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Abstract

The Wiener polarity index Wp(G) of a graph G = (V, E) is defined to be the number of the
unordered pairs of vertices {u, v} such that the distance between u and v is three, which was
proposed by Harold Wiener in 1947. In this paper, we characterize the extremal graphs among
all the unicyclic graphs with order n and diameter d.

1 Introduction

Let G = (V, E) be a connected simple graph. The distance in G of two different vertices

u, v is the length of a shortest u-v path in G, denoted by dG(u, v) or d(u, v); if no such

path exists, we set d(u, v) = ∞. The greatest distance between any two vertices in G

is the diameter of G, denoted by diam(G). Let NG(v) be the neighborhood of v, and

dG(v) = |NG(v)| denote the degree of vertex v. For i ∈ {1, 2, . . . , diam(G)}, we call
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N i
G(v) = {u ∈ V (G)|d(u, v) = i} the ith neighborhood of v. A vertex of degree one is

called a pendant vertex. The length of a cycle C is the number of edges contained in C.

The girth of G, denoted by g(G), is the minimum length of the cycles in G. A unicyclic

graph of order n is a connected graph with n vertices and n edges. In other words, every

unicyclic graph has exactly one cycle. For all other notations and terminology, not given

here, see e.g. [1].

The Wiener polarity index of G, denoted by Wp(G), is defined by

Wp(G) = |{{u, v}|d(u, v) = 3, u, v ∈ V (G)}|,

which is the number of unordered pairs of vertices {u, v} such that d(u, v) = 3. The

name “Wiener polarity index” was introduced by Harold Wiener [21] in 1947. Wiener

himself conceived the index only for acyclic molecules and defined it in a slightly different

– yet equivalent – manner. In the same paper, Wiener also introduced another index for

acyclic molecules, called Wiener index or Wiener distance index and defined by W (G) :=
∑

{u,v}⊆V dG(u, v). Wiener [21] used a liner formula of W and WP to calculate the boiling

points tB of the paraffins, i.e., tB = aW + bWp + c, where a, b and c are constants for

a given isomeric group. The Wiener index W (G) is now very popular in chemical and

mathematical literature, such as the contributions of Ante Graovac [2, 10, 13, 14, 19, 20].

For more results on Wiener index, we refer to the survey paper [8] written by Dobrynin,

Entringer and Gutman.

Recently, the extremal Wiener polarity index of trees, unicyclic graphs and bicyclic

graphs were studied, respectively, such as [4, 12, 15]; and the extremal Wiener polarity

index of trees with given different parameters (e.g. order, diameter, maximum degree,

the number of pendants, etc.) were studied (see [5, 6, 7, 16]). More results can refer to

[3, 8, 9, 11, 17, 18].

In this paper, we will characterize the extremal graphs with respect to the Wiener

polarity index among all unicyclic graphs with order n and diameter d.



2 The minimum Wiener polarity index of unicyclic

graphs with order n and diameter d

In this section, we will characterize the minimum unicyclic graphs with respect to the

Wiener polarity index among all unicyclic graphs with order n and diameter d. Since

Wp(G) = 0 for any graph G with diameter d ≤ 2, we can assume that d ≥ 3 in the

following.

Firstly, we give a result about the Wiener polarity index of unicyclic graphs, which was

established in [12].

Lemma 2.1. [12] Let U = (V, E) be a unicyclic graph and C denote the unique cycle of

U . If g(U) = 3, with V (C) = {v1, v2, v3}, then

Wp(U) =
∑

uv∈E

(dU(u)− 1)(dU(v)− 1) + 9− 2dU(v1)− 2dU(v2)− 2dU(v3).

If g(U) = 4, with V (C) = {v1, v2, v3, v4}, then

Wp(U) =
∑

uv∈E

(dU(u)− 1)(dU(v)− 1) + 4− dU(v1)− dU(v2)− dU(v3)− dU(v4).

Moreover, if g(U) ≥ 5, then we have

Wp(U) =





∑
uv∈E

(dU(u)− 1)(dU(v)− 1)− 5, if g(U) = 5;

∑
uv∈E

(dU(u)− 1)(dU(v)− 1)− 3, if g(U) = 6;

∑
uv∈E

(dU(u)− 1)(dU(v)− 1), if g(U) ≥ 7.

Let U(n, d) be the set of unicyclic graphs with order n and diameter d, and P(U, d)

denote the set of paths of length d in U ∈ U(n, d). Each path P ∈ P(U, d) can be taken

as a spindle of U ∈ U(n, d). Let C be the unique cycle and P = v0v1 · · · vd be a spindle in

U . If E(P )∩E(C) = ∅, then there is a path Pc connecting P and C. If E(P )∩E(C) 6= ∅,
then P and C have at least two common vertices. A hanging tree on vertex v in U ,

denoted by TU [v], is a rooted tree whose root is v. Specially, if v ∈ V (P )∪V (C)∪V (Pc),

then TU [v] is a rooted tree which contains no vertex on P or Pc.



