$. Recall that, for an element g in a group G acting on a finite set $X, c(g)$ denotes the cycle type of the permutation on X induced by g, which is written as a multiset $\left\{1^{c_{1}}, 2^{c_{2}}, \ldots\right\}$. In this notation, $c(\pi)$ (resp. $c(w)$) represents the cycle type of the permutation on $V_{t}(H)$ (resp. V_{n-t}) induced by π (resp. w). The following lemma gives an expression for the cycle type $c(w \pi)$ of the induced permutation of πw on $V_{n}(H)$ in terms of the cycle types $c(\pi)$ and $c(w)$.

Lemma 6.1 Let $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b$ be a spanned hyperplane of Q_{n}, and πw be a symmetry in $F(H)$, where $\pi \in P(H)$ and $w \in B_{n, t}$. Assume that $c(\pi)=\left\{1^{m_{1}}, 2^{m_{2}}, \ldots\right\}$ and $c(w)=\left\{1^{c_{1}}, 2^{c_{2}}, \ldots\right\}$. Then we have

$$
\begin{equation*}
c(\pi w)=\bigcup_{i \geq 1} \bigcup_{j \geq 1}\left\{(\operatorname{lcm}(i, j))^{\frac{i j m_{i} c_{j}}{\operatorname{lcm}(i, j)}}\right\} \tag{6.2}
\end{equation*}
$$

where \bigcup denotes the disjoint union of multisets, and $\operatorname{lcm}(i, j)$ denotes the least common multiple of integers i and j.

Proof. Clearly, each vertex in $V_{n}(H)$ can be expressed as a vector of the following form

$$
\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{n-t}\right)
$$

where $\left(x_{1}, \ldots, x_{t}\right)$ is a vertex in $V_{t}(H)$ and $\left(y_{1}, \ldots, y_{n-t}\right)$ is a vertex of Q_{n-t}. Assume that $\left|V_{t}(H)\right|=n_{0}$. Let $V_{t}(H)=\left\{u_{1}, u_{2}, \ldots, u_{n_{0}}\right\}$ and $Q_{n-t}=\left\{v_{1}, v_{2}, \ldots, v_{2^{n-t}}\right\}$. Then each vertex in $V_{n}(H)$ can be expressed as an ordered pair (u_{i}, v_{j}), where $1 \leq i \leq n_{0}$ and $1 \leq j \leq 2^{n-t}$.

Let $C_{i}=\left(s_{1}, \ldots, s_{i}\right)$ be an i-cycle of the permutation on $V_{t}(H)$ induced by π, that is, C_{i} maps the vertex $u_{s_{k}}$ to the vertex $u_{s_{k+1}}$ if $1 \leq k \leq i-1$, and to the vertex $u_{s_{1}}$ if $k=i$. Similarly, let $C_{j}=\left(t_{1}, \ldots, t_{j}\right)$ be a j-cycle of the permutation on V_{n-t} induced by w, that is, C_{j} maps the vertex $v_{t_{m}}$ to the vertex $v_{t_{m+1}}$ if $1 \leq m \leq j-1$, and to the vertex $v_{t_{1}}$ if $m=j$. Define the direct product of C_{i} and C_{j}, denoted $C_{i} \times C_{j}$, to be the permutation on the subset $\left\{\left(u_{s_{k}}, v_{t_{m}}\right): 1 \leq k \leq i, 1 \leq m \leq j\right\}$ of $V_{n}(H)$ such that

$$
C_{i} \times C_{j}\left(u_{s_{k}}, v_{t_{m}}\right)=\left(C_{i}\left(u_{s_{k}}\right), C_{j}\left(v_{t_{m}}\right)\right) .
$$

It is not hard to check that the cycle type of $C_{i} \times C_{j}$ is

$$
\left\{(\operatorname{lcm}(i, j))^{\frac{i j}{\operatorname{com}(i, j)}}\right\} .
$$

Note that the induced permutation of πw on $V_{n}(H)$ is the product of $C_{i} \times C_{j}$, where C_{i} (resp. C_{j}) runs over the cycles of the permutation on $V_{t}(H)$ (resp. V_{n-t}) induced by π (resp. w). Thus the cycle type of the induced permutation of πw on $V_{n}(H)$ is given by (6.2). This completes the proof.

Before presenting a formula for the cycle index $Z_{H}(z)$, we need to introduce some notation. Assume that π is a symmetry in $P(H)$ such that the cycle type of the induced permutation of π is

$$
c(\pi)=\left\{1^{m_{1}}, 2^{m_{2}}, \ldots\right\}
$$

For $j \geq 1$, we define

$$
\begin{equation*}
f_{\pi}\left(z_{j}\right)=\prod_{i \geq 1}\left(z_{\operatorname{lcm}(i, j)}\right)^{\frac{i j m_{i}}{\operatorname{com}(i, j)}} . \tag{6.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{\pi}(z)=\left(f_{\pi}\left(z_{1}\right), f_{\pi}\left(z_{2}\right), \ldots\right) \tag{6.4}
\end{equation*}
$$

We have the following proposition.

Proposition 6.2 Let H be a spanned hyperplane of Q_{n} with type α. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$ and $\pi^{\prime}=\pi_{1}^{\prime} \pi_{2}^{\prime} \cdots \pi_{\ell}^{\prime}$ be two symmetries in $P(H)$. Assume that both π and π^{\prime} are either in S_{α} or in \bar{S}_{α}. If π_{i} and π_{i}^{\prime} have the same cycle type for $1 \leq i \leq \ell$, then $f_{\pi}(z)=f_{\pi^{\prime}}(z)$.

Proof. It follows from Proposition 5.3 that π and π^{\prime} are conjugate in $P(H)$. Since $P(H)$ acts on $V_{t}(H)$, the permutations on $V_{t}(H)$ induced by π and π^{\prime} are conjugate. So they have the same cycle type, i.e., $c(\pi)=c\left(\pi^{\prime}\right)$. Since $f_{\pi}(z)$ depends only on $c(\pi)$, we see that $f_{\pi}(z)=f_{\pi^{\prime}}(z)$. This completes the proof.

We now give an overview of some notation related to integer partitions. We shall write a partition λ of a positive integer n, denoted by $\lambda \vdash n$, in the multiset form, that is, write $\lambda=\left\{1^{m_{1}}, 2^{m_{2}}, \ldots\right\}$, where m_{i} is the number of parts of λ of size i. Denote by $\ell(\lambda)$ the number of parts of λ, that is, $\ell(\lambda)=m_{1}+m_{2}+\cdots$. For a partition $\lambda=\left\{1^{m_{1}}, 2^{m_{2}}, \ldots\right\}$, let

$$
z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots
$$

For two partitions λ and μ, define $\lambda \cup \mu$ to be the partition obtained by joining the parts of λ and μ together. For example, for $\lambda=\{1,2\}$ and $\mu=\left\{1^{2}, 3\right\}$, then $\lambda \cup \mu=\left\{1^{3}, 2,3\right\}$.

Let $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b$ be a spanned hyperplane of Q_{n}, whose type is $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$. Assume that $\mu=\mu^{1} \cup \cdots \cup \mu^{\ell}$ is a partition of t, where $\mu^{i} \vdash \alpha_{i}$ for $1 \leq i \leq \ell$. We can write $f_{\mu}(z)$ (resp. $\bar{f}_{\mu}(z)$) for $f_{\pi}(z)$, where $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$ is any symmetry in S_{α} (resp. \bar{S}_{α}) such that π_{i} has cycle type μ^{i} for $1 \leq i \leq \ell$. By Proposition 6.2, the functions $f_{\mu}(z)$ and $\bar{f}_{\mu}(z)$ are well defined. We can now give a formula for the cycle index $Z_{H}(z)$.

