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Abstract

Let G be a simple undirected graph, and Gσ be an oriented graph of G with the orientation

σ and skew-adjacency matrix S(Gσ). The skew energy of the oriented graph Gσ, denoted

by ES(Gσ), is defined as the sum of the absolute values of all the eigenvalues of S(Gσ).

In this paper, we characterize the underlying graphs of all 4-regular oriented graphs with

optimum skew energy and give orientations of these underlying graphs such that the skew

energy of the resultant oriented graphs indeed attain optimum. It should be pointed out

that there are infinitely many 4-regular connected optimum skew energy oriented graphs,

while the 3-regular case only has two graphs: K4 the complete graph on 4 vertices and Q3

the hypercube.
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1 Introduction

Let G be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn}, and let Gσ be

an oriented graph of G with the orientation σ, which assigns to each edge of G a direction so

that the induced graph Gσ becomes an oriented graph or a directed graph. Then G is called the

underlying graph of Gσ. The skew-adjacency matrix of Gσ is the n × n matrix S(Gσ) = [sij],

where sij = 1 and sji = −1 if 〈vi, vj〉 is an arc of Gσ, otherwise sij = sji = 0. The skew energy [1]

of Gσ, denoted by ES(Gσ), is defined as the sum of the absolute values of all the eigenvalues of

S(Gσ). Obviously, S(Gσ) is a skew-symmetric matrix, and thus all the eigenvalues are purely

imaginary numbers.

In theoretical chemistry, the energy of a given molecular graph is related to the total π-

electron energy of the molecule represented by that graph. Consequently, the graph energy
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has some specific chemistry interests and has been extensively studied, since the concept of the

energy of simple undirected graphs was introduced by Gutman in [4]. We refer the survey [5]

and the book [8] to the reader for details. Up to now, there are various generalizations of the

graph energy, such as the Laplacian energy, signless Laplacian energy, incidence energy, distance

energy, and the Laplacian-energy like invariant for undirected graphs, and the skew energy and

skew Laplacian energy for oriented graphs.

Adiga et al. [1] first defined the skew energy of an oriented graph, and investigated some

properties of the skew energy. Then, Shader et al. [9] studied the relationship between the

spectra of a graph G and the skew-spectra of an oriented graph Gσ of G, which would be helpful

to the study of the relationship between the energy of G and the skew energy of Gσ . Hou

and Lei [6] characterized the coefficients of the characteristic polynomial of the skew-adjacency

matrix of an oriented graph. Moreover, other bounds and extremal graphs of some classes of

oriented graphs have been established. In [7] and [10], Hou et al. determined the oriented

unicyclic graphs with minimal and maximal skew energy and the oriented bicyclic graphs with

minimal and maximal shew energy, respectively. The skew energy of orientations of hypercubes

were discussed by Tian [11]. Later, Gong and Xu [3] characterized the 3-regular oriented graphs

with optimum skew energy. Recently, we [2] studied the skew energy of random oriented graphs.

Back to the paper Adiga et al. [1], where they derived a sharp upper bound for the skew

energy of an oriented graph Gσ in terms of the order n and the maximum degree ∆ of Gσ , that

is,

ES(G) ≤ n
√

∆ .

They showed that the equality holds if and only if S(Gσ)T S(Gσ) = ∆In, which implies that Gσ

is ∆-regular. In the following, we will call an oriented graph Gσ on n vertices with maximum

degree ∆ an optimum skew energy oriented graph if ES(Gσ) = n
√

∆. A natural question is

proposed in [1]:

Which k-regular graphs on n vertices have orientations Gσ with ES(Gσ) = n
√

∆, or equiva-

lently, S(Gσ)T S(Gσ) = ∆In ?

In the same paper, they answer the question for k = 1 and k = 2. They showed that a 1-regular

graph on n vertices has an orientation with S(Gσ)T S(Gσ) = In if and only if n is even and it is n
2

copies of K2; while a 2-regular graph on n vertices has an orientation with S(Gσ)T S(Gσ) = 2In

if and only if n is a multiple of 4 and it is a union of n
4

copies of C4. Later, Gong and Xu [3]

characterized all 3-regular connected oriented graphs on n vertices with S(Gσ)T S(Gσ) = 3In,

which in fact are only two special graphs, the complete graph K4 and the hypercube Q3.

In this paper, we further consider the above question. We characterize all 4-regular connected

graphs G that have oriented graphs Gσ with S(Gσ)T S(Gσ) = 4In. It should be noted that the

4-regular case is more complicated than the 3-regular case, and in fact, there are infinitely many

4-regular connected optimum skew energy oriented graphs.
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2 Preliminaries

In this section, we do some preparations with some notations and a few known results.

Besides, we also get some intuitive conclusions that will be frequently used in the sequel of the

paper.