In the following, we will show some operations on unicyclic graphs which can reduce

the Wiener polarity index.

We define Operation I (see Figure 1) as follows. We construct two graphs A and B

from U , where A = U \ (TU [v] \ v), and B = B(V (TU [v] \ v), ∅). Then join every vertex in

B to a vertex v′ ∈ A, and we obtain a new graph, denoted by U ′. We call this operation

transport TU [v] to v′.

v0 v1 v0 v1

TU [v] \ v
|TU [v] \ v|

I

vd vd

Figure 1: Operation I on U .

We define Operation II as follows. Let U be a unicyclic graph. If dU(v) = 2, then

let U ′ = B − vv′ − vv′′ + v′v′′ + vx, where v′, v′′ ∈ NU(v), x ∈ V (U). We call such an

operation smooth v to x.

By considering whether there exists some P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅ or

not, we will give different operations on unicyclic graphs as follows.

(1) If there exists some P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅, then we pick P =

v0v1 · · · vd as the spindle. Let C = w1w2 . . . wp be its unique cycle, and Pc = vcu1 . . . utw1

be the path connecting path P and cycle C, where vc ∈ P ∩ Pc (1 ≤ c ≤ d − 1) is the

common vertex of P and Pc. Specially, if |Pc| = 1, then w1 = vs.

Let U3(s, t) (s + t = n − d − 3) be a unicyclic graph, which is obtained from a path

P = v0v1 · · · vd of length d by adding s pendant vertices to v1, t pendant vertices to vd−1,

respectively, and identifying a vertex of a triangle with v1 or vd−1 (see Figure 2).

In the following we will show the steps to obtain U3(s, t) from a unicyclic graph U .

Step 1. By transporting TU [v2] \ v2 and TU [vd−2] \ vd−2 to v1 or vd−1 , we get a new

graph, denoted by U1. Observe that dU1(v2) = dU1(vd−2) = 2.

Step 2. Transport all TU1 [vi] \ vi (i ∈ {3, . . . , d− 3}), TU1 [uj] (1 ≤ j ≤ t), TU1 [wk] \wk



s t

v0 v1 vd−1 vd

Figure 2: The unicyclic graph U3(s, t).

(1 ≤ k ≤ p) to v1 or vd−1. We obtain a new graph U2. Observe that dU2(vc) = dU2(w1) = 3,

dU2(vi) = dU2(uj) = dU2(wk) = 2 (i ∈ {2, . . . , c−1, c+1, . . . , d−2}, 1 ≤ j ≤ t, 2 ≤ k ≤ p),

TU2 [v1] and TU2 [vd−1] are stars. Note that dU2(vc) = dU2(w1) = 4 whenever vc = w1.

Step 3. By smoothing wi (3 ≤ i ≤ p−1) to v1 or vd−1, we obtain a new graph, denoted

by U3.

Step 4. Firstly, we construct two graphs A = U3[w1, w2, wp] and B = U3\w2\wp;

secondly, identify w1 ∈ A with v1 (or vd−1) ∈ B and transport TB[vc] to v1 (or vd−1);

finally, we reach the desired unicyclic graph U4 = U3(s, t).

Lemma 2.2. Let U be a unicyclic graph in U(n, d) (d ≥ 5) and P = v0v1 · · · vd be the

spindle of U . Let U ′ denote the corresponding unicyclic graph obtained from U by the

Step 1, Step 2 and Step 4 above. Then Wp(U
′) ≤ Wp(U).

Proof. We show the proof by the following three cases corresponding to the operation in

the three steps, respectively.

Firstly, we consider the change on Wiener polarity index brought by the operation in

Step 1. For arbitrary vertex x ∈ NU(v2) ∩ V (TU [v2]), there exist at least two vertices

v0, v4 such that dU(v0, x) = dU(v4, x) = 3. But after transporting x to v1, there is only

one vertex v3 such that dU ′(v3, x) = 3, which implies that Wp(U
′) + 1 ≤ Wp(U). If we

transport corresponding vertices to vd−1, the case is similar to the above.

Secondly, we consider the change on Wiener polarity index brought by the operation

in Step 2. It can be checked that for arbitrary vertex u ∈ TU [v] \ v, there exists at

least one vertex y such that dU(y, u) = 3. But after transporting u to v1 (or vd−1) there

exists only one vertex v3 (or vd−3) such that dU ′(v3, u) = 3 (or dU ′(vd−3, u) = 3), since



d(v2) = d(vd−2) = 2. Thus Wp(U) ≥ Wp(U
′), as stated.

Finally, for the case in step 4, similar to the proof above, Wp(U) ≥ Wp(U
′) follows

directly.

Lemma 2.3. Let U be a unicyclic graph in U(n, d) (d ≥ 5), C be its unique cycle and U ′

denote the unicyclic graph obtained by smoothing w ∈ V (C) to v1 or vd−1 in the Step 3.