Theorem 6.3 Let $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b$ be a spanned hyperplane of Q_{n}. Assume that H has type $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$. Then we have

$$
\begin{equation*}
Z_{H}(z)=\frac{1}{2^{\delta(H)}} \sum_{\left(\mu^{1}, \ldots, \mu^{\ell}\right)} \prod_{i=1}^{\ell} z_{\mu^{i}}^{-1}\left(Z_{n-t}\left(f_{\mu}(z)\right)+\delta(H) Z_{n-t}\left(\bar{f}_{\mu}(z)\right)\right), \tag{6.5}
\end{equation*}
$$

where $\mu^{i} \vdash \alpha_{i}, \mu=\mu^{1} \cup \cdots \cup \mu^{\ell}, \delta(H)=1$ if $\sum_{i=1}^{t} a_{i}=2 b$ and $\delta(H)=0$ otherwise.
Proof. Let $\pi \in P(H)$ and $w \in B_{n, t}$. Assume that $c(w)=\left\{1^{c_{1}}, 2^{c_{2}}, \ldots\right\}$. By Lemma 6.1, we have

$$
\begin{equation*}
z^{c(\pi \cdot w)}=f_{\pi}\left(z_{1}\right)^{c_{1}} f_{\pi}\left(z_{2}\right)^{c_{2}} \cdots \tag{6.6}
\end{equation*}
$$

From (2.1) and (6.6), we deduce that

$$
\begin{aligned}
\sum_{\pi w} z^{c(\pi \cdot w)} & =\sum_{w} f_{\pi}\left(z_{1}\right)^{c_{1}} f_{\pi}\left(z_{2}\right)^{c_{2}} \cdots \\
& =(n-t)!2^{n-t} Z_{n-t}\left(f_{\pi}\left(z_{1}\right), f_{\pi}\left(z_{2}\right), \ldots\right) \\
& =(n-t)!2^{n-t} Z_{n-t}\left(f_{\pi}(z)\right)
\end{aligned}
$$

where w runs over the signed permutations in $B_{n, t}$. Thus

$$
\begin{align*}
Z_{H}(z) & =\frac{1}{|F(H)|} \sum_{\pi w \in F(H)} z^{c(\pi w)} \\
& =\frac{1}{|F(H)|} \sum_{\pi \in P(H)}(n-t)!2^{n-t} Z_{n-t}\left(f_{\pi}(z)\right) \tag{6.7}\\
& =\frac{(n-t)!2^{n-t}}{|F(H)|}\left(\sum_{\pi \in S_{\alpha}} Z_{n-t}\left(f_{\pi}(z)\right)+\delta(H) \sum_{\pi^{\prime} \in \bar{S}_{\alpha}} Z_{n-t}\left(f_{\pi^{\prime}}(z)\right)\right)
\end{align*}
$$

where $\delta(H)=1$ if $\sum_{i=1}^{t} a_{i}=2 b$ and $\delta(H)=0$ otherwise.
Recall that for any given partition $\nu \vdash m$, there are $\frac{m!}{z_{\nu}}$ permutations on $\{1,2, \ldots, m\}$ such that their cycle type is ν, see Stanley [20, Proposition 1.3.2]. So the number of symmetries $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$ in $S_{\alpha}\left(\right.$ or, $\left.\bar{S}_{\alpha}\right)$ such that for $i=1,2 \ldots, \ell, \pi_{i}$ has cycle type μ^{i} is equal to

$$
\begin{equation*}
\prod_{i=1}^{\ell} \frac{\alpha_{i}!}{z_{\mu^{i}}} \tag{6.8}
\end{equation*}
$$

Combining (6.7), (6.8) and Proposition 6.2, we obtain that

$$
\begin{equation*}
Z_{H}(z)=\frac{(n-t)!2^{n-t}}{|F(H)|} \sum_{\left(\mu^{1}, \ldots, \mu^{\ell}\right)} \prod_{i=1}^{\ell} \frac{\alpha_{i}!}{z_{\mu^{i}}}\left(Z_{n-t}\left(f_{\mu}(z)\right)+\delta(H) Z_{n-t}\left(\bar{f}_{\mu}(z)\right)\right) \tag{6.9}
\end{equation*}
$$

where $\mu^{i} \vdash \alpha_{i}$, and $\mu=\mu^{1} \cup \cdots \cup \mu^{\ell}$.
Since

$$
\begin{equation*}
|F(H)|=(n-t)!2^{n-t+\delta(H)} \prod_{i=1}^{\ell} \alpha_{i}! \tag{6.10}
\end{equation*}
$$

by substituting (6.10) into (6.9), we are led to (6.5). This completes the proof.
By Theorem 6.3, the cycle index $Z_{H}(z)$ depends only on $f_{\pi}(z)$ for $\pi \in P(H)$. In view of (6.3), we see that $f_{\pi}(z)$ depends only on $c(\pi)$. Assume that $c(\pi)=\left\{1^{m_{1}}, 2^{m_{2}}, \ldots\right\}$. By Theorem [2.1, we have

$$
\begin{equation*}
m_{i}=\frac{1}{i} \sum_{j \mid i} \mu(i / j) \psi\left(\pi^{j}\right) \tag{6.11}
\end{equation*}
$$

where $\psi\left(\pi^{j}\right)$ is the number of vertices in $V_{t}(H)$ that are fixed by π^{j}. The following theorem gives a formula for $\psi(\pi)$, from which $\psi\left(\pi^{j}\right)$ is easily determined.

Theorem 6.4 Let $H: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{t} x_{t}=b$ be a spanned hyperplane of Q_{n}. Assume that $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell}$ is a symmetry in $P(H)$ such that π_{i} has cycle type $\mu^{i}=\left\{1^{m_{i 1}}, 2^{m_{i 2}}, \ldots\right\}$ for $i=1,2, \ldots, \ell$. Then

$$
\psi(\pi)= \begin{cases}{\left[x^{b}\right] \prod_{i=1}^{\ell} \prod_{j \geq 1}\left(1+x^{i j}\right)^{m_{i j}},} & \text { if } \pi \in S_{\alpha} \tag{6.12}\\ \chi(\mu) 2^{\ell(\mu)}, & \text { if } \pi \in \bar{S}_{\alpha}\end{cases}
$$

where $\mu=\mu^{1} \cup \cdots \cup \mu^{\ell}, \chi(\mu)=1$ if μ has no odd parts and $\chi(\mu)=0$ otherwise.
Before we present the proof of the above theorem, we need to define $0 / 1$-labelings of a symmetry $\pi \in P(H)$ for the purpose of characterizing the vertices of Q_{t} fixed by π. Let π be a symmetry in $P(H)$. A $0 / 1$-labeling of π is a labeling of the cycles of π such that each cycle of π is assigned one of the two numbers 0 and 1 .
Proof of Theorem 6.4. We first consider the case when π is in S_{α}. It is easy to observe that, a vertex $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ of Q_{t} is a fixed point of π, that is, $\pi(v)=v$ if and only if, for each i-cycle $\left(j_{1}, j_{2}, \ldots, j_{i}\right)$ of π and for any entry of v corresponding to $\left(j_{1}, j_{2}, \ldots, j_{i}\right)$, we have

$$
v_{j_{1}}=v_{j_{2}}=\cdots=v_{j_{i}}
$$

(or, more precisely, $v_{j_{1}}=v_{j_{2}}=\cdots=v_{j_{i}}=0$ or $v_{j_{1}}=v_{j_{2}}=\cdots=v_{j_{i}}=1$). The above characterization enables us to establish a one-to-one correspondence between $0 / 1$ labelings of π and the vertices of Q_{t} fixed by π, that is, for any given $0 / 1$-labeling of π, we can define a vertex $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ of Q_{t} fixed by π such that $v_{i}=0(1 \leq i \leq t)$ if and only if the cycle of π containing i is assigned 0 . Moreover, if the vertex $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ corresponding to a $0 / 1$-labeling of π is in $V_{t}(H)$, that is, $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{t} v_{t}=b$, then we have

$$
\begin{equation*}
b_{1}+2 b_{2}+\cdots+\ell b_{\ell}=b \tag{6.13}
\end{equation*}
$$

where $b_{i}(1 \leq i \leq \ell)$ is the sum of the lengths of cycles of π_{i} which are labeled 1 . It can be easily deduced that the number of $0 / 1$-labelings of π satisfying (6.13) is

$$
\psi(\pi)=\left[x^{b}\right] \prod_{i=1}^{\ell} \prod_{j \geq 1}\left(1+x^{i j}\right)^{m_{i j}}
$$

We now consider the case when π is in \bar{S}_{α}. As in the previous case, it can be seen that a vertex $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ of Q_{t} is fixed by π if and only if, for any (signed) i-cycle $\left(\overline{j_{1}}, \overline{j_{2}}, \ldots, \overline{j_{i}}\right)$ of π, the following relation holds

$$
\begin{equation*}
\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{i}}\right)=\left(1-v_{j_{2}}, 1-v_{j_{3}}, \ldots, 1-v_{j_{1}}\right) . \tag{6.14}
\end{equation*}
$$

Consequently, if a vertex $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ of Q_{t} is fixed by π, then, for any (signed) i cycle $\left(\overline{j_{1}}, \overline{j_{2}}, \ldots, \overline{j_{i}}\right)$ of π, the vector $\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{i}}\right)$ is either $(0,1, \ldots, 0,1)$ or $(1,0, \ldots, 1,0)$. This implies that π does not have any fixed point if π has an odd cycle.

