On the extremal Wiener polarity index of unicyclic graphs with a given diameter*

Jing Ma, Yongtang Shi ${ }^{\dagger}$, Jun Yue
Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China majingnk@gmail.com, shi@nankai.edu.cn, yuejun06@126.com

(Received June 17, 2013)

In memory of Professor Ante Graovac

Abstract

The Wiener polarity index $W_{p}(G)$ of a graph $G=(V, E)$ is defined to be the number of the unordered pairs of vertices $\{u, v\}$ such that the distance between u and v is three, which was proposed by Harold Wiener in 1947. In this paper, we characterize the extremal graphs among all the unicyclic graphs with order n and diameter d.

1 Introduction

Let $G=(V, E)$ be a connected simple graph. The distance in G of two different vertices u, v is the length of a shortest $u-v$ path in G, denoted by $d_{G}(u, v)$ or $d(u, v)$; if no such path exists, we set $d(u, v)=\infty$. The greatest distance between any two vertices in G is the diameter of G, denoted by $\operatorname{diam}(G)$. Let $N_{G}(v)$ be the neighborhood of v, and $d_{G}(v)=\left|N_{G}(v)\right|$ denote the degree of vertex v. For $i \in\{1,2, \ldots, \operatorname{diam}(G)\}$, we call

[^0]$N_{G}^{i}(v)=\{u \in V(G) \mid d(u, v)=i\}$ the i th neighborhood of v. A vertex of degree one is called a pendant vertex. The length of a cycle C is the number of edges contained in C. The girth of G, denoted by $g(G)$, is the minimum length of the cycles in G. A unicyclic graph of order n is a connected graph with n vertices and n edges. In other words, every unicyclic graph has exactly one cycle. For all other notations and terminology, not given here, see e.g. [1].

The Wiener polarity index of G, denoted by $W_{p}(G)$, is defined by

$$
W_{p}(G)=|\{\{u, v\} \mid d(u, v)=3, u, v \in V(G)\}|,
$$

which is the number of unordered pairs of vertices $\{u, v\}$ such that $d(u, v)=3$. The name "Wiener polarity index" was introduced by Harold Wiener [21] in 1947. Wiener himself conceived the index only for acyclic molecules and defined it in a slightly different - yet equivalent - manner. In the same paper, Wiener also introduced another index for acyclic molecules, called Wiener index or Wiener distance index and defined by $W(G):=$ $\sum_{\{u, v\} \subseteq V} d_{G}(u, v)$. Wiener [21] used a liner formula of W and W_{P} to calculate the boiling points t_{B} of the paraffins, i.e., $t_{B}=a W+b W_{p}+c$, where a, b and c are constants for a given isomeric group. The Wiener index $W(G)$ is now very popular in chemical and mathematical literature, such as the contributions of Ante Graovac [2, 10, 13, 14, 19, 20]. For more results on Wiener index, we refer to the survey paper [8] written by Dobrynin, Entringer and Gutman.

Recently, the extremal Wiener polarity index of trees, unicyclic graphs and bicyclic graphs were studied, respectively, such as [4, 12, 15]; and the extremal Wiener polarity index of trees with given different parameters (e.g. order, diameter, maximum degree, the number of pendants, etc.) were studied (see [5, 6, 7, 16]). More results can refer to [3, 8, 9, 11, 17, 18].

In this paper, we will characterize the extremal graphs with respect to the Wiener polarity index among all unicyclic graphs with order n and diameter d.

2 The minimum Wiener polarity index of unicyclic graphs with order n and diameter d

In this section, we will characterize the minimum unicyclic graphs with respect to the Wiener polarity index among all unicyclic graphs with order n and diameter d. Since $W_{p}(G)=0$ for any graph G with diameter $d \leq 2$, we can assume that $d \geq 3$ in the following.

Firstly, we give a result about the Wiener polarity index of unicyclic graphs, which was established in [12].