Then Wp(U
′) ≤ Wp(U).

Proof. By a similar discussion as Lemma 2.2, the conclusion follows.

Now we can give the following theorem:

Theorem 2.1. Let U be a unicyclic graph in U(n, d) (d ≥ 5) and there exists some

P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅ to be the spindle of U . Let U∗ be the unicyclic

graph obtained from U by the above four steps. Then Wp(U
∗) ≤ Wp(U), with the equality

holds if and only if U∗ ∼= U3(s, t) (s + t = n− d− 3).

Proof. Let C = w1w2 . . . wpw1 be the cycle of U , and Pc = vcu1 . . . utw1 be the path

connecting path P and cycle C. By Lemmas 2.2 and 2.3, we have Wp(U
∗) ≤ Wp(U). It

suffices to show that the equality holds if and only if U∗ ∼= U3(s, t) (s + t = n − d − 3).

To prove the conclusion we first give the following claims.

Claim 1. dU∗(v2) = 2 and dU∗(vd−2) = 2.

Suppose that dU∗(v2) 6= 2, then for arbitrary vertex v ∈ NU∗(v2) ∩ V (TU∗ [v2]), there

are at least two vertices v0, v4 such that d(v0, v) = d(v4, v) = 3. But after transporting v

to v1, there is exactly one vertex v3 ∈ V (P ) such that d(v3, v) = 3. Thus, dU∗(v2) = 2.

Similarly, we have dU∗(vd−2) = 2.

Claim 2. V (TU∗ [v]\v) = ∅, where v ∈ {v2, . . . , vd−2, u1, . . . , ut, w1, . . . , wp}.
Suppose that there is some vertex x ∈ V (TU∗ [v]\v) adjacent to v, then there are at

least two vertices v′, v′′ ∈ V (P ) ∪ V (Pc) ∪ V (C) such that d(v′, v) = d(v′′, v) = 3. But

after transporting v to v1 or vd−1, there is exactly one vertex v3 (or vd−3) ∈ V (P ) such

that d(v3, x) = 3 (or d(vd−3, x) = 3), since dU∗(v2) = dU∗(vd−2) = 2. Thus, all the pendant

vertices of U∗ are adjacent to v1 or vd−1.

Claim 3. |Pc| = 0.



Suppose that |Pc| ≥ 1, then for vertex u1, there are at least two vertices vc−2, vc+2

(c − 2, c + 2 ∈ {0, 1, . . . , d}) such that d(vc−2, u1) = d(vc+2, u1) = 3. But after after

applying the operation in Step 4, there is exactly one vertex v3 (or vd−3) ∈ V (P ) such

that d(v3, u1) = 3 (or d(vd−3, u1) = 3), since dU∗(v2) = dU∗(vd−2) = 2. Thus, |Pc| = 0.

Claim 4. |C| = 3.

Suppose that |C| ≥ 4, then for vertex w2, there are at least two vertices vc−1, w5 (or

vc+1) (c− 1, c + 1 ∈ {0, 1, . . . , d}) such that d(vc−1, w2) = d(w5, w2) = 3 (or d(vc−1, w2) =

d(vc+1, w2) = 2), since |Pc| = 0. But after smoothing w2 to v1 or vd−1, there is exactly one

vertex v3 (or vd−3) ∈ V (P ) such that d(v3, w2) = 3 (or d(vd−3, w2) = 3). Thus, |C| = 3.

Claim 5. vc = v1 or vd−1.

Suppose that vc 6= v1 or vd−1, then for vertex w1, there are at least two vertices vc−2,

vc+2 (c − 2, c + 2 ∈ {0, 1, . . . , d}) such that d(vc−2, w1) = d(vc+2, w1) = 3, since |Pc| = 0

and |C| = 3. But after identifying w1 with v1 (or vd−1), there is exactly one vertex v3 (or

vd−3) ∈ V (P ) such that d(v3, w1) = 3 (or d(vd−3, w1) = 3). Thus, vc = v1 or vd−1.

Combining all the claims above, we complete the proof.

(2) There is no path P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅. We pick P = v0v1 · · · vd

as the spindle and let C = vfvf+1 · · · vgwq · · ·w1vf (1 ≤ f < g ≤ d) be the unique cycle

of U .

We define Operation III (see Figure 3) as follows. Let U be a unicyclic graph with

E(P ) ∩E(C) 6= ∅. Let P = v0v1 · · · vd be the spindle and C = vfvf+1 · · · vgwq · · ·w1vf (1 ≤
f < g ≤ d) be the unique cycle of U . If dU(w1) = 2, then let U ′ = U − vfw1 − w1w2 +

vf+1w2 + w1v1, where v1 ∈ V (P ). We call such an operation shrink w1 to v1.

III

v1 v1

w1 w1

vf vfv0 v0vg vgvd vdvf+1 vf+1

Figure 3: Operation III on U .