We now assume that π has only even (signed) cycles. In this case, we see that the number of vertices of Q_{t} fixed by π is equal to $2^{\ell(\mu)}$. To prove $\psi(\pi)=2^{\ell(\mu)}$, we need to demonstrate that any vertex of Q_{t} fixed by π is in $V_{t}(H)$. Let $v=\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ be any vertex of Q_{t} fixed by π. Using the fact that for each (signed) cycle $\left(\overline{j_{1}}, \overline{j_{2}}, \ldots, \overline{j_{i}}\right)$ of π, the vector $\left(v_{j_{1}}, \ldots, v_{j_{i}}\right)$ is $(1,0, \ldots, 1,0)$ or $(0,1, \ldots, 0,1)$, and applying the relation

$$
a_{1}+\cdots+a_{t}=2 b,
$$

we deduce that $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{t} v_{t}=b$. Hence the vertex v is in $V_{t}(H)$. This completes the proof.

By Theorem [6.4, we can compute $\psi\left(\pi^{j}\right)$. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{\ell} \in P(H)$, where π_{i} has cycle type $\mu^{i}=\left\{1^{m_{i 1}}, 2^{m_{i 2}}, \ldots\right\}$. Clearly, $\pi^{j}=\pi_{1}^{j} \pi_{2}^{j} \cdots \pi_{\ell}^{j}$. Let $\operatorname{gcd}(i, j)$ denote the greatest common divisor of i and j. As is easily checked, the cycle type of $\pi_{i}^{j}(1 \leq i \leq \ell)$ is

$$
\left\{1^{m_{i 1}}, \operatorname{gcd}(2, j)^{\frac{2 m_{i 2}}{\operatorname{gcc}(2, j)}}, \operatorname{gcd}(3, j)^{\frac{3 m_{i 3}}{\operatorname{gcc}(3, j)}}, \ldots\right\}
$$

To apply Theorem 6.4, it is still necessary to determine whether the symmetry π^{j} belongs to S_{α} or \bar{S}_{α}. It can be seen that if π is in S_{α} or π is in \bar{S}_{α} and j is even, then π^{j} belongs to S_{α}. Similarly, if π is in \bar{S}_{α} and j is odd, then π^{j} belongs to \bar{S}_{α}.

$7 \quad F_{n}(k)$ for $n=4,5,6$ and $2^{n-2}<k \leq 2^{n-1}$

This section is devoted to the computation of $F_{n}(k)$ for $n=4,5,6$ and $2^{n-2}<k \leq 2^{n-1}$. This requires the cycle indices $Z_{H}(z)$ for spanned hyperplanes of Q_{n} for $n=4,5,6$ that contain more than 2^{n-2} vertices of Q_{n}.

Let $H_{1}, H_{2}, \ldots, H_{h(n, k)}$ be the representatives of equivalence classes of spanned hyperplanes of Q_{n} containing at least k vertices. When $2^{n-2}<k \leq 2^{n-1}$, combining relation (1.1), Theorem 4.1 and Theorem 4.2, we deduce that

$$
\begin{align*}
F_{n}(k) & =A_{n}(k)-H_{n}(k) \\
& =A_{n}(k)-\sum_{i=1}^{h(n, k)} N_{H_{i}}(k) \tag{7.1}\\
& =A_{n}(k)-\sum_{i=1}^{h(n, k)}\left[u_{1}^{k} u_{2}^{\left|V_{n}\left(H_{i}\right)\right|-k}\right] C_{H_{i}}\left(z_{1}, z_{2}\right) .
\end{align*}
$$

We start with the computation of $F_{4}(k)$ for $k=5,6,7,8$. Observing that $F_{4}(k)=0$ for $k<5$, this gives the enumeration of full-dimensional $0 / 1$-equivalence classes of Q_{4}. For brevity, we use $H_{n}^{t}(t \leq n)$ to denote the following hyperplane in \mathbb{R}^{n}

$$
x_{1}+x_{2}+\cdots+x_{t}=\lfloor t / 2\rfloor .
$$

In this notation, representatives of equivalence classes of spanned hyperplanes of Q_{4} containing more than 4 vertices of Q_{4} are as follows

$$
\begin{aligned}
& H_{4}^{1}: x_{1}=0 \\
& H_{4}^{2}: x_{1}+x_{2}=1 \\
& H_{4}^{3}: x_{1}+x_{2}+x_{3}=1 \\
& H_{4}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=2 .
\end{aligned}
$$

Employing the techniques in Section 6, we obtain the cycle indices $Z_{H_{4}^{1}}(z)$ and $Z_{H_{4}^{2}}(z)$ as given below:

$$
\begin{aligned}
& Z_{H_{4}^{1}}(z)=Z_{3}(z) \\
& Z_{H_{4}^{2}}(z)=\frac{1}{16}\left(9 z_{2}^{4}+4 z_{4}^{2}+2 z_{1}^{4} z_{2}^{2}+z_{1}^{8}\right)
\end{aligned}
$$

For the remaining two hyperplanes $H=H_{4}^{3}$ and H_{4}^{4}, it can be checked that $N_{H}(k)=1$ for $k=5,6$. Thus, from (7.1) we can determine $F_{4}(k)$ for $k=5,6,7,8$. These values are given in Table 4, which agree with the results computed by Aichholzer [1].

We now compute $F_{5}(k)$ for $8<k \leq 16$. Representatives of equivalence classes of spanned hyperplanes of Q_{5} containing more than 8 vertices of Q_{5} are $H_{5}^{1}, H_{5}^{2}, H_{5}^{3}, H_{5}^{4}, H_{5}^{5}$. By utilizing the the techniques in Section 6, we obtain that

$$
\begin{aligned}
Z_{H_{5}^{1}}(z) & =Z_{4}(z) \\
Z_{H_{5}^{2}}(z) & =\frac{1}{96}\left(z_{1}^{16}+6 z_{1}^{8} z_{2}^{4}+33 z_{2}^{8}+8 z_{1}^{4} z_{3}^{4}+24 z_{4}^{4}+24 z_{2}^{2} z_{6}^{2}\right)
\end{aligned}
$$

k	5	6	7	8
H_{4}^{1}	3	3	1	1
H_{4}^{2}	5	5	1	1
H_{4}^{3}	1	1		
H_{4}^{4}	1	1		
$F_{4}(k)$	17	40	54	72

Table 4: $F_{4}(k)$ for $k=5,6,7,8$.

$$
\begin{aligned}
& Z_{H_{5}^{3}}(z)=\frac{1}{48}\left(12 z_{2}^{6}+8 z_{4}^{3}+2 z_{1}^{6} z_{2}^{3}+z_{1}^{12}+6 z_{1}^{2} z_{2}^{5}+3 z_{1}^{4} z_{2}^{4}+6 z_{6}^{2}+4 z_{12}+4 z_{3}^{2} z_{6}+2 z_{3}^{4}\right) \\
& Z_{H_{5}^{4}}(z)=\frac{1}{96}\left(z_{1}^{12}+27 z_{2}^{6}+9 z_{1}^{4} z_{2}^{4}+8 z_{3}^{4}+24 z_{6}^{2}+18 z_{2}^{2} z_{4}^{2}+6 z_{1}^{4} z_{4}^{2}+3 z_{1}^{8} z_{2}^{2}\right) \\
& Z_{H_{5}^{5}}(z)=\frac{1}{120}\left(24 z_{5}^{2}+30 z_{2} z_{4}^{2}+20 z_{1} z_{3} z_{6}+20 z_{1} z_{3}^{3}+15 z_{1}^{2} z_{2}^{4}+10 z_{1}^{4} z_{2}^{3}+z_{1}^{10}\right)
\end{aligned}
$$

Consequently, the values $F_{5}(k)$ for $8<k \leq 16$ can be derived from (7.1), and they agree with the results of Aichholzer [1], see Table [5.

k	9	10	11	12	13	14	15	16
H_{5}^{1}	56	50	27	19	6	4	1	1
H_{5}^{2}	159	135	68	43	12	7	1	1
H_{5}^{3}	9	5	1	1				
H_{5}^{4}	7	5	1	1				
H_{5}^{5}	1	1						
$F_{5}(k)$	8781	19767	37976	65600	98786	133565	158656	159110