Let G = G(V,E) be a graph with vertex set V and edge set E. For any v ∈ V , denote by

dG(v) and NG(v) the degree and neighborhood of v in G, respectively. For any subset S ⊆ V ,

G[S] denotes the subgraph of G induced by S. For a given orientation σ of G, the resultant

oriented graph is denoted by Gσ = (V (Gσ),Γ(Gσ)) and the skew-adjacency matrix of Gσ by

S(Gσ).

The following result is due to Adiga et al. [1].

Lemma 2.1 [1] Let S(Gσ) be the skew-adjacency matrix of an oriented graph Gσ. If S(Gσ)T S(Gσ) =

kI, then |N(u) ∩ N(v)| is even for any two distinct vertices u and v of Gσ.

Since our paper focuses on the investigation of 4-regular graphs, the following result is more

directly applied, which is in fact implied in Lemma 2.1.

Proposition 2.2 Let Gσ be a 4-regular oriented graph with skew-adjacency matrix S(Gσ). If

S(Gσ)T S(Gσ) = 4I, then the underlying graph G satisfies that |N(u) ∩ N(v)| ∈ {0, 2} for any

two adjacent vertices u and v and |N(u) ∩N(v)| ∈ {0, 2, 4} for any two non-adjacent vertices u

and v.

Let W = u1u2 · · · uk (perhaps ui = uj for i 6= j) be a walk from u1 to uk and Ŵ be the

inverse walk of W obtained from W by replacing the ordering of vertices by its inverses, i.e.,

Ŵ = ukuk−1 · · · u1. The sign of W is defined as

sgn(W ) =

k−1∏

i=1

suiui+1
.

It is easy to check that

sgn(Ŵ ) =





sgn(W ) if l(W ) is even,

−sgn(W ) if l(W ) is odd,

where l(W ) denotes the length of the walk W . Moreover, let w+
uv(k) and w−

uv(k) denote the

number of all positive walks and negative walks starting from u and ending at v with length k,

respectively.

Gong and Xu [3] obtained the following result on the relationship between the entries of Sk

and the number of walks between any pair of ordered vertices.

Lemma 2.3 [3] Let S be the skew-adjacency matrix of an oriented graph Gσ and (u, v) be an
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arbitrary pair of ordered vertices of Gσ. Then

(Sk)uv = w+
uv(k) − w−

uv(k)

holds for any positive integer k.

For regular graphs, the following proposition is immediate.

Proposition 2.4 Let Gσ be a k-regular oriented graph with skew-adjacency matrix S. Then

ST S = kI if and only if for any two distinct vertices u and v of Gσ,

w+
uv(2) = w−

uv(2).

Throughout this paper, we just need to consider connected graphs and connected oriented

graphs due to the following basic lemma. Recall that the union Gσ
1 ∪Gσ

2 of two disjoint oriented

graphs Gσ
1 = (V1,Γ1) and Gσ

2 = (V2,Γ2) is the oriented graph Gσ = (V,Γ) where V = V1 ∪ V2

and Γ = Γ1 ∪ Γ2.

Lemma 2.5 [11] Let Gσ
1 , Gσ

2 be two disjoint oriented graphs of order n1, n2 with skew-

adjacency matrices S(Gσ
1 ), S(Gσ

2 ), respectively. Then for some positive integer k, S(Gσ
1 )T S(Gσ

1 ) =

kIn1
and S(Gσ

2 )T S(Gσ
2 ) = kIn2

if and only if the skew-adjacency matrix S(Gσ
1 ∪Gσ

2 ) of the union

Gσ
1 ∪ Gσ

2 satisfies S(Gσ
1 ∪ Gσ

2 )T S(Gσ
1 ∪ Gσ

2 ) = kIn1+n2
.

We end this section by recursively defining two graph classes Gi and Hj for all positive

integers i and j, depicted in Figure 2.1 and Figure 2.2, respectively.

For the graph class Gi, we define the initial graph G1 = (V (G1), E(G1)), where

V (G1) ={u, v} ∪ {u1, u2, v1, v2} ∪ {u3, u4, v3, v4},
E(G1) ={(u, u1), (u, u2), (u, v1), (u, v2), (v, u1), (v, u2), (v, v1), (v, v2)}

∪ {(u1, u3), (u1, u4), (u2, u3), (u2, u4), (v1, v3), (v1, v4), (v2, v3), (v2, v4)}
∪ {(u3, v4), (v4, u4), (u4, v3), (v3, u3)}.

Suppose that Gi−1 is well defined. Below we will give the definition of Gi = (V (Gi), E(Gi)).

V (Gi) =V (Gi−1) ∪ {u2i+1, u2i+2, v2i+1, v2i+2},
E(Gi) =E(Gi−1) \ {(u2i−1, v2i), (v2i, u2i), (u2i, v2i−1), (v2i−1, u2i−1)}

∪ {(u2i−1, u2i+1), (u2i−1, u2i+2), (u2i, u2i+1), (u2i, u2i+2)}
∪ {(v2i−1, v2i+1), (v2i−1, v2i+2), (v2i, v2i+1), (v2i, v2i+2)}
∪ {(u2i+1, v2i+2), (v2i+2, u2i+2), (u2i+2, v2i+1), (v2i+1, u2i+1)}.