Let U4(n− d− 2, 0) be a unicyclic graph, which is obtained from a path P = v0v1 · · · vd



of length d by adding n− d− 2 pendant vertices to v1, and identifying three vertices of a

quadrangle to vd−2, vd−1, and vd respectively; U5(n− d− 3, 0) be a unicyclic graph, which

is obtained from a path P = v0v1 · · · vd of length d by adding n− d− 3 pendant vertices

to v1, and identifying three vertices of a pentagons to vd−2, vd−1, and vd, respectively (see

Figure 4).

n− d− 3

n− d− 2

v0

v0

v1

v1

vd−2

vd−2

vd−1

vd−1

vd

vd

Figure 4: U4(n− d− 2, 0) and U5(n− d− 3, 0).

We say that a pair of vertices (vi, vi+1) (0 ≤ i ≤ d− 1) is on cycle C, if there is at least

one vertex of vi and vi+1 on cycle C. By considering whether (v1, v2) and (vd−2, vd−1) are

on cycle C or not, there are two cases.

Case 1. There is at most one pair of (v1, v2) and (vd, vd−1) on the cycle C.

We get the desired graph by the following four steps.

Step 1. Without loss of generality, assume that (v1, v2) is not on cycle C. Then we

transport TU [v2] to v1, and denote the new graph by U1. Observe that dU1(v2) = 2.

Step 2. Transport all TU1 [vi] (i ∈ {3, . . . , d − 1}) and TU1 [wj] (j ∈ {1, . . . , q}) to v1,

and we get a unicyclic graph U2, where the vertices on U2 other than v1 have no hanging

trees.

Step 3. Firstly, smooth w1, w2, . . . , wt to v1 such that 0 ≤ (q − t)− (g − f − 1) ≤ 1.

Secondly, shrink wt+1, wt+2, . . . , wq−1 to v1, respectively. If (q− t)− (g− f − 1) = 0, then

we get a new graph U3 with a unique cycle C = wsvg−2vg−1vgwq. If (q−t)−(g−f−1) = 1,

then we get a new graph U ′
3 with a unique cycle C ′ = wqvg−1vgwq.

Step 4. If (q− t)− (g− f − 1) = 0, then U4 = U3 −wqvg−2 −wqvg + wqvd−2 + wqvd; if

(q − t)− (g − f + 1) = 1, then U ′
4 = U ′

3 − wqvg−1 − wqvg + wqvd−1 + wqvd.



Observe that U4 = U4(n− d− 2, 0) and U ′
4 = U3(s, 0) (s = n− d− 3).

Remark 1. For the situation that vg = vd is on the cycle of U and (q−t)−(g−f−1) = 1,

if we shrink vertices wt+1, wt+2, . . . , wq−2 to v1, then we get a new graph U ′
3 with a unique

cycle C ′ = wq−1vg−2vg−1vgwqwq−1; if we shrink vertices wt+1, wt+2, . . . , wq−1 to v1, then

we get a new graph U ′
3 with a unique cycle C ′ = wqvg−1vgwq. Thus, U ′

4 = U5(n− d− 3, 0)

or U3(s, 0) (s = n− d− 3).

Remark 2. It is easy to check that Wp(U3(n−d−3, 0)) = Wp(U3(s, t)) (s+t = n−d−3).

Case 2. Both (v1, v2) and (vd−2, vd−1) are on the cycle C. By considering whether v1

or vd is on cycle C or not, we have the following two subcases.

Subcase 1. v1 or vd−1 is not on cycle C. Without loss of generality, assume that v1 is

not on cycle C (i.e., C = v2v3 . . . vgwq . . . w1v2).

Firstly, by transporting all TU [v2], TU [v3], TU [w1], TU [w2] to v1, shrinking w1 to v1, we

obtain a graph U1 with a cycle C1 = v3 . . . vgwq . . . w2v3. Observe that dU1(v2) = 2. Then

we can return to the situation in Case 1.

Subcase 2. v1 and vd−1 are both on cycle C.

If v0 or vd is not on cycle C, without loss of generality, assume that v0 is not on cycle C,

then by transporting all TU [v2], TU [v3], TU [w1], TU [w2], TU [w3] to v1, shrinking w1 and w2 to

v1, we obtain a graph U1 with a cycle C1 = v3 . . . vgwq . . . w3v3. Observe that dU1(v2) = 2;

If v0 and vd are both on cycle C (it is obvious that U = C = v0 . . . vdwq . . . w1v0 and

0 ≤ q − (d− 1) ≤ 1), then by shrinking w1, w2 and w3 to v1, we obtain a graph U ′
1 with

a cycle C ′
1 = v3 . . . vdwq . . . w4v3. Observe that dU ′1(v2) = 2. Now we can return to the

situation in Case 1.