Table 5: $F_{5}(k)$ for $8<k \leq 16$.
The main objective of this section is to compute $F_{6}(k)$ for $16<k \leq 32$. As mentioned in Section 4, there are 6 representatives of equivalence classes of spanned hyperplanes of Q_{6} containing more than 16 vertices of Q_{6}, i.e., $H_{6}^{1}, H_{6}^{2}, H_{6}^{3}, H_{6}^{4}, H_{6}^{5}, H_{6}^{6}$. Again, by applying the techniques in Section 6, we obtain that

$$
\begin{aligned}
Z_{H_{6}^{1}}(z) & =Z_{5}(z) \\
Z_{H_{6}^{2}}(z) & =\frac{1}{768}\binom{z_{1}^{32}+12 z_{1}^{16} z_{2}^{8}+12 z_{1}^{8} z_{2}^{12}+127 z_{2}^{16}+32 z_{1}^{8} z_{3}^{8}+}{48 z_{1}^{4} z_{2}^{2} z_{4}^{6}+168 z_{4}^{8}+224 z_{2}^{4} z_{6}^{4}+96 z_{8}^{4}+48 z_{2}^{4} z_{4}^{6}} \\
Z_{H_{6}^{3}}(z) & =\frac{1}{288}\binom{z_{1}^{24}+6 z_{1}^{12} z_{2}^{6}+52 z_{2}^{12}+18 z_{3}^{8}+48 z_{4}^{6}+32 z_{2}^{3} z_{6}^{3}+3 z_{1}^{8} z_{2}^{8}+}{18 z_{1}^{4} z_{2}^{10}+24 z_{1}^{2} z_{3}^{2} z_{2}^{2} z_{6}^{2}+8 z_{1}^{6} z_{3}^{6}+12 z_{3}^{4} z_{6}^{2}+42 z_{6}^{4}+24 z_{12}^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& Z_{H_{6}^{4}}(z)=\frac{1}{384}\binom{z_{1}^{24}+81 z_{2}^{12}++2 z_{1}^{12} z_{2}^{6}+18 z_{1}^{4} z_{2}^{10}+15 z_{1}^{8} z_{2}^{8}+72 z_{6}^{4}+32 z_{12}^{2}}{64 z_{4}^{6}+16 z_{3}^{4} z_{6}^{2}+8 z_{3}^{8}+54 z_{2}^{4} z_{4}^{4}+12 z_{1}^{4} z_{2}^{2} z_{4}^{4}+6 z_{1}^{8} z_{4}^{4}+3 z_{1}^{6} z_{2}^{4}}, \\
& Z_{H_{6}^{5}}(z)=\frac{1}{240}\binom{z_{1}^{20}+24 z_{10}^{2}+60 z_{2}^{2} z_{4}^{4}+26 z_{2}^{10}+20 z_{1}^{2} z_{3}^{2} z_{6}^{2}+}{20 z_{1}^{2} z_{3}^{6}+15 z_{1}^{4} z_{2}^{8}+10 z_{1}^{8} z_{2}^{6}+40 z_{2} z_{6}^{3}+24 z_{5}^{4}}, \\
& Z_{H_{6}^{6}}(z)=\frac{1}{1440}\binom{z_{1}^{20}+144 z_{5}^{4}+144 z_{10}^{2}+320 z_{2} z_{6}^{3}+270 z_{2}^{2} z_{4}^{4}+76 z_{2}^{10}}{+90 z_{1}^{4} z_{4}^{4}+30 z_{1}^{8} z_{2}^{6}+45 z_{1}^{4} z_{2}^{8}+240 z_{1}^{2} z_{3}^{2} z_{6}^{2}+80 z_{1}^{2} z_{3}^{6}} .
\end{aligned}
$$

Based on relation (7.1), we can compute $F_{6}(k)$ for $16<k \leq 32$. These values are listed in Table 6.

	H_{6}^{1}	H_{6}^{2}	H_{6}^{3}	H_{6}^{4}	H_{6}^{5}	H_{6}^{6}	$F_{6}(k)$
17	158658	767103	1464	1334	12	5	30063520396
18	133576	642880	657	630	5	3	78408664654
19	98804	474635	220	216	1	1	189678190615
20	65664	312295	81	86	1	1	426539396250
21	38073	179829	19	20			893345853436
22	19963	92309	7	8			1745593621167
23	9013	40948	1	1			3186944223591
24	3779	16335	1	1			5443544457875
25	1326	5500					8708686176141
26	472	1753					13061946974320
27	131	441					18382330104124
28	47	129					24289841497705
29	10	23					30151914536900
30	5	9					35176482187384
31	1	1					38580161986424
32	1	1					39785643746724

Table 6: $F_{6}(k)$ for $16<k \leq 32$.

$8 \quad H_{n}(k)$ for $2^{n-3}<k \leq 2^{n-2}$

In this section, we shall present an approach for computing $H_{n}(k)$ for $2^{n-3}<k \leq 2^{n-2}$. This enables us to determine $F_{6}(k)$ for $k=13,14,15,16$. Together with the computation of Aichholzer up to 12 vertices for $n=6$, we have completed the enumeration of fulldimensional 0/1-equivalence classes of the 6-dimensional hypercube.

Let us recall the map Φ defined in Section 4, which will be used in the computation of $H_{n}(k)$ for $2^{n-3}<k \leq 2^{n-2}$. Let $H_{1}, H_{2}, \ldots, H_{h(n, k)}$ be the representatives of equivalence classes of spanned hyperplanes of Q_{n} containing at least k vertices. As before, denote by $\mathcal{P}\left(H_{i}, k\right)(1 \leq i \leq h(n, k))$ the set of partial 0/1-equivalence classes of H_{i} with k vertices. Let \mathcal{P}_{i} be a partial 0/1-equivalence class in $\mathcal{P}\left(H_{i}, k\right)(1 \leq i \leq h(n, k))$. So Φ maps \mathcal{P}_{i} to the (unique) $0 / 1$-equivalence class in $\mathcal{H}_{n}(k)$ containing \mathcal{P}_{i}. When $2^{n-2}<k \leq 2^{n-1}$, it has been shown in Theorem 4.1 that Φ is a bijection. However, as pointed out after the proof of Theorem 4.1, when $k \leq 2^{n-2}$, Φ is surjective but not necessarily injective.

For the purpose of computing $H_{n}(k)$ for $2^{n-3}<k \leq 2^{n-2}$, we shall first derive an expression for $H_{n}(k)$, which is valid for general k. Let $1 \leq i \leq h(n, k)$, and define

$$
A_{i}=\Phi\left(\mathcal{P}\left(H_{i}, k\right)\right) .
$$

Since Φ is surjective, we see that

$$
\mathcal{H}_{n}(k)=A_{1} \cap A_{2} \cup \cdots \cup A_{h(n, k)} .
$$

It follows from the principle of inclusion-exclusion that

$$
\begin{align*}
H_{n}(k)= & \sum_{1 \leq i \leq h(n, k)}\left|A_{i}\right|-\sum_{1 \leq i_{1}<i_{2} \leq h(n, k)}\left|A_{i_{1}} \cap A_{i_{2}}\right| \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq h(n, k)}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right|-\cdots . \tag{8.1}
\end{align*}
$$

Hence the task of computing $H_{n}(k)$ reduces to evaluating $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}\right|$ for $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq h(n, k)$.

Assume that $2^{n-3}<k \leq 2^{n-2}$. In what follows, we shall focus on the computation of the cardinalities of A_{i} for $1 \leq i \leq h(n, k)$, and the cardinalities of $A_{i} \cap A_{j}$ for $1 \leq i<j \leq$ $h(n, k)$. The computation for the cardinalities of $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}$ in the general case can be carried out in the same way. When $n=6$ and $k=13,14,15,16$, the computations turn out to be quite simple.

We first compute $\left|A_{i}\right|(1 \leq i \leq h(n, k))$ for $2^{n-3}<k \leq 2^{n-2}$. Since $A_{i}=\Phi\left(\mathcal{P}\left(H_{i}, k\right)\right)$, we have $\left|A_{i}\right|=\left|\mathcal{P}\left(H_{i}, k\right)\right|$. Recall that $\left|\mathcal{P}\left(H_{i}, k\right)\right|$ is defined as $N_{H_{i}}(k)$ in Section 4 and has been computed for the case $2^{n-2}<k \leq 2^{n-1}$. To compute $N_{H_{i}}(k)$ for $2^{n-3}<k \leq 2^{n-2}$, we need some notation.

Let H be a spanned hyperplane of Q_{n}, and \mathcal{S} be a subset of H. Recall that $\mathcal{S}\left(Q_{n}\right)$ is the set of $0 / 1$-polytopes of Q_{n} contained in \mathcal{S}. In Section 4, we defined the partial $0 / 1$-equivalence relation on $\mathcal{S}\left(Q_{n}\right)$. Here we need introduce another equivalence relation on $\mathcal{S}\left(Q_{n}\right)$, that is, two $0 / 1$-polytopes in $\mathcal{S}\left(Q_{n}\right)$ are said to be equivalent if one can be transformed to the other by a symmetry in $F(H)$. The associated equivalence classes in $\mathcal{S}\left(Q_{n}\right)$ are called local 0/1-equivalence classes of \mathcal{S}. Since $F(H)$ is a subgroup of B_{n}, each local $0 / 1$-equivalence class of \mathcal{S} is contained in a (unique) partial $0 / 1$-equivalence class of \mathcal{S}.