Observe that |V (Gi)| = 4i + 6.
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Figure 2.1: The graph class Gi for any positive integer i

For the other graph class Hj , the initial graph H1 is defined as H1 = (V (H1), E(H1)), where

V (H1) ={u, v} ∪ {u1, u2, v1, v2} ∪ {u3, u4},
E(H1) ={(u, u1), (u, u2), (u, v1), (u, v2), (v, u1), (v, u2), (v, v1), (v, v2)}

∪ {(u1, u3), (u1, u4), (u2, u3), (u2, u4), (v1, u3), (v1, u4), (v2, u3), (v2, u4)}.

Suppose now that we have given the definition of Hj−1. Then Hj = (V (Hj), E(Hj)) is defined

as follows.

V (Hj) =V (Hj−1) ∪ {v2j−1, v2j , u2j+1, u2j+2},
E(Hj) =E(Hj−1) \ {(v2j−3, u2j−1), (v2j−3, u2j), (v2j−2, u2j−1), (v2j−2, u2j)}

∪ {(v2j−3, v2j−1), (v2j−3, v2j), (v2j−2, v2j−1), (v2j−2, v2j)}
∪ {(u2j−1, u2j+1), (u2j−1, u2j+2), (u2j , u2j+1), (u2j , u2j+2)}
∪ {(v2j−1, u2j+1), (v2j−1, u2j+2), (v2j , u2j+1), (v2j , u2j+2)}.

Obviously, |V (Hj)| = 4j + 4.
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Figure 2.2: The graph class Hj for any positive integer j

3 Main results

In this section, we first characterize the underlying graphs of all 4-regular oriented graphs

with optimum skew energy. Then we give orientations of these underlying graphs such that the

resultant oriented graphs have optimum shew energy.

Theorem 3.1 Let Gσ be a 4-regular oriented graph with optimum skew energy. If the underlying

graph G contains triangles, then G is either G1 or G2 depicted in Figure 3.3.

u1

u3u2

u4

v1 v4

v3v2

G1

u1

u2

u6

u4u3

u5

G2

Figure 3.3: The underlying graphs containing triangles
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Proof. Let u1u2u3u1 be a triangle in G. Since u2 ∈ N(u1) ∩ N(u3), there is another common

neighbor between u1 and u3 from Proposition 2.2, denoted by u4. Observe that u3 ∈ N(u1) ∩
N(u2). Then by Proposition 2.2 again, there is another vertex in N(u1)∩N(u2), which is either

u4 or a new vertex, say u5.

Firstly, assume that u4 ∈ N(u1) ∩ N(u2), that is, (u2, u4) ∈ G. As G is 4-regular, u1 has

the fourth neighbor, denoted by v1. We claim that (v1, u2) /∈ G; otherwise N(u1) ∩ N(u2) =

{u3, u4, v1} which contradicts Proposition 2.2. Similarly, we have (v1, u3) /∈ G and (v1, u4) /∈ G.

We can further obtain that the new vertices v2, v3 and v4 are the fourth neighbors of u2, u3 and

u4, respectively, and (vi, uj) /∈ G for 1 ≤ i 6= j ≤ 4. Then we consider N(v1) ∩ N(u2). Note

that u1 ∈ N(u2) ∩ N(v1), (v1, u3) /∈ G and (v1, u4) /∈ G by the discussion above, which forces

that v2 becomes another common neighbor between v1 and u2, i.e., (v1, v2) ∈ G. By similar

discussions on N(v1) ∩ N(u4), N(v3) ∩ N(u2) and N(v3) ∩ N(u4), respectively, we can deduce

that (v1, v4) ∈ G, (v2, v3) ∈ G and (v3, v4) ∈ G. Noticing that u1 ∈ N(v1) ∩ N(u3), another

common vertex must be v3, since d(u3) = 4 and the degrees of other neighbors of u3 other than

v3 are equal to 4. By considering N(u2) ∩ N(v4) similarly, we have (v2, v4) ∈ G. Up to now,

the degrees of all vertices of G attain 4. Hence the underlying graph G is the graph G1 given in

Figure 3.3.

Now we suppose that N(u1) ∩ N(u2) contains a new vertex u5. We claim that (u2, u4) /∈ G

and (u3, u5) /∈ G; otherwise, N(u1) ∩ N(u2) = {u3, u4, u5} or N(u1) ∩ N(u3) = {u2, u4, u5}, a

contradiction to Proposition 2.2. Notice that u3 ∈ N(u1) ∩ N(u4), d(u1) = 4 and (u2, u4) /∈ G,

which implies (u4, u5) ∈ G. Since d(u5) = 3 and (u3, u5) /∈ G, u5 has the fourth neighbor u6.