Lemma 2.4. Let U be a unicyclic graph in U(n, d) (d ≥ 5), P = v0v1 · · · vd be its spindle,

and C = vfvf+1 · · · vgwq · · ·w1vf (1 ≤ f < g ≤ d) denote its unique cycle. If dU(v2) = 2

and dU(w1) = 2, then Wp(U
′) ≤ Wp(U), where U ′ is the unicyclic graph obtained from U

by shrinking w1 to v1.

Proof. We just consider the change on the Wiener polarity index brought by Operation

III: shrink w1 ∈ V (C) to v1.

It is easy to check that there is at least one vertex v ∈ V (P ) such that dU(v, w1) = 3.



But after shrinking w1 ∈ V (C) to v1 there exists only one vertex v3 ∈ V (U ′) such that

dU ′(v3, w1) = 3. Thus, Wp(U
′) ≤ Wp(U) follows.

Combining Lemmas 2.2, 2.3 and 2.4, we can easily get the following theorem:

Theorem 2.2. Let U be a unicyclic graph in U(n, d) (d ≥ 5), and there exists no path P ∈
P(U, d) such that E(P )∩E(C) = ∅. Then Wp(U

∗) ≤ Wp(U), where U∗ ∈ {U3(s, t) (s+t =

n− d− 3), U4(n− d− 2, 0), U5(n− d− 3, 0)}.

Proof. Let P = v0v1 · · · vd be the spindle and let C = vfvf+1 · · · vgwq · · ·w1vf (1 ≤ f <

g ≤ d) be the unique cycle of U . By Lemmas 2.2, 2.3 and 2.4, we have Wp(U
∗) ≤ Wp(U).

It suffices to show that equality holds if and only if U∗ ∈ {U3(s, t) (s + t = n − d −
3), U4(n− d− 2, 0), U5(n− d− 3, 0)}.

Suppose that dU∗(v2) 6= 2, then for arbitrary vertex v ∈ NU∗(v2)∩V (TU∗ [v2]), there are

at least two vertices v0, v4 such that d(v0, v) = d(v4, v) = 3. But after transporting v to

v1, there is exactly one vertex v3 ∈ V (P ) such that d(v3, v) = 3. Thus, dU∗(v2) = 2.

Suppose that there is some vertex x ∈ V (TU ′ [v]\v) adjacent to v, where v ∈ {v2, . . . , vd−1,

w1, . . . , wq}, then there are at least two vertices v′, v′′ ∈ V (P )∪V (C) such that d(v′, v) =

d(v′′, v) = 3. But after transporting v to v1, there is exactly one vertex v3 ∈ V (P ) such

that d(v3, x) = 3, since dU∗(v2) = 2. Thus, all the pendant vertices of U∗ are adjacent to

v1.

Suppose that |C| ≥ 6, then for vertex w1, there are at least two vertices vf−2 (or w4)

and vf+2 such that d(vf−2, w1) = d(vf+2, w1) = 3 (or d(w4, w1) = d(vf+2, w1) = 3). But

after smoothing or shrinking w1 to v1, there is exactly one vertex v3 ∈ V (P ) such that

d(v3, w1) = 3. Thus, |C| ≤ 5.

For the case that |C| = 3, suppose that vf 6= vd−1, then for vertex w1, there are at least

two vertices vf−2, vf+2 (f−2, f+2 ∈ {0, 1, . . . , d}) such that d(vf−2, w1) = d(vf+2, w1) = 3.

But after identifying vf with vd−1, vg with vd, there is exactly one vertex vd−3 ∈ V (P )

such that d(vd−3, w1) = 3. Thus, vf = vd−1 and vg = vd. Therefore, U∗ ∼= U3(s, t) (s+ t =

n− d− 3) as stated.

For the case that |C| = 4, suppose that vf 6= vd−2, then for vertex w1, there are at least

two vertices vf−2, vf+2 (f−2, f+2 ∈ {0, 1, . . . , d}) such that d(vf−2, w1) = d(vf+2, w1) = 3.



But after identifying vf and vd−2, vg and vd, there is exactly one vertex vd−4 ∈ V (P ) such

that d(vd−4, w1) = 3. Thus, vf = vd−2 and vg = vd. Therefore, U∗ ∼= U4(n − d − 2, 0) as

stated.

Similar to the case |C| = 4, if |C| = 5, then U∗ ∼= U5(n− d− 5, 0) follows.

Combining all the situations above, the proof is complete.

For any U∗ ∈ {U3(s, t), U4(s + t, 0), U5(s + t− 1, 0)}, we can easily get the following by

some calculations:

Wp(U
∗) = n− 3.

Finally, by Theorems 2.1, 2.2 and some calculations, the minimum Wiener polarity

index of unicyclic graphs with order n and diameter d is determined.

Theorem 2.3. Let U be a unicyclic graph in U(n, d) (d ≥ 3), and U∗ denote the unicyclic

graph with minimum Wiener polarity index.