Denote by $\mathcal{L}(\mathcal{S}, k)$ the set of local 0/1-equivalence classes of \mathcal{S} with k vertices. When $\mathcal{S}=H, \mathcal{L}(H, k)$ has appeared in Section 4, that is, $\mathcal{L}(H, k)$ is the set of equivalence classes of 0/1-polytopes contained in H with k vertices under the action of $F(H)$. So we have the following relation

$$
\begin{equation*}
|\mathcal{L}(H, k)|=\left[u_{1}^{k} u_{2}^{\left|V_{n}(H)-k\right|}\right] C_{H}\left(u_{1}, u_{2}\right) \tag{8.2}
\end{equation*}
$$

In order to compute $N_{H}(k)$ for $2^{n-3}<k \leq 2^{n-2}$, we shall define a partition of $\mathcal{L}(H, k)$ into two subsets $\mathcal{L}_{*}(H, k)$ and $\mathcal{L}^{*}(H, k)$. This requires a property as given in Theorem 8.1 .

Let H be a spanned hyperplane of Q_{n} containing at least k vertices of Q_{n}. Denote by $E(H, k)$ the set of intersections $H \cap w(H)$ such that
(1). The symmetry w of Q_{n} does not fix H, that is, $H \neq w(H)$;
(2). The intersection $H \cap w(H)$ contains at least k vertices of Q_{n}.

Denote by $h_{1}(H, k)$ the number of equivalence classes of $E(H, k)$ under the symmetries in $F(H)$. Let $E_{1}(H, k)=\left\{H \cap w_{i}(H): 1 \leq i \leq h_{1}(H, k)\right\}$ be the set of representatives of these equivalence classes of $E(H, k)$.

Consider the (disjoint) union of $\mathcal{L}\left(H \cap w_{i}(H), k\right)$, where $1 \leq i \leq h_{1}(H, k)$. We shall define a map Φ_{1} from this union to $\mathcal{L}(H, k)$. For $1 \leq i \leq h_{1}(H, k)$, let \mathcal{L}_{i} be a local 0/1equivalence class in $\mathcal{L}\left(H \cap w_{i}(H), k\right)$. Evidently, there is a (unique) local $0 / 1$-equivalence class in $\mathcal{L}(H, k)$ containing \mathcal{L}_{i}, denoted \mathcal{L}_{i}^{\prime}. Define $\Phi_{1}\left(\mathcal{L}_{i}\right)=\mathcal{L}_{i}^{\prime}$. Then we have the following property.

Theorem 8.1 If $2^{n-3}<k \leq 2^{n-2}$, then the map Φ_{1} is an injection.
Proof. Let \mathcal{L} and \mathcal{L}^{\prime} be two distinct local 0/1-equivalence classes with k vertices. Assume that $\mathcal{L}\left(\right.$ resp. $\left.\mathcal{L}^{\prime}\right)$ is in $\mathcal{L}\left(H \cap w_{i}(H), k\right)$ (resp. $\mathcal{L}\left(H \cap w_{j}(H), k\right)$), where $1 \leq i, j \leq h_{1}(H, k)$. To prove that Φ_{1} is an injection, we need to show that $\Phi_{1}(\mathcal{L}) \neq \Phi_{1}\left(\mathcal{L}^{\prime}\right)$. Clearly, if $i=j$ then we see that $\Phi_{1}(\mathcal{L}) \neq \Phi_{1}\left(\mathcal{L}^{\prime}\right)$. We now consider the case $i \neq j$.

Assume to the contrary that $\Phi_{1}(\mathcal{L})=\Phi_{1}\left(\mathcal{L}^{\prime}\right)$. Let P (resp. P^{\prime}) be any 0/1-polytope in \mathcal{L} (resp. $\left.\mathcal{L}^{\prime}\right)$. Then there is a symmetry $w \in F(H)$ such that $P=w\left(P^{\prime}\right)$. Since both P and P^{\prime} have more than 2^{n-3} vertices of Q_{n}, we see from Theorem 3.1 that $\operatorname{dim}(P)=$ $\operatorname{dim}\left(P^{\prime}\right) \geq n-2$. Since P (resp. P^{\prime}) is contained in $H \cap w_{i}(H)$ (resp. $H \cap w_{j}(H)$), both P and P^{\prime} are of dimension $n-2$. This implies that $H \cap w_{i}(H)$ (resp. $H \cap w_{j}(H)$) is the affine space spanned by P (resp. $\left.P^{\prime}\right)$. Hence we deduce that $H \cap w_{i}(H)=w\left(H \cap w_{j}(H)\right)$, which is contrary to the assumption that $H \cap w_{i}(H)$ and $H \cap w_{j}(H)$ are not equivalent under the symmetries in $F(H)$. This completes the proof.

We are now ready to define $\mathcal{L}_{*}(H, k)$ to be the image of Φ_{1}. More precisely, $\mathcal{L}_{*}(H, k)$ is the (disjoint) union of $\Phi_{1}\left(\mathcal{L}\left(H \cap w_{i}(H), k\right)\right)$, where $1 \leq i \leq h_{1}(H, k)$. Let

$$
\begin{equation*}
\mathcal{L}^{*}(H, k)=\mathcal{L}(H, k) \backslash \mathcal{L}_{*}(H, k) . \tag{8.3}
\end{equation*}
$$

From the above definition (8.3), it can be seen that, for any local $0 / 1$-equivalence class $\mathcal{L} \in \mathcal{L}^{*}(H, k)$ and any $0 / 1$-polytope $P \in \mathcal{L}$, if $w \in B_{n}$ is a symmetry such that $w(P)$ is contained in H, then $w(H)=H$. This yields that \mathcal{L} is also a partial $0 / 1$-equivalence class of H. Consequently, $\mathcal{L}^{*}(H, k)$ is a subset of $\mathcal{P}(H, k)$. Let

$$
\begin{equation*}
\mathcal{P}_{*}(H, k)=\mathcal{P}(H, k) \backslash \mathcal{L}^{*}(H, k) . \tag{8.4}
\end{equation*}
$$

Combining (8.2), (8.3) and (8.4), we find that

$$
\begin{align*}
N_{H}(k) & =|\mathcal{P}(H, k)| \\
& =\left|\mathcal{L}^{*}(H, k)\right|+\left|\mathcal{P}_{*}(H, k)\right| \\
& =|\mathcal{L}(H, k)|-\left|\mathcal{L}_{*}(H, k)\right|+\left|\mathcal{P}_{*}(H, k)\right| \tag{8.5}\\
& =\left[u_{1}^{k} u_{2}^{\left|V_{n}(H)-k\right|}\right] C_{H}\left(u_{1}, u_{2}\right)-\left|\mathcal{L}_{*}(H, k)\right|+\left|\mathcal{P}_{*}(H, k)\right|
\end{align*}
$$

Therefore, for $2^{n-3}<k \leq 2^{n-2} N_{H}(k)$ is determined by the cardinalities of $\mathcal{L}_{*}(H, k)$ and $\mathcal{P}_{*}(H, k)$. From Theorem 8.1, we see that for $2^{n-3}<k \leq 2^{n-2},\left|\mathcal{L}_{*}(H, k)\right|$ can be derived from the cardinalities of $\mathcal{L}(H \cap w(H), k)$, where $H \cap w(H) \in E_{1}(H, k)$. We shall demonstrate that the computation of $\left|\mathcal{P}_{*}(H, k)\right|$ for $2^{n-3}<k \leq 2^{n-2}$ can be carried out in a similar fashion.

Denote by $h_{2}(H, k)$ the number of equivalence classes of $E(H, k)$ under the symmetries of Q_{n}. Let

$$
E_{2}(H, k)=\left\{H \cap w_{i}(H): 1 \leq i \leq h_{2}(H, k)\right\}
$$

be the set of representatives of these equivalence classes of $E(H, k)$. We define a map Φ_{2} from the (disjoint) union of $\mathcal{P}\left(H \cap w_{i}(H), k\right)$, where $1 \leq i \leq h_{2}(H, k)$, to $\mathcal{P}_{*}(H, k)$. Let \mathcal{P} be a partial $0 / 1$-equivalence class of $\mathcal{P}\left(H \cap w_{i}(H), k\right)\left(1 \leq i \leq h_{2}(H, k)\right)$. Then the image $\Phi_{2}(\mathcal{P})$ is defined to be the (unique) partial 0/1-equivalence class of $\mathcal{P}_{*}(H, k)$ that contains \mathcal{P}. We reach the following assertion. The proof is similar to that of Theorem 8.1, hence it is omitted.