Now we consider N(u2)∩N(u5). Combining the observation that u1 ∈ N(u2)∩N(u5) with the

fact (u2, u4) /∈ G, we deduce that u6 ∈ N(u2) ∩ N(u5). Then by a similar way, we successively

discuss N(u2) ∩ N(u3) and N(u3) ∩ N(u4) and obtain (u3, u6) ∈ G and (u4, u6) ∈ G. It is easy

to check that the graph has already been 4-regular and is just the graph G2 depicted in Figure

3.3.

Theorem 3.2 Let Gσ be a 4-regular oriented graph with optimum skew energy. If the underlying

graph G is triangle-free, then G is one of the following graphs: the hypercube Q4 of dimension

4, the graph G3, a graph in Gi, or a graph in Hj ; see Figures 2.1, 2.2 and 3.4.

Proof. Let u1, u2, v1 and v2 be all neighbors of a vertex u in G. Then the induced subgraph

G[{u1, u2, v1, v2}] contains no edge, since the graph G is triangle-free. Denote by v, u3, u4 be

another three neighbors of u1 other than u. Note that u1 ∈ N(u) ∩ N(v). By Proposition 2.2,

there is another one or three common neighbors in {u2, v1, v2} between u and v. We can obtain

the same results by considering N(u) ∩ N(u3) and N(u) ∩ N(u4). Assume that a1, a2 and a3

are the numbers of the common neighbors in {u2, v1, v2} between u and v, u and u3, u and u4,

respectively. Obviously, a1, a2, a3 ∈ {1, 3}. Without loss of generality, suppose a1 ≥ a2 ≥ a3.

We discuss the following four cases according to the values of a1, a2 and a3.

Case 1. (a1, a2, a3) = (1, 1, 1).
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Figure 3.4: The underlying graphs containing no triangles

Without loss of generality, let (u2, v) ∈ G. Then (v1, v) /∈ G and (v2, v) /∈ G as a1 = 1.

Observe that u ∈ N(u1) ∩ N(v1), which implies that there is another common neighbor in

{u3, u4} between u1 and v1. Let u3 ∈ N(u1) ∩ N(v1). Then (u2, u3) /∈ G and (v2, u3) /∈ G

as a2 = 1. By considering N(u1) ∩ N(v2), we deduce that (v2, u4) ∈ G, since (v2, v) /∈ G and

(v2, u3) /∈ G by the discussion above. Obviously, (u2, u4) /∈ G and (v2, u4) /∈ G as a3 = 1. Then

it is known that u2 contains another two neighbors, say v3 and v4. Since u ∈ N(u2) ∩ N(v1)

and (v1, v) /∈ G, it follows that there is another common neighbor in {v3, v4} between u2 and v1.

Without loss of generality, v3 ∈ N(u2)∩N(v1). Then (v1, v4) /∈ G; otherwise, |N(u2)∩N(v1)| = 3

and no other vertex can be chosen as the fourth common neighbor, which is a contradiction. In

view of the observation that u ∈ N(u2) ∩ N(v2) and (v2, v) /∈ G, we have that another common

neighbor between u2 and v2 belongs to {v3, v4}. We claim that v3 /∈ N(u2) ∩ N(v2); otherwise,

N(u) ∩ N(v3) = {u2, v1, v2} and there is no other vertex in N(u) ∩ N(v3), which contradicts

Proposition 2.2. Therefore, v4 ∈ N(u2) ∩ N(v2). We proceed to have w as the fourth neighbor

of v1. By considering N(v1) ∩ N(v2), we obtain (v2, w) ∈ G.

Up to now, we have d(u) = d(u1) = d(u2) = d(v1) = d(v2) = 4 and d(v) = d(u3) = d(u4) =

d(v3) = d(v4) = d(w) = 2. We claim that the deduced subgraph G[{v, u3, u4, v3, v4, w}] is

empty. Otherwise, the possible edges are (v,w), (u3, v4) and (u4, v3) since G is triangle-free.

If (v,w) ∈ G, then |N(u1) ∩ N(w)| = 1, which is a contradiction. We thus have (v,w) /∈ G.

Similarly, (u3, v4) /∈ G and (u4, v3) /∈ G.

Suppose now that u5 and u6 are the other two neighbors of v. Note that u1 ∈ N(v)∩N(u3).

Then we have either (u3, u5) ∈ G or (u3, u6) ∈ G. Without loss of generality, (u3, u5) ∈ G,

and hence (u3, u6) /∈ G. Moreover, (u4, u5) /∈ G, otherwise, N(u1) ∩ N(u5) = {v, u3, u4}, a

contradiction. By considering N(u1)∩N(u6), we get (u4, u6) ∈ G. Assume that v5 is the fourth

neighbor of u3. It is obvious that u3 ∈ N(u1) ∩ N(v5), which forces that u4 becomes another

8



common vertex between u1 and v5. We see that v ∈ N(u2) ∩ N(u5), which indicates that there

is another common neighbor between u2 and u5. It means either (v3, u5) ∈ G or (v4, u5) ∈ G.