(1) If d = 3, then U∗ ∼= U3(0, t) (t = n− 6), and Wp(U
∗) = n− 3;

(2) If d = 4, then U∗ ∼= U3(s, t) (s + t = n− 7), and Wp(U
∗) = n− 3;

(3) If d ≥ 5, then U∗ ∼= U3(s, t) (s + t = n− d− 3), U4(n− d− 2, 0), U5(n− d− 3, 0),

and Wp(U
∗) = n− 3.

3 The maximum Wiener polarity index of unicyclic

graphs with order n and diameter d

In this section, we will determine the maximum Wiener polarity index among all uni-

cyclic graphs with order n and diameter d, and characterize the extremal unicyclic graph.

Note that the unicyclic graphs with maximum Wiener polarity index among all unicyclic

graphs with order n and diameter d = 3 was characterized in [12], and that the extremal

graph of unicyclic graphs with order n, diameter d (n ≤ d+7) can be characterized easily,

we only consider the case that d ≥ 4 and n ≥ d + 8 in the following paper.

Let P be the spindle of U and C be its unique cycle. In [12], a transformation is

introduced on unicyclic graphs with g(U) ≥ 4, named Sigma. In order to characterize



the unicyclic graphs with diameter d and order n with respect to the maximum Wiener

polarity index, we need to introduce a similar operation.

We define Operation IV (“ sigma”) (see Figure 5) as follows. Let U be a unicyclic

graph with a unique cycle C, and TU [v] denote a hanging tree on vertex v ∈ V (P )∪V (C).

Among all hanging trees, suppose Pl = vt1 · · · tl is one of the longest path from the root

v to a leaf tl of the hang tree TU [v]. If l ≥ 2, then after deleting the edge vt1 from U , we

obtain a unicyclic graph A and a tree B such that v ∈ A and t1 ∈ B. Let U ′ denote the

unicyclic graph obtained from A and B by identifying t1 and v′ (v′ ∈ V (P ) ∪ V (C) is a

neighbor of v), and adding a new pendant vertex x to v.

IV

v0 v0vd vdv

v v

vv
′

v
′

v
′v

′

x

x

Figure 5: Operation IV on U .

Now we consider the maximum Wiener polarity index of unicyclic graphs with order n

and diameter d (d ≥ 4, n ≥ d + 8) by the following cases.

(1) If there exists some P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅, then we pick P =

v0v1 · · · vd as the spindle. Let C = w1w2 . . . wp be its unique cycle, and Pc = vcu1 . . . utw1

be the path connecting path P and cycle C, where vc ∈ P ∩ Pc (1 ≤ c ≤ d − 1) is the

common vertex of P and Pc. Specially, w1 = vc whenever |Pc| = 1. We get the desired

graph by the following steps.

Step 1. Firstly, apply Operation IV (“sigma”) on vertices vi (2 ≤ i ≤ d − 2), wk

(1 ≤ k ≤ p) ∈ V (U); secondly, if w1 = vc, then we do nothing; if w1 6= vc, then by

regarding the spindle as a pendant vertex adjacent to u1, we can apply Operation IV on

vertex w1 ∈ V (C). Finally we obtain graph U1, where P = v0v1 · · · vd remains to be the

spindle, P ′
c = vcw1 is a path connecting vc and cycle C. Observe that TU1 [vi] (1 ≤ i ≤ d−1)

and TU1 [wj] (1 ≤ j ≤ p) are stars.

Step 2. Let Vi := TU1 [vi] \ vi (1 ≤ i ≤ d − 1), Wj := TU1 [wj] \ wj (1 ≤ j ≤ p). By



considering whether w1 = vc or not, we have the following two cases.

Case 1. w1 = vc.

Firstly, for Vi (i ∈ {1, . . . , c− 1, c + 1, . . . , d− 1}), if |i− c| is odd, then move Vi to w2;

if |i − c| is even, then move Vi to w1. Secondly, for Wj (j ∈ {3, . . . , p − 1}), if j is odd,

then move Wj to w1 and smooth vertex wj to w2; if j is even, then move Wj to w2 and

smooth vertex wj to w1.

Case 2. w1 6= vc.

Firstly, for Vi (i ∈ {1, . . . , d− 1}), if |i− c| is odd, then move Vi to w1; if |i− c| is even,

then move Vi to w2. Secondly, for Wj (j ∈ {3, . . . , p − 1}), if j is odd, then move Wj to

w1 and smooth vertex wj to w2; if j is even, then move Wj to w2 and smooth vertex wj to

w1. Finally, identify w1 with vc, delete edge w1vc, and meanwhile add a pendant vertex

to w1.

At last, we get a new graph U2, where the unique cycle of U2 is a triangle. Observe that

TU2 [wi] (i = 1, 2, p) is a star and V (TU2 [vk]\vk) = ∅ (k ∈ {1, . . . , c− 1, c + 1, . . . , d− 1}).
(2) There is no path P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅, where C = vfvf+1 · · · vg

wq · · ·w1vf (1 ≤ f < g ≤ d) is the unique cycle of U . We pick P = v0v1 · · · vd as the

spindle. We reach the desired graph by the following two steps.