Theorem 8.2 If $2^{n-3}<k \leq 2^{n-2}$, then the map Φ_{2} is a bijection.
So far, we see that the number $N_{H}(k)$ for $2^{n-3}<k \leq 2^{n-2}$ can be computed based on the cardinalities of $\mathcal{L}(H \cap w(H), k)$ and $\mathcal{P}(H \cap w(H), k)$, where $H \cap w(H) \in E(H, k)$. We shall illustrate how to compute $|\mathcal{L}(H \cap w(H), k)|$ and $|\mathcal{P}(H \cap w(H), k)|$ for $2^{n-3}<k \leq 2^{n-2}$.

Assume that $H \cap w(H) \in E(H, k)$. Let P and P^{\prime} be any two $0 / 1$-polytopes belonging to the same local (resp. partial) 0/1-equivalence class of $H \cap w(H)$ with k vertices. Then
there exists a symmetry in $F(H)$ (resp. B_{n}) such that $w(P)=P^{\prime}$. It is clear from Theorem 3.1 that both P and P^{\prime} have dimension $n-2$. Hence $H \cap w(H)$ is the affine space spanned by P, or, equivalently, by P^{\prime}. So we deduce that $w(H \cap w(H))=H \cap w(H)$. This implies that for $2^{n-3}<k \leq 2^{n-2}$, we can use Pólya's theorem to compute the number of local (resp. partial) 0/1-equivalence classes of $H \cap w(H)$ with k vertices.

Let

$$
F(H, w)=\left\{w^{\prime} \in F(H): w^{\prime}(H \cap w(H))=H \cap w(H)\right\}
$$

and

$$
F(H \cap w(H))=\left\{w^{\prime} \in B_{n}: w^{\prime}(H \cap w(H))=H \cap w(H)\right\}
$$

Denote by $V_{n}(H \cap w(H))$ the set of vertices of Q_{n} contained in $H \cap w(H)$, and denote by $Z_{(H, w)}(z)\left(\right.$ resp. $\left.Z_{H \cap w(H)}(z)\right)$ the cycle index of $F(H, w)$ (resp. $F(H \cap w(H))$) acting on $V_{n}(H \cap w(H))$. Write $C_{(H, w)}\left(u_{1}, u_{2}\right)$ (resp. $C_{H \cap w(H)}\left(u_{1}, u_{2}\right)$) for the polynomial obtained from $Z_{(H, w)}(z)$ (resp. $\left.Z_{H \cap w(H)}(z)\right)$ by substituting z_{i} with $u_{1}^{i}+u_{2}^{i}$. Thus, for $2^{n-3}<k \leq$ 2^{n-2}, we obtain that

$$
\begin{equation*}
|\mathcal{L}(H \cap w(H), k)|=\left[u_{1}^{k} u_{2}^{\left|V_{n}(H \cap w(H))\right|-k}\right] C_{(H, w)}\left(u_{1}, u_{2}\right) \tag{8.6}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathcal{P}(H \cap w(H), k)|=\left[u_{1}^{k} u_{2}^{\left|V_{n}(H \cap w(H))\right|-k}\right] C_{H \cap w(H)}\left(u_{1}, u_{2}\right) . \tag{8.7}
\end{equation*}
$$

Thus, applying and Theorems 8.1 and 8.2 and plugging the above formulas (8.6) and (8.7) into (8.5), we arrive at the following relation.

Theorem 8.3 Let $2^{n-3}<k \leq 2^{n-2}$, and H be a spanned hyperplane of Q_{n} containing at least k vertices of Q_{n}. Set $q(w)=\left|V_{n}(H \cap w(H))\right|$. Then we have

$$
\begin{align*}
N_{H}(k)= & {\left[u_{1}^{k} u_{2}^{\left|V_{n}(H)\right|-k}\right] C_{H}\left(u_{1}, u_{2}\right)-\sum_{H \cap w(H) \in E_{1}(H, k)}\left[u_{1}^{k} u_{2}^{q(w)-k}\right] C_{(H, w)}\left(u_{1}, u_{2}\right) } \\
& +\sum_{H \cap w(H) \in E_{2}(H, k)}\left[u_{1}^{k} u_{2}^{q(w)-k}\right] C_{H \cap w(H)}\left(u_{1}, u_{2}\right) . \tag{8.8}
\end{align*}
$$

Theorem 8.3 enables us to compute $N_{H}(k)$ for $k=13,14,15,16$, where H is a spanned hyperplane of Q_{6} containing more than 12 vertices of Q_{6}. In addition to $H_{6}^{1}, H_{6}^{2}, H_{6}^{3}, H_{6}^{4}, H_{6}^{5}, H_{6}^{6}$, we have 8 representatives of equivalence classes of spanned hyperplanes of Q_{6} containing more than 12 vertices of Q_{6}, namely,

$$
\begin{aligned}
& H_{1}: x_{1}+x_{2}+x_{3}+2 x_{4}=2, \\
& H_{2}: x_{1}+x_{2}+x_{3}+x_{4}=1, \\
& H_{3}: x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=3,
\end{aligned}
$$

$$
\begin{aligned}
& H_{4}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+2 x_{6}=3, \\
& H_{5}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=2, \\
& H_{6}: x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=2, \\
& H_{7}: x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5}=3, \\
& H_{8}: x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}+2 x_{6}=4 .
\end{aligned}
$$

It is easily checked that $E(H, k)=\emptyset$ for $k=13,14,15,16$, except for the two spanned hyperplanes H_{6}^{1} and H_{6}^{2}. Therefore, we can deduce from Theorem 8.3 that

$$
\begin{equation*}
N_{H}(k)=\left[u_{1}^{k} u_{2}^{V_{n}(H)-k}\right] C_{H}\left(u_{1}, u_{2}\right), \tag{8.9}
\end{equation*}
$$

where $H=H_{6}^{3}-H_{6}^{6}, H_{1}-H_{8}$. The cycle indices for $H=H_{6}^{3}-H_{6}^{6}$ have been given in Section 7. For $H=H_{6}, H_{7}$ and H_{8}, it is easily verified that $N_{H}(13)=2$ and $N_{H}(14)=1$. Using the techniques in Section 6, we can derive the cycle indices for $H_{1}-H_{5}$ as shown below:

$$
\begin{aligned}
& Z_{H_{1}}(z)=\frac{1}{48}\binom{z_{1}^{16}+4 z_{12} z_{4}+4 z_{3}^{2} z_{6} z_{1}^{2} z_{2}+2 z_{3}^{4} z_{1}^{4}+}{12 z_{2}^{8}+8 z_{4}^{4}+6 z_{1}^{4} z_{2}^{6}+5 z_{1}^{8} z_{2}^{4}+6 z_{6}^{2} z_{2}^{2}} \\
& Z_{H_{2}}(z)=\frac{1}{192}\binom{z_{1}^{16}+68 z_{4}^{4}+24 z_{6}^{2} z_{2}^{2}+16 z_{12} z_{4}+8 z_{3}^{4} z_{1}^{4}}{+39 z_{2}^{8}+12 z_{1}^{4} z_{2}^{6}+8 z_{1}^{8} z_{2}^{4}+16 z_{3}^{2} z_{6} z_{1}^{2} z_{2}}, \\
& Z_{H_{3}}(z)=\frac{1}{96}\left(z_{1}^{16}+24 z_{6}^{2} z_{2}^{2}+8 z_{3}^{4} z_{1}^{4}+33 z_{2}^{8}+6 z_{1}^{8} z_{2}^{4}+24 z_{4}^{4}\right), \\
& Z_{H_{4}}(z)=\frac{1}{120}\left(z_{1}^{15}+24 z_{5}^{3}+30 z_{2} z_{4}^{3} z_{1}+20 z_{1} z_{3}^{2} z_{6} z_{2}+20 z_{1}^{3} z_{3}^{4}+15 z_{1}^{3} z_{2}^{6}+10 z_{1}^{7} z_{2}^{4}\right), \\
& Z_{H_{5}}(z)=\frac{1}{720}\binom{z_{1}^{15}+120 z_{3} z_{6}^{2}+144 z_{5}^{3}+40 z_{3}^{5}+180 z_{1} z_{2} z_{4}^{3}}{+40 z_{1}^{3} z_{3}^{4}+60 z_{1}^{3} z_{2}^{6}+15 z_{1}^{7} z_{2}^{4}+120 z_{1} z_{2} z_{3}^{2} z_{6}} .
\end{aligned}
$$