We discuss the two cases separately.

On the one hand, if (v3, u5) ∈ G, then (v4, u5) /∈ G. It follows that (v4, u6) ∈ G by considering

N(v) ∩ N(v4). We claim that (v3, u6) /∈ G and (v3, v5) /∈ G; otherwise, N(v) ∩ N(v3) =

{u2, u5, u6} or N(u3) ∩ N(v3) = {v1, u5, v5}, which is a contradiction. Therefore, v3 contains a

new neighbor, denoted by v6. Since v3 ∈ N(v1) ∩ N(v6), we have (w, v6) ∈ G, since w is the

unique neighbor of v1 with degree less than 4. Similarly, we get (v4, v6) ∈ G by considering

N(v2) ∩ N(v6). We further obtain that (w, v5) ∈ G by considering N(v2) ∩ N(v5).

Up to now, d(u5) = d(u6) = d(v5) = d(v6) = 3 and other vertices above have degree 4. It

is known that G[{u5, u6, v5, v6}] contains no edges because of the triangle-free property of G.

Suppose now that s is the fourth neighbor of u5. Considering N(v) ∩ N(s), N(u3) ∩ N(s) and

N(v3) ∩ N(s), respectively, we derive that (u5, s) ∈ G, (u6, s) ∈ G, (v5, s) ∈ G and (v6, s) ∈ G.

Now all vertices have degree 4. It can be verified that G is the hypercube Q4.

On the other hand, (v4, u5) ∈ G. It follows that v4 ∈ N(v2) ∩ N(u5). Then we have

(w, u5) ∈ G, since w is the unique neighbor of v2 with degree less than 4 other than v4. Note

that u2 ∈ N(v)∩N(v3), which forces that u6 becomes another common neighbor between v and

v3, since u6 is the unique neighbor of v, whose degree is less than 4. By a similar discussion on

N(u3)∩N(v3), we can deduce that (v3, v5) ∈ G. Since u5 ∈ N(u3)∩N(v4), we get (v4, v5) ∈ G.

We further consider N(u4) ∩ N(w) and obtain (w, u6) ∈ G. Now all vertices have degree 4. It

can be easily verified that G is the graph G3 depicted in Figure 3.4.

Case 2. (a1, a2, a3) = (3, 1, 1).

In this case, v is adjacent to all vertices of {u2, v1, v2}, while u3 and u4 are adjacent to one of

them, respectively. Without loss of generality, (u2, u3) ∈ G. Then (v1, u3) /∈ G and (v2, u3) /∈ G

since a2 = 1. It follows that (u2, u4) ∈ G. If not, then either (v1, u4) ∈ G or (v2, u4) ∈ G,

where the former possibility implies that N((u1) ∩ N(v1) = {u, v, u4}) and the latter implies

that N(u1) ∩ N(v2) = {u, v, u4}, both of which contradict Proposition 2.2. Hence (u2, u4) ∈ G,

(v1, u4) /∈ G and (v2, u4) /∈ G. Now let v3 and v4 be another two neighbors of v1. Observe that

v1 ∈ N(v)∩N(v3), which forces v2 to be another common vertex between v and v3. By a similar

discussion on N(v) ∩ N(v4), we can derive (v2, v4) ∈ G.

Now, d(u) = d(v) = d(u1) = d(u2) = d(v1) = d(v2) = 4 and d(u3) = d(u4) = d(v3) = d(v4) =

2. We can divide our subsequent discussion into the following steps.

Step 1. If the induced subgraph G[{u3, u4, v3, v4}] contains edges, then the edges can only be

some of (u3, v3), (u4, v4), (u3, v4) and (u4, v3), since G is triangle-free. Without loss

generality, assume (u3, v4) ∈ G. Then u3 ∈ N(u1) ∩ N(v4) and v4 ∈ N(v2) ∩ N(u3),

which forces (u4, v4) ∈ G and (u3, v3) ∈ G. We further consider N(u2) ∩N(v3), and

obtain (u4, v3) ∈ G. Consequently, each vertex above has degree 4. It is easy to
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verify that G is the graph G1 depicted in Figure 2.1. Now the discussion stop;

Step 2. If the induced subgraph G[{u3, u4, v3, v4}] contains no edges, then there are another

two neighbors of u3, say u5 and u6. Considering N(u1)∩N(u5) and N(u1)∩N(u6),

respectively, we have (u4, u5) ∈ G and (u4, u6) ∈ G, since u4 is the unique neighbor

of u1 whose degree is less than 4.

On the one hand, if u5 or u6 is adjacent to v3 or v4, then without loss generality

we can suppose (u5, v3) ∈ G. Then v3 ∈ N(v1) ∩ N(u5), which implies (u5, v4) ∈ G.