Step 1. Apply Operation IV on vi (2 ≤ i ≤ d − 2) and wj (1 ≤ j ≤ q). The new

graph obtained is denoted by U1, where TU1 [vi] (1 ≤ i ≤ d − 1) and TU1 [wj] (1 ≤ j ≤ q)

are stars.

Step 2. Let Vi := TU1 [vi] \ vi (1 ≤ i ≤ d− 1), Wj := TU1 [wj] \ wj (1 ≤ j ≤ q).

Firstly, move Wl (2 ≤ l ≤ q − 1) and Vk (1 ≤ k ≤ f − 1, f + 2 ≤ k ≤ d− 1) to vf and

vf+1 alternately such that TU1 [a], TU1 [b] (a, b ∈ {v1, . . . , vf−1, vf+2, . . . , vd−1, w2, . . . , ws})
are moved to different vertices (i.e. vf and vf+1) whenever a is adjacent to b, move Wq

to w1. Secondly, shrink w2, . . . , wq to vf+1 and vf alternately. Thus, we get a new graph

U2 with a unique cycle C ′ = w1vfvf+1w1. Observe that TU2 [vf ], TU2 [vf+1] and TU2 [w1] are

stars.

Lemma 3.1. Let U be a unicyclic graph with diameter d ≥ 4 and n ≥ d + 8, C be its

unique cycle. Let U∗ be the unicyclic graph obtained by applying Operation IV on the

corresponding vertices. Then Wp(U) ≤ Wp(U
∗).



Proof. Under the condition that P = v0v1 . . . vd remains to be the spindle of the resul-

tant unicyclic graph after the repeated operation, we get the conclusion directly by an

analogous proof to that of Lemma 3.1. in [12].

Lemma 3.2. Let U be a unicyclic graph in U(n, d) (d ≥ 4, n ≥ d + 8). By taking Step 2

in the two cases on the corresponding unicyclic graph we obtain a new graph U ′, satisfying

Wp(U) ≤ Wp(U
′).

Proof. During the procedure there are mainly three operations: “move”, “smooth” and

“shrink”. We want to prove that each operation ensures that the value of the Wiener

polarity index is not decreasing. Here we denote the final unicyclic graph by U ′.

There are three kinds of unordered vertices pair {u, v} such that dU(u, v) = 3 on U : u

and v are both pendant vertices; u and v are both on the cycle (or the spindle) of U ; u is

a pendant vertex and v is on the cycle (or the spindle) of U .

Since we move Vi := TU1 [vi]\vi (1 ≤ i ≤ d−1), Wj := TU1 [wj]\wj (1 ≤ j ≤ p (or q)) to

two adjacent vertices vf and vf+1 alternately, we keep the unordered vertices pair {u, v},
where u and v are both pendant vertices. When we apply Operation II (“smooth”), in the

same way, we smooth the vertices to two adjacent vertices vf and vf+1 alternately which

remains the unordered vertices pair {u, v} of the second kind. At last, we only need to

consider the unordered vertices pair {u, v} of the third kind. Since there are at most three

vertices w1, w2 and w3 (or w1, vf and vf+1) with pendant vertices, then if the unordered

vertices pair {u, v} in the original graph is composed by u ∈ Vi (i ∈ {1, 2, . . . , d− 1}) (or

Wj (j ∈ {1, 2, . . . , p (q)} )) and v ∈ V (C) ∪ V (P ), then after such an operation it will be

replaced by u′ (a vertex in the three hanging trees) and a vertex v′ ∈ N2
U ′(u

′).

Combining the three situations above, we complete the proof.

Let U3(a1, a2, a3) (a1 + a2 + a3 = n − d − 3) be a unicyclic graph in U(n, d) (d ≥ 4),

which is obtained from a path P = v0v1 . . . vd by identifying one vertex w1 of a triangle

C = w1w2w3 with vc (2 ≤ c ≤ d − 2), and adding ai (i ∈ {1, 2, 3}) pendant vertices to

wi. Let U ′
3(a

′
1, a

′
2, a

′
3) (a′1 + a′2 + a′3 = n− d− 2) be a unicyclic graph in U(n, d) (d ≥ 4),

which is obtained from a path P = v0v1 . . . vd by identifying two vertices w2 and w3 of

a triangle C = w1w2w3 with vf and vf+1 (if d ≥ 5, then 2 ≤ f ≤ d − 3; if d = 4, then



f = 1), and adding a′i (i ∈ {1, 2, 3}) pendant vertices to wi (see Figure 6). Denote the

unicyclic graph U3(a1, a2, a3) with |ai − aj| ≤ 1 (i, j ∈ {1, 2, 3}) of order n and diameter

d by U∗; the unicyclic graph U ′
3(a

′
1, a

′
2, a

′
3) with |a′i − a′j| ≤ 1 (i, j ∈ {1, 2, 3}) of order n

and diameter d by U∗∗.

w2 w3

(w1)vc

w1

vf(w2) vf+1(w3)

v0 v0vd vd

Figure 6: U3(a1, a2, a3) and U ′
3(a

′
1, a

′
2, a

′
3).