It remains to compute $N_{H}(k)$ for $H=H_{6}^{1}$ and H_{6}^{2} for $k=13,14,15,16$. For $H_{6}^{1}: x_{1}=0$ and $k=13,14,15,16$, it is routine to check that

$$
E_{1}\left(H_{6}^{1}, k\right)=E_{2}\left(H_{6}^{1}, k\right)=\left\{H_{6}^{1} \cap w\left(H_{6}^{1}\right): w=(1,2)(3)(4)(5)(6)\right\},
$$

that is,

$$
\left\{\left(x_{1}, \ldots, x_{6}\right): x_{1}=0, x_{2}=0\right\}
$$

Thus, for $k=13,14,15,16$, it is clear that both the numbers of local and partial $0 / 1$ equivalence classes of $H_{6}^{1} \cap w\left(H_{6}^{1}\right)$ with k vertices are given by

$$
\left[u_{1}^{k} u_{2}^{16-k}\right] C_{4}\left(u_{1}, u_{2}\right) .
$$

Therefore, for $k=13,14,15,16$, by Theorem 8.3 we find that

$$
\begin{equation*}
N_{H_{6}^{1}}(k)=\left[u_{1}^{k} u_{2}^{32-k}\right] C_{H_{6}^{1}}\left(u_{1}, u_{2}\right) \tag{8.10}
\end{equation*}
$$

Finally, we come to the computation of $N_{H_{6}^{2}}(k)$ for $k=13,14,15,16$. In this case, it is easy to check that

$$
E_{1}\left(H_{6}^{2}, k\right)=E_{2}\left(H_{6}^{2}, k\right)=\left\{H_{6}^{2} \cap w_{1}\left(H_{6}^{2}\right), H_{6}^{2} \cap w_{2}\left(H_{6}^{2}\right)\right\}
$$

where $w_{1}=(1,3,2)(4)(5)(6)$ and $w_{2}=(1,3)(2,4)(5)(6)$. Since

$$
\begin{aligned}
V_{6}\left(H_{6}^{2} \cap w_{1}\left(H_{6}^{2}\right)\right)= & \left\{\left(1,0,1, x_{4}, x_{5}, x_{6}\right): x_{i}=0 \text { or } 1 \text { for } i=4,5,6\right\} \cup \\
& \left\{\left(0,1,0, x_{4}, x_{5}, x_{6}\right): x_{i}=0 \text { or } 1 \text { for } i=4,5,6\right\}
\end{aligned}
$$

it can be easily checked that $\mathcal{L}\left(H_{6}^{2} \cap w_{1}\left(H_{6}^{2}\right), k\right)=\mathcal{P}\left(H_{6}^{2} \cap w_{1}\left(H_{6}^{2}\right), k\right)$ for $k=13,14,15,16$. By Theorem 8.3, we obtain that for $k=13,14,15,16$,

$$
\begin{align*}
N_{H_{6}^{2}}= & {\left[u_{1}^{k} u_{2}^{32-k}\right] C_{H_{6}^{2}}\left(u_{1}, u_{2}\right)-\left[u_{1}^{k} u_{2}^{16-k}\right] C_{\left(H_{6}^{2}, w_{2}\right)}\left(u_{1}, u_{2}\right) } \tag{8.11}\\
& +\left[u_{1}^{k} u_{2}^{16-k}\right] C_{H_{6}^{2} \cap w_{2}\left(H_{6}^{2}\right)}\left(u_{1}, u_{2}\right) .
\end{align*}
$$

Next, we proceed to demonstrate how to compute $\left|A_{i} \cap A_{j}\right|$ for $1 \leq i<j \leq$ $h(n, k)$. Let $E\left(H_{i}, H_{j}, k\right)$ be the set of intersections $H_{i} \cap w\left(H_{j}\right)\left(w \in B_{n}\right)$ that contain at least k vertices of Q_{n}. Denote by $h\left(H_{i}, H_{j}, k\right)$ the number of equivalence classes of $E\left(H_{i}, H_{j}, k\right)$ under the symmetries of Q_{n}. Let $m=h\left(H_{i}, H_{j}, k\right)$. Assume that $E_{1}\left(H_{i}, H_{j}\right)=\left\{H_{i} \cap w_{1}\left(H_{j}\right), \ldots, H_{i} \cap w_{m}\left(H_{j}\right)\right\}$ is the set of representatives of equivalence classes in $E\left(H_{i}, H_{j}, k\right)$. We define a map Φ_{3} from the union of $\mathcal{P}\left(H_{i} \cap w_{s}\left(H_{j}\right), k\right)$, where $1 \leq s \leq h\left(H_{i}, H_{j}, k\right)$, to $A_{i} \cap A_{j}$. Let \mathcal{P}_{s} be a partial $0 / 1$-equivalence class in $\mathcal{P}\left(H_{i} \cap w_{s}\left(H_{j}\right), k\right)$. Clearly, there is a (unique) partial 0/1-equivalence class in $A_{i} \cap A_{j}$ containing \mathcal{P}_{s}, which will be denoted by \mathcal{P}_{s}^{\prime}. Define $\Phi_{3}\left(\mathcal{P}_{s}\right)=\mathcal{P}_{s}^{\prime}$. We have the following conclusion. We omit the proof since it is similar to that of Theorem 8.1,

Theorem 8.4 If $2^{n-3}<k \leq 2^{n-2}$, then the map Φ_{3} is a bijection.
As a consequence of Theorem 8.4, for $2^{n-3}<k \leq 2^{n-2}$, we have

$$
\left|A_{i} \cap A_{j}\right|=\sum_{s=1}^{h\left(H_{i}, H_{j}, k\right)}\left|\mathcal{P}\left(H_{i} \cap w_{s}\left(H_{j}\right), k\right)\right| .
$$

The computation for $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}\right|(m \geq 3)$ in the general case can be done in a similar fashion. In fact, it will be shown that for $2^{n-3}<k \leq 2^{n-2}$, the computation can be reduced to the case $m=2$.

Let $2^{n-3}<k \leq 2^{n-2}$, and $E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ be the set of intersections $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap$ $\cdots \cap w_{m}\left(H_{i_{m}}\right)$, where w_{i} for $2 \leq i \leq m$ are symmetries of Q_{n}, that contain at least k vertices of Q_{n}. Denote by $E_{1}\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ the set of representatives of equivalence classes of $E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ under the symmetries of Q_{n}. We define a map Φ_{m} from the (disjoint) union of $\mathcal{P}\left(H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)\right.$, k), where

$$
H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right) \in E_{1}\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right),
$$

to the set $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}$. Let $\mathcal{P} \in \mathcal{P}\left(H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right), k\right)$. The image $\Phi_{m}(\mathcal{P})$ is defined to be the unique partial 0/1-equivalence class in $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}$ containing \mathcal{P}. Similarly, we can prove that if $2^{n-3}<k \leq 2^{n-2}$, then Φ_{m} is a bijection. Thus we deduce that for $2^{n-3}<k \leq 2^{n-2}$,

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{m}}\right|=\sum\left|\mathcal{P}\left(H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right), k\right)\right|,
$$

where the sum ranges over the representatives of $E_{1}\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$.
We further claim for $2^{n-3}<k \leq 2^{n-2}, E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ is a subset of $E\left(H_{i_{1}}, E_{i_{2}}\right)$. This can be proved as follows. Assume that $2^{n-3}<k \leq 2^{n-2}$, and that $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap$ $w_{m}\left(H_{i_{m}}\right)$ is in $E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$. From Theorem 3.1 it can be seen that the dimension of $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)$ is at least $n-2$, since it contains more than 2^{n-3} vertices of Q_{n}. On the other hand, it is clear that $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)$ has dimension at most $n-2$. Hence, when $2^{n-3}<k \leq 2^{n-2}$, we conclude that $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)$ is of dimension $n-2$. Hence we obtain that $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)=H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right)$. Therefore, $E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ is a subset of $E\left(H_{i_{1}}, E_{i_{2}}\right)$. This implies that the for $2^{n-3}<$ $k \leq 2^{n-2}$, the computation for $E\left(H_{i_{1}}, \ldots, H_{i_{m}}, k\right)$ can be reduced to the case $m=2$. More specifically, for $2^{n-3}<k \leq 2^{n-2}$, an intersection $H_{i_{1}} \cap w_{2}\left(H_{i_{2}}\right) \cap \cdots \cap w_{m}\left(H_{i_{m}}\right)$ belongs to $E\left(H_{i_{1}}, \cdots, H_{i_{m}}, k\right)$ whenever (possibly after the action of some symmetry of $\left.Q_{n}\right)$ it belongs to $E\left(H_{i_{j_{1}}}, H_{i_{j_{2}}}\right)$ for $1 \leq j_{1}<j_{2} \leq m$.