Notice that u5 ∈ N(u3) ∩ N(v3) and u5 ∈ N(u3) ∩ N(v4). Then we deduce that

(v3, u6) ∈ G and (v4, u6) ∈ G, since u6 is the unique neighbor of u3 whose degree is

less than 4. It can be verified that G is the graph H2 depicted in Figure 2.2.

On the other hand, both u5 and u6 are not adjacent to v3 or v4. Then v3 has another

two neighbors, denoted by v5 and v6. By a similar discussion on N(v2)∩N(v5) and

N(v2) ∩ N(v6), respectively, we can obtain (v4, v5) ∈ G and (v4, v6) ∈ G. Then

continue the following step;

Step 3. If the induced subgraph G[{u5, u6, v5, v6}] contains edges, we can discuss this case

similar to Step 1. Consequently, we can obtain that G is the graph G2 depicted in

Figure 2.1. The discussion stops; If the induced subgraph G[{u5, u6, v5, v6}] contains

no edges, we can also continue the discussion according to Step 2, until we get that

G is the graph H3 depicted in Figure 2.2, or executing Step 3 again. The discussion

continues.

It should be pointed out that the discussion will terminate by illustrating that G is either a

graph in Gi or a graph in Hj , which are shown in Figure 2.1 and Figure 2.2, respectively.

Case 3. (a1, a2, a3) = (3, 3, 1).

This case means that v and u3 are adjacent to all vertices of {u2, v1, v2}, while u4 is precisely

adjacent to one of them. Without loss generality, suppose (u2, u4) ∈ G. Then (v1, u4) /∈ G and

(v2, u4) /∈ G. Consequently, |N(u1) ∩ N(v1)| = |{u, v, u3}| = 3, which contradicts Proposition

2.2. Therefore, this case could not happen.

Case 4. (a1, a2, a3) = (3, 3, 3).

Obviously, v, u3 and u4 are adjacent to all vertices of {u2, v1, v2}. It can be checked that

all vertices have degree 4, and hence G is the complete bipartite graph K4,4, which is also the

graph H1 depicted in Figure 2.2.

To sum up the discussion above, G is the hypercube Q4 or the graph G3 or a graph in Gi or

a graph in Hj. The proof is now complete.

For convenience, we denote the set of all graphs presented above by F , which consists of G1,

G2, G3, Q4, all graphs in Gi and all graphs in Hj . Combining Theorem 3.1 with Theorem 3.2,

we conclude one of our main results as follows.
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Theorem 3.3 Let Gσ be a 4-regular oriented graph with optimum skew energy. Then the un-

derlying graph G is a graph in F .

Now the question naturally arises: whether there exists an orientation for each graph of F
such that the resultant oriented graph attains optimum skew energy. The following results tell

us that for each graph of F such orientation indeed exists.

u1

u3u2

u4

v1 v4

v3v2

Gσ
1

u1

u2

u6

u4u3

u5

Gσ
2u

u1 u2

v5u6u5

wv4v3u4u3v

v2v1

Gσ
3

Figure 3.5: The optimum orientations for G1, G2 and G3

Theorem 3.4 Let Gσ
1 , Gσ

2 and Gσ
3 be the oriented graphs of G1, G2 and G3, respectively, given

in Figure 3.5. Then each of them has the optimum shew energy.

Proof. Let the rows of the skew-adjacency matrix S(Gσ
1 ) correspond successively the vertices

u1, u2, u3, u4, v1, v2, v3 and v4. It follows that
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S(Gσ
1 ) =




0 1 1 1 1 0 0 0

−1 0 −1 1 0 1 0 0

−1 1 0 −1 0 0 1 0

−1 −1 1 0 0 0 0 1

−1 0 0 0 0 −1 −1 −1

0 −1 0 0 1 0 1 −1

0 0 −1 0 1 −1 0 1

0 0 0 −1 1 1 −1 0




Let the rows of the skew-adjacency matrix S(Gσ
2 ) correspond successively the vertices u1, u2,

u3, u4, u5 and u6. Then

S(Gσ
2 ) =




0 1 1 1 1 0

−1 0 −1 0 1 −1

−1 1 0 −1 0 1

−1 0 1 0 −1 −1

−1 −1 0 1 0 1

0 1 −1 1 −1 0




Similarly, let the rows of the skew-adjacency matrix S(Gσ
3 ) correspond successively the vertices

u, u1, u2, v1, v2, v, u3, u4, v3, v4, w, u5, u6 and v5. Then

S(Gσ
3 ) =




0 1 1 1 1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 1 1 1 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 1 1 0 0 0 0

−1 0 0 0 0 0 −1 0 −1 0 1 0 0 0

−1 0 0 0 0 0 0 −1 0 −1 −1 0 0 0

0 −1 1 0 0 0 0 0 0 0 0 1 1 0

0 −1 0 1 0 0 0 0 0 0 0 −1 0 1

0 −1 0 0 1 0 0 0 0 0 0 0 −1 −1

0 0 −1 1 0 0 0 0 0 0 0 0 1 −1

0 0 −1 0 1 0 0 0 0 0 0 1 0 1

0 0 0 −1 1 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 −1 1 0 0 −1 1 0 0 0