Theorem 3.1. Let U be a unicyclic graph in U(n, d) (d ≥ 4, n ≥ d + 8) and there exists

some P ∈ P(U, d) such that E(P ) ∩ E(C) = ∅ to be the spindle of U . Let U∗ denote the

unicyclic graph with maximum Wiener polarity index. Then U∗ ∼= U∗
3 , and

Wp(U
∗) =





(n−d−3)(n−d+3)
3

+ d + 2, if a1 + a2 + a3 ≡ 0 (mod 3),
(n−d−4)(n−d+4)

3
+ d + 4, if a1 + a2 + a3 ≡ 1 (mod 3),

(n−d−5)(n−d+5)
3

+ d + 7, if a1 + a2 + a3 ≡ 2 (mod 3).

Proof. By Lemma 3.1 and Lemma 3.2, we know that the unicyclic graph with order n and

diameter d (d ≥ 4) attaining the maximum Wiener polarity index is U3(a1, a2, a3) under

the condition E(P )∩E(C) = ∅. To complete the proof, it suffices to show that U∗ ∼= U∗
3 .

By contradiction. Without loss of generality, assume that a1 − a2 > 1, then by moving

a pendant edge of w1 to w2, we have a new graph denoted by U ′, and Wp(U
′)−Wp(U) =

(a1 − 1 + 2 + a3) − (a2 + a3 + 2) = a1 − a2 − 1 > 0, a contradiction. Thus, |ai − aj| ≤
1 (1 ≤ i, j ≤ 3) is attained, which implies that U∗ ∼= U∗

3 . We can calculate the value of

Wp(U
∗) by Lemma 2.1.

Therefore, the proof is complete.

Theorem 3.2. Let U be a unicyclic graph in U(n, d) (d ≥ 4, n ≥ d+8), and there exists

no path P ∈ P(U, d) such that E(P ) ∩E(C) = ∅. Let U∗ denote the unicyclic graph with

maximum Wiener polarity index.



(1) If d = 4, then U∗ ∼= U ′
3(a

′
1, a

′
2, a

′
3) with |(a′1 + 1)− a′i| ≤ 1 (i ∈ {2, 3}), |a′2− a′3| ≤ 1,

and

Wp(U
∗) =





(n−6)(n−1)
3

+ 3, if a′1 + a′2 + a′3 ≡ 0 (mod 3),
n(n−7)

3
+ 5, if a′1 + a′2 + a′3 ≡ 1 (mod 3),

(n−8)(n+1)
3

+ 8, if a′1 + a′2 + a′3 ≡ 2 (mod 3);

(2) If d ≥ 5, then U∗ ∼= U∗∗
3 , and

Wp(U
∗) =





(n−d−2)(n−d+4)
3

+ d, if a′1 + a′2 + a′3 ≡ 0 (mod 3),
(n−d−3)(n−d+5)

3
+ d + 2, if a′1 + a′2 + a′3 ≡ 1 (mod 3),

(n−d−4)(n−d+6)
3

+ d + 5, if a′1 + a′2 + a′3 ≡ 2 (mod 3).

Proof. The proof is analogous to the proof of Theorem 3.1.

Finally, by Theorems 3.1, 3.2 and some calculations, the maximum Wiener polarity

index of unicyclic graphs with order n and diameter d (d ≥ 4, n ≥ d + 8) is determined.

Theorem 3.3. Let U be a unicyclic graph in U(n, d) (d ≥ 4, n ≥ d + 8), and U∗ denote

the unicyclic graph with the maximum Wiener polarity index.

(1) If d = 4, then U∗ ∼= U ′
3(a

′
1, a

′
2, a

′
3) with |(a′1 + 1)− a′i| ≤ 1 (i ∈ {2, 3}), |a′2− a′3| ≤ 1,

and

Wp(U
∗) =





(n−6)(n−1)
3

+ 3, if a′1 + a′2 + a′3 ≡ 0 (mod 3),
n(n−7)

3
+ 5, if a′1 + a′2 + a′3 ≡ 1 (mod 3),

(n−8)(n+1)
3

+ 8, if a′1 + a′2 + a′3 ≡ 2 (mod 3);

(2) If d ≥ 5, then U∗ ∼= U∗∗
3 , and

Wp(U
∗) =





(n−d−2)(n−d+4)
3

+ d, if a′1 + a′2 + a′3 ≡ 0 (mod 3),
(n−d−3)(n−d+5)

3
+ d + 2, if a′1 + a′2 + a′3 ≡ 1 (mod 3),

(n−d−4)(n−d+6)
3

+ d + 5, if a′1 + a′2 + a′3 ≡ 2 (mod 3).
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