We now turn to the case when $n=6$ and $k=13,14,15,16$. All possible pairs $\left\{H_{i}, H_{j}\right\}$ such that $E\left(H_{i}, H_{j}, k\right)$ is nonempty are listed below.
(1). $\left\{H_{6}^{1}, H_{6}^{2}\right\}$. In this case, it can be easily checked that

$$
\begin{align*}
E_{1}\left(H_{6}^{1}, H_{6}^{2}, k\right) & =\left\{H_{6}^{1} \cap H_{6}^{2}\right\} \cup\left\{H_{6}^{1} \cap w\left(H_{6}^{2}\right): w=(1,3,2)(4)(5)(6)\right\} \tag{8.12}\\
& =\left\{H_{6}^{1} \cap H_{6}^{2}\right\} \cup\left\{H_{6}^{1} \cap H_{6}^{3}\right\} .
\end{align*}
$$

(2). $\left\{H_{6}^{1}, H_{6}^{3}\right\}$ and $\left\{H_{6}^{2}, H_{6}^{3}\right\}$. In these two cases, we have

$$
\begin{equation*}
E_{1}\left(H_{6}^{1}, H_{6}^{3}, k\right)=E_{1}\left(H_{6}^{2} \cap H_{6}^{3}, k\right)=\left\{H_{6}^{1} \cap H_{6}^{3}\right\} . \tag{8.13}
\end{equation*}
$$

(3). $\left\{H_{6}^{2}, H_{6}^{4}\right\}$. In this case, it can be verified that

$$
\begin{equation*}
E_{1}\left(H_{6}^{2}, H_{6}^{4}, k\right)=\left\{H_{6}^{2} \cap H_{6}^{4}\right\} \tag{8.14}
\end{equation*}
$$

From the above, we see that H_{6}^{1}, H_{6}^{2} and H_{6}^{3} are the only hyperplanes such that for $k=13,14,15,16, E\left(H_{i_{1}}, H_{i_{2}}, H_{i_{3}}, k\right)$ is nonempty. Moreover, for $k=13,14,15,16$ we have

$$
\begin{equation*}
E_{1}\left(H_{6}^{1}, H_{6}^{2}, H_{6}^{3}, k\right)=\left\{H_{6}^{1} \cap H_{6}^{3}\right\} . \tag{8.15}
\end{equation*}
$$

For $k=13,14,15,16$, it is easy to see that

$$
\begin{align*}
\left|\mathcal{P}\left(H_{6}^{1} \cap H_{6}^{2}, k\right)\right| & =\left[u_{1}^{k} u_{2}^{16-k}\right] C_{4}\left(u_{1}, u_{2}\right), \\
\left|\mathcal{P}\left(H_{6}^{1} \cap H_{6}^{3}, k\right)\right| & =\left[u_{1}^{k} u_{2}^{16-k}\right] C_{H_{5}^{2}}\left(u_{1}, u_{2}\right), \tag{8.16}\\
\left|\mathcal{P}\left(H_{6}^{2} \cap H_{6}^{4}, k\right)\right| & =\left[u_{1}^{k} u_{2}^{16-k}\right] C_{H_{6}^{2} \cap w\left(H_{6}^{2}\right)}\left(u_{1}, u_{2}\right),
\end{align*}
$$

where $w=(1,3)(2,4)(5)(6)$.
From (8.1) and the relations (8.9) -(8.16), we deduce that for $n=6$ and $k=13,14,15,16$,

$$
\begin{align*}
H_{6}(k)= & \sum_{i=1}^{6}\left[u_{1}^{k} u_{2}^{\left|V_{6}\left(H_{6}^{i}\right)\right|-k}\right] C_{H_{6}^{i}}\left(u_{1}, u_{2}\right)+\sum_{i=1}^{8}\left[u_{1}^{k} u_{2}^{\left|V_{6}\left(H_{i}\right)\right|-k}\right] C_{H_{i}}\left(u_{1}, u_{2}\right) \tag{8.17}\\
& -\left[u_{1}^{k} u_{2}^{16-k}\right] C_{4}\left(u_{1}, u_{2}\right)-2\left[u_{1}^{k} u_{2}^{16-k}\right] C_{H_{5}^{2}}\left(u_{1}, u_{2}\right)-\left[u_{1}^{k} u_{2}^{16-k}\right] C_{\left(H_{6}^{2}, w\right)}
\end{align*}
$$

where $w=(1,3)(2,4)(5)(6)$. Using the argument in Section 6 , for $w=(1,3)(2,4)(5)(6)$ we obtain that

$$
\begin{equation*}
Z_{\left(H_{6}^{2}, w\right)}=\frac{1}{32}\left(z_{1}^{16}+21 z_{2}^{8}+8 z_{4}^{4}+2 z_{1}^{8} z_{2}^{4}\right) \tag{8.18}
\end{equation*}
$$

Hence, from (8.17) and (8.18) we obtain the values of $H_{6}(k)$ for $k=13,14,15,16$. Utilizing the relation $F_{6}(k)=A_{6}(k)-H_{6}(k)$, we deduce $F_{6}(k)$ for $k=13,14,15,16$ as given in Table 7 .

k	13	14	15	16
$F_{6}(k)$	290159817	1051410747	3491461629	10665920350

Table 7: $F_{6}(k)$ for $k=13,14,15,16$.

Acknowledgments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] O. Aichholzer, Extreme properties of 0/1-polytopes of dimension 5, in Polytopes: Combinatorics and Computation, G. Kalai and G.M. Ziegler, eds., DMV Sem. 29 (2000), 111-130.
[2] O. Aichholzer, Hyperebenen in Huperkuben - Eine Klassifizierung und Quantifizierung, Diplomarbeit am Institut für Grundlagen der Informationsverarbeitung, TU Graz, 1992.
[3] O. Aichholzer, http://www.ist.tugraz.at/staff/aichholzer//research/rp/rcs/info01poly/.
[4] O. Aichholzer and F. Aurenhammer, Classifying hyperplanes in hypercubes, SIAM J. Disc. Math. 9 (1996), 225-232.
[5] R.P. Aguila, Enumerating the configuration in the n-dimensional orthogonal polytopes through Pólya's countings and a concise representation, 3rd International Conference on Electrical and Electronics Engineering, pp. 1-4, IEEE Computer Sociaty, 2006, México.
[6] N. Alon and V. Vu, Anti-Hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs, J. Combin. Theory Ser. A 79 (1997), 133-160.
[7] I. Bárány and A. Pór, On 0-1 polytopes with many facets, Adv. Math. 161 (2001), 209-228.
[8] L.J. Billera and A. Sarangarajan, All 0-1 polytopes are traveling salesman polytopes, Combinatorica 16 (1996), 175-188.
[9] J. Håstad, On the size of weights for threshold gates, SIAM J. Disc. Math. 7 (1994), 484-492.
[10] W.Y.C. Chen, Induced cycle structures of the hyperoctahedral group, SIAM J. Disc. Math. 6 (1993), 353-362.
[11] W.Y.C. Chen and R.P. Stanley, Derangements on the n-cube, Discrete Math. 115 (1993), 65-75.
[12] T. Fleiner, V. Kaibel and G. Rote, Upper bounds on the maximal number of facets of 0/1-polytopes, European J. Combin. 21 (2000), 121-130.
[13] R. Gillmann and V. Kaibel, Revlex-initial 0/1-polytopes, J. Combin. Theory Ser. A 113 (2006), 799-821.
[14] M. Haiman, A simple and relatively efficient triangulation of the n-cube, Discrete Computat. Geometry 6 (1991), 287-289.
[15] M.A. Harrison and R.G. High, On the cycle index of a product of permutation group, J. Combin. Theory 4 (1968), 277-299.
[16] U. Kortenkamp, J. Richter-Gebert, A. Sarangarajan and G. M. Ziegler, Extremal properties of 0/1-polytopes, Discrete Comput. Geometry 17 (1997), 439-448.
[17] D. Lubell, A short proof of Sperner's lemma, J. Combin. Theory 6 (1966), 299.
[18] G. Pólya, Sur les types des propositions composées, J. Symbolic Logic 5 (1940), 98-103.
[19] M.E. Saks, Slicing the hypercube, in Surveys in Combinatorics, K. Walker ed., London Mathematical Society Lectures Notes 187, Cambridge University Press, 1993, 211-256.
[20] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, UK, 1999.
[21] G.M. Ziegler, Lectures on 0/1-polytopes, in Polytopes: Combinatorics and Computation, G. Kalai and G.M. Ziegler, eds., DMV Sem. 29 (2000), 1-41.
[22] C.M. Zong, What is known about unit cubes, Bull. Amer. Math. Soc. 42 (2005), 181-211.