Lemma 2.1. [12] Let $U=(V, E)$ be a unicyclic graph and C denote the unique cycle of U. If $g(U)=3$, with $V(C)=\left\{v_{1}, v_{2}, v_{3}\right\}$, then

$$
W_{p}(U)=\sum_{u v \in E}\left(d_{U}(u)-1\right)\left(d_{U}(v)-1\right)+9-2 d_{U}\left(v_{1}\right)-2 d_{U}\left(v_{2}\right)-2 d_{U}\left(v_{3}\right) .
$$

If $g(U)=4$, with $V(C)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then

$$
W_{p}(U)=\sum_{u v \in E}\left(d_{U}(u)-1\right)\left(d_{U}(v)-1\right)+4-d_{U}\left(v_{1}\right)-d_{U}\left(v_{2}\right)-d_{U}\left(v_{3}\right)-d_{U}\left(v_{4}\right) .
$$

Moreover, if $g(U) \geq 5$, then we have

$$
W_{p}(U)= \begin{cases}\sum_{u v \in E}\left(d_{U}(u)-1\right)\left(d_{U}(v)-1\right)-5, & \text { if } g(U)=5 ; \\ \sum_{u v \in E}\left(d_{U}(u)-1\right)\left(d_{U}(v)-1\right)-3, & \text { if } g(U)=6 ; \\ \sum_{u v \in E}\left(d_{U}(u)-1\right)\left(d_{U}(v)-1\right), & \text { if } g(U) \geq 7 .\end{cases}
$$

Let $\mathcal{U}(n, d)$ be the set of unicyclic graphs with order n and diameter d, and $\mathcal{P}(U, d)$ denote the set of paths of length d in $U \in \mathcal{U}(n, d)$. Each path $P \in \mathcal{P}(U, d)$ can be taken as a spindle of $U \in \mathcal{U}(n, d)$. Let C be the unique cycle and $P=v_{0} v_{1} \cdots v_{d}$ be a spindle in U. If $E(P) \cap E(C)=\emptyset$, then there is a path P_{c} connecting P and C. If $E(P) \cap E(C) \neq \emptyset$, then P and C have at least two common vertices. A hanging tree on vertex v in U, denoted by $T_{U}[v]$, is a rooted tree whose root is v. Specially, if $v \in V(P) \cup V(C) \cup V\left(P_{c}\right)$, then $T_{U}[v]$ is a rooted tree which contains no vertex on P or P_{c}.

In the following, we will show some operations on unicyclic graphs which can reduce the Wiener polarity index.

We define Operation I (see Figure 1) as follows. We construct two graphs A and B from U, where $A=U \backslash\left(T_{U}[v] \backslash v\right)$, and $B=B\left(V\left(T_{U}[v] \backslash v\right), \emptyset\right)$. Then join every vertex in B to a vertex $v^{\prime} \in A$, and we obtain a new graph, denoted by U^{\prime}. We call this operation transport $T_{U}[v]$ to v^{\prime}.

Figure 1: Operation I on U.

We define Operation $I I$ as follows. Let U be a unicyclic graph. If $d_{U}(v)=2$, then let $U^{\prime}=B-v v^{\prime}-v v^{\prime \prime}+v^{\prime} v^{\prime \prime}+v x$, where $v^{\prime}, v^{\prime \prime} \in N_{U}(v), x \in V(U)$. We call such an operation smooth v to x.

By considering whether there exists some $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$ or not, we will give different operations on unicyclic graphs as follows.
(1) If there exists some $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$, then we pick $P=$ $v_{0} v_{1} \cdots v_{d}$ as the spindle. Let $C=w_{1} w_{2} \ldots w_{p}$ be its unique cycle, and $P_{c}=v_{c} u_{1} \ldots u_{t} w_{1}$ be the path connecting path P and cycle C, where $v_{c} \in P \cap P_{c}(1 \leq c \leq d-1)$ is the common vertex of P and P_{c}. Specially, if $\left|P_{c}\right|=1$, then $w_{1}=v_{s}$.