0 0 0 0 0 −1 0 1 −1 0 −1 0 0 0

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0




It is not difficult to check that S(Gσ
1 )T S(Gσ

1 ) = 4I8, S(Gσ
2 )T S(Gσ

2 ) = 4I6 and S(Gσ
3 )T S(Gσ

3 ) =

4I14. We can also verify these equalities by proving that different row vectors of each of S(Gσ
1 ),

S(Gσ
2 ) and S(Gσ

3 ) are pairwise orthogonal. The theorem is thus proved.
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We have known from [11] that there exists an orientation σ of Q4 such that the resultant

oriented graph Qσ
4 has optimum skew energy. The following two algorithms recursively describe

optimum orientations of Gi and Hj , respectively.

u

u1 u2 v2v1

v

u3 u4 v3 v4

Gσ
1

u

u1 u2 v2v1

v

u3
u4 v3 v4

Gσ
2

u5 u6 v5 v6

u

u1 u2 v2v1

v

u3 u4 v3 v4

.

.

.

.

.

.

v2i−1 v2i

u2i+2 v2i+1 v2i+2

u2i−3 u2i−2

u2i−1 u2i

v2i−3 v2i−2

u2i+1

Gσ
i

Figure 3.6: The optimum orientation for Gi

Algorithm 1.

Step 1. Give G1 an orientation as shown in Figure 3.6.

Step 2. Assume that G1,G2, . . . ,Gt−1 have been oriented into Gσ
1 ,Gσ

2 , . . . ,Gσ
t−1. Then we

orient Gt with the following method:

(i) Keep the orientations of all edges in E(Gt−1) ∩ E(Gt).

(ii) Give the remaining edges orientations such that 〈u2t−1, u2t+1〉, 〈u2t−1, u2t+2〉,
〈u2t+1, u2t〉, 〈u2t+2, u2t〉, 〈v2t−1, v2t+1〉, 〈v2t−1, v2t+2〉, 〈v2t+1, v2t〉, 〈v2t+2, v2t〉,
〈u2t+1, v2t+2〉, 〈v2t+2, u2t+2〉, 〈u2t+2, v2t+1〉 and 〈v2t+1, u2t+1〉 belong to Γ(Gσ

t ).

Step 3. If t = i, stop; else take t − 1 := t, return to Step 2.

Algorithm 2.

Step 1. Give H1 an orientation as shown in Figure 3.7.
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u

u1 u2 v2v1

v

ℋσ
1

u

u1 u2 v2v1

v

u3
u4 v3 v4

ℋσ
2

u5 u6

u

u1 u2 v2v1

v

u3 u4 v3 v4

.

.

.

u3 u4

.

.

.

v2j−1 v2j

u2j+2

u2j−3 u2j−2

u2j−1 u2j

v2j−3 v2j−2

u2j+1

ℋσ
j

Figure 3.7: The optimum orientation for Hj

Step 2. Assume that H1,H2, . . . ,Ht−1 have been oriented into Hσ
1 ,Hσ

2 , . . . ,Hσ
t−1. Then we

orient Ht with the following method:

(i) Keep the orientations of all edges in E(Ht−1)∩E(Ht)\{(u2t−3, u2t−1), (u2t−3, u2t),

(u2t−2, u2t−1), (u2t−2, u2t)}.
(ii) Give the remaining edges orientations such that 〈u2t−3, u2t−1〉, 〈u2t−3, u2t〉,

〈u2t−1, u2t−2〉, 〈u2t, u2t−2〉, 〈v2t−3, v2t−1〉, 〈v2t−3, v2t〉, 〈v2t−1, v2t−2〉, 〈v2t, v2t−2〉,
〈u2t+1, u2t−1〉, 〈u2t−1, u2t+2〉, 〈u2t, u2t+1〉, 〈u2t+2, u2t〉, 〈u2t+1, v2t−1〉, 〈u2t+2, v2t−1〉
〈v2t, u2t+1〉 and 〈v2t, u2t+2〉 belong to Γ(Hσ

t ).

Step 3. If t = i, stop; else take t − 1 := t, return to Step 2.

Next, we shall prove that Gσ
i and Hσ

j derived from Algorithm 1 and Algorithm 2, respectively,

have optimum skew energy, that is, their skew-adjacency matrices satisfy S(Gσ
i )T S(Gσ

i ) = 4I

and S(Hσ
j )T S(Hσ

j ) = 4I. In order to illustrate clearly the skew-adjacency matrices S(Gσ
i ) and
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S(Hσ
j ), we here define some small matrix blocks.

A =

[
1 1 1 1

1 1 −1 −1

]
B =




1 1 0 0

−1 −1 0 0

0 0 1 1

0 0 −1 −1




C =




0 0 −1 1

0 0 1 −1

1 −1 0 0

−1 1 0 0




D =




−1 1

1 −1

−1 −1

1 1




Theorem 3.5 Let S(Gσ
i ) be the skew-adjacency matrix of Gσ

i obtained from Algorithm 1. Then

S(Gσ
i )T S(Gσ

i ) = 4I.