Let $U_{3}(s, t)(s+t=n-d-3)$ be a unicyclic graph, which is obtained from a path $P=v_{0} v_{1} \cdots v_{d}$ of length d by adding s pendant vertices to v_{1}, t pendant vertices to v_{d-1}, respectively, and identifying a vertex of a triangle with v_{1} or v_{d-1} (see Figure 2).

In the following we will show the steps to obtain $U_{3}(s, t)$ from a unicyclic graph U.
Step 1. By transporting $T_{U}\left[v_{2}\right] \backslash v_{2}$ and $T_{U}\left[v_{d-2}\right] \backslash v_{d-2}$ to v_{1} or v_{d-1}, we get a new graph, denoted by U_{1}. Observe that $d_{U_{1}}\left(v_{2}\right)=d_{U_{1}}\left(v_{d-2}\right)=2$.

Step 2. Transport all $T_{U_{1}}\left[v_{i}\right] \backslash v_{i}(i \in\{3, \ldots, d-3\}), T_{U_{1}}\left[u_{j}\right](1 \leq j \leq t), T_{U_{1}}\left[w_{k}\right] \backslash w_{k}$

Figure 2: The unicyclic graph $U_{3}(s, t)$.
$(1 \leq k \leq p)$ to v_{1} or v_{d-1}. We obtain a new graph U_{2}. Observe that $d_{U_{2}}\left(v_{c}\right)=d_{U_{2}}\left(w_{1}\right)=3$, $d_{U_{2}}\left(v_{i}\right)=d_{U_{2}}\left(u_{j}\right)=d_{U_{2}}\left(w_{k}\right)=2(i \in\{2, \ldots, c-1, c+1, \ldots, d-2\}, 1 \leq j \leq t, 2 \leq k \leq p)$, $T_{U_{2}}\left[v_{1}\right]$ and $T_{U_{2}}\left[v_{d-1}\right]$ are stars. Note that $d_{U_{2}}\left(v_{c}\right)=d_{U_{2}}\left(w_{1}\right)=4$ whenever $v_{c}=w_{1}$.

Step 3. By smoothing $w_{i}(3 \leq i \leq p-1)$ to v_{1} or v_{d-1}, we obtain a new graph, denoted by U_{3}.

Step 4. Firstly, we construct two graphs $A=U_{3}\left[w_{1}, w_{2}, w_{p}\right]$ and $B=U_{3} \backslash w_{2} \backslash w_{p}$; secondly, identify $w_{1} \in A$ with v_{1} (or $\left.v_{d-1}\right) \in B$ and transport $T_{B}\left[v_{c}\right]$ to v_{1} (or v_{d-1}); finally, we reach the desired unicyclic graph $U_{4}=U_{3}(s, t)$.

Lemma 2.2. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 5)$ and $P=v_{0} v_{1} \cdots v_{d}$ be the spindle of U. Let U^{\prime} denote the corresponding unicyclic graph obtained from U by the Step 1, Step 2 and Step 4 above. Then $W_{p}\left(U^{\prime}\right) \leq W_{p}(U)$.

Proof. We show the proof by the following three cases corresponding to the operation in the three steps, respectively.

Firstly, we consider the change on Wiener polarity index brought by the operation in Step 1. For arbitrary vertex $x \in N_{U}\left(v_{2}\right) \cap V\left(T_{U}\left[v_{2}\right]\right)$, there exist at least two vertices v_{0}, v_{4} such that $d_{U}\left(v_{0}, x\right)=d_{U}\left(v_{4}, x\right)=3$. But after transporting x to v_{1}, there is only one vertex v_{3} such that $d_{U^{\prime}}\left(v_{3}, x\right)=3$, which implies that $W_{p}\left(U^{\prime}\right)+1 \leq W_{p}(U)$. If we transport corresponding vertices to v_{d-1}, the case is similar to the above.