Proof. Let the rows of the skew-adjacency matrix S(Gi) correspond successively the vertices u,

v, u1, u2, v1, v2, . . . , u2i+1, u2i+2, v2i+1, v2i+2. Then from Algorithm 1, S(Gi) can be written as

the block matrix for each positive integer i.

For i = 1 and i = 2,

S(Gσ
1 ) =




0 A 0

−AT 0 B

0 −BT C


 S(Gσ

2 ) =




0 A 0 0

−AT 0 B 0

0 −BT 0 B

0 0 −BT C




By applying multiplication of block matrix, it is easy to compute that

S(Gσ
1 )T S(Gσ

1 ) =




AAT 0 −AB

0 AT A + BBT −BC

−BTAT −CTBT BTB + CTC




S(Gσ
2 )T S(Gσ

2 ) =




AAT 0 −AB 0

0 AT A + BBT 0 −B2

−BTAT 0 BTB + BBT −BC

0 −(BT )2 −CT BT BT B + CT C




In order to prove S(Gσ
1 )T S(Gσ

1 ) = 4I and S(Gσ
2 )T S(Gσ

2 ) = 4I, it suffices to prove that the

following equalities meanwhile hold.

AAT = 4I2, AT A + BBT = 4I4, BT B + BBT = 4I4,

BTB + CTC = 4I4, AB = 0, B2 = 0, BC = 0.
(3.1)
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By the definitions of A, B and C, it is easy to verify that all equalities 3.1 indeed hold. In fact,

these equalities can further guarantee S(Gσ
i )T S(Gσ

i ) = 4I, because S(Gi) can be formulated as

S(Gσ
i ) =




0 A 0 0 · · · 0 0

−AT 0 B 0 · · · 0 0

0 −BT 0 B · · · 0 0

0 0 −BT 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 B

0 0 0 0 · · · −BT C




.

It should be pointed out that if one only considers G1, then it is enough to check that parts

of the equalities hold. The proof is now complete.

Theorem 3.6 Let S(Hσ
j ) be the skew-adjacency matrix of Hσ

j obtained from Algorithm 2. Then

S(Hσ
j )T S(Hσ

j ) = 4I.

Proof. Similar to the proof of Theorem 3.5, let the rows of the skew-adjacency matrix S(Hj)

correspond successively the vertices u, v, u1, u2, v1, v2, . . . , u2i−1, u2i, v2i−1, v2i, u2i+1 and

u2i+2.

S(Hσ
1 ) =




0 A 0

−AT 0 D

0 −DT 0


 S(Hσ

2 ) =




0 A 0 0

−AT 0 B 0

0 −BT 0 D

0 0 −DT 0




S(Hσ
j ) =




0 A 0 0 · · · 0 0 0

−AT 0 B 0 · · · 0 0 0

0 −BT 0 B · · · 0 0 0

0 0 −BT 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 B 0

0 0 0 0 · · · −BT 0 D

0 0 0 0 · · · 0 −DT 0




We can verify that S(H1)
T S(H1) = 4I if and only if the equalities below hold,

AAT = 4I2, AT A + DDT = 4I4, DT D = 4I2, AD = 0. (3.2)
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while S(H2)
T S(H2) = 4I if and only if the following equalities hold,

AAT = 4I2, AT A + BBT = 4I4, BT B + DT D = 4I4,

DT D = 4I2, AB = 0, BD = 0.
(3.3)

For j ≥ 3, combining equalities in (3.3) with equalities BTB + BBT = 4I4 and B2 = 0, it is

enough to ensure that the equality S(Hσ
j )T S(Hσ

j ) = 4I holds.

By the definitions of A,B and D, it can be directly checked that the all equalities above

indeed hold. This completes the proof.

We can summarize all results above as the following theorem.

Theorem 3.7 Let G be a 4-regular graph. Then G has an optimum orientation if and only if

G is a graph of F .

Remark 1. For arbitrary matrices A′, B′, C ′ and D′ with entries 0, 1 and −1, if they have

the same orders and the same number of 0′s with A, B, C and D, respectively, and meanwhile

they satisfy all the equalities of Theorem 3.5 and Theorem 3.6, then we can substitute A, B, C

and D, respectively by A′, B′, C ′ and D′ in the skew-adjacency matrices S(Gi) and S(Hj), and

the corresponding oriented graphs still have optimum skew energy.

Remark 2. The proofs of Theorem 3.5 and Theorem 3.6 are based on matrix computations

by proving that the skew-adjacency matrix S satisfies ST S = nI. Besides, we can apply Propo-

sition 2.4 to prove that for any two distinct vertices u and v, the number of all positive walks

equals that of all negative walks from u to v with length 2.
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