Secondly, we consider the change on Wiener polarity index brought by the operation in Step 2. It can be checked that for arbitrary vertex $u \in T_{U}[v] \backslash v$, there exists at least one vertex y such that $d_{U}(y, u)=3$. But after transporting u to v_{1} (or v_{d-1}) there exists only one vertex v_{3} (or v_{d-3}) such that $d_{U^{\prime}}\left(v_{3}, u\right)=3$ (or $d_{U^{\prime}}\left(v_{d-3}, u\right)=3$), since
$d\left(v_{2}\right)=d\left(v_{d-2}\right)=2$. Thus $W_{p}(U) \geq W_{p}\left(U^{\prime}\right)$, as stated.
Finally, for the case in step 4 , similar to the proof above, $W_{p}(U) \geq W_{p}\left(U^{\prime}\right)$ follows directly.

Lemma 2.3. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 5), C$ be its unique cycle and U^{\prime} denote the unicyclic graph obtained by smoothing $w \in V(C)$ to v_{1} or v_{d-1} in the Step 3. Then $W_{p}\left(U^{\prime}\right) \leq W_{p}(U)$.

Proof. By a similar discussion as Lemma 2.2, the conclusion follows.

Now we can give the following theorem:

Theorem 2.1. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 5)$ and there exists some $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$ to be the spindle of U. Let U^{*} be the unicyclic graph obtained from U by the above four steps. Then $W_{p}\left(U^{*}\right) \leq W_{p}(U)$, with the equality holds if and only if $U^{*} \cong U_{3}(s, t)(s+t=n-d-3)$.

Proof. Let $C=w_{1} w_{2} \ldots w_{p} w_{1}$ be the cycle of U, and $P_{c}=v_{c} u_{1} \ldots u_{t} w_{1}$ be the path connecting path P and cycle C. By Lemmas 2.2 and 2.3 , we have $W_{p}\left(U^{*}\right) \leq W_{p}(U)$. It suffices to show that the equality holds if and only if $U^{*} \cong U_{3}(s, t)(s+t=n-d-3)$. To prove the conclusion we first give the following claims.

Claim 1. $d_{U^{*}}\left(v_{2}\right)=2$ and $d_{U^{*}}\left(v_{d-2}\right)=2$.
Suppose that $d_{U^{*}}\left(v_{2}\right) \neq 2$, then for arbitrary vertex $v \in N_{U^{*}}\left(v_{2}\right) \cap V\left(T_{U^{*}}\left[v_{2}\right]\right)$, there are at least two vertices v_{0}, v_{4} such that $d\left(v_{0}, v\right)=d\left(v_{4}, v\right)=3$. But after transporting v to v_{1}, there is exactly one vertex $v_{3} \in V(P)$ such that $d\left(v_{3}, v\right)=3$. Thus, $d_{U^{*}}\left(v_{2}\right)=2$. Similarly, we have $d_{U^{*}}\left(v_{d-2}\right)=2$.

Claim 2. $V\left(T_{U^{*}}[v] \backslash v\right)=\emptyset$, where $v \in\left\{v_{2}, \ldots, v_{d-2}, u_{1}, \ldots, u_{t}, w_{1}, \ldots, w_{p}\right\}$.
Suppose that there is some vertex $x \in V\left(T_{U^{*}}[v] \backslash v\right)$ adjacent to v, then there are at least two vertices $v^{\prime}, v^{\prime \prime} \in V(P) \cup V\left(P_{c}\right) \cup V(C)$ such that $d\left(v^{\prime}, v\right)=d\left(v^{\prime \prime}, v\right)=3$. But after transporting v to v_{1} or v_{d-1}, there is exactly one vertex v_{3} (or v_{d-3}) $\in V(P)$ such that $d\left(v_{3}, x\right)=3$ (or $d\left(v_{d-3}, x\right)=3$), since $d_{U^{*}}\left(v_{2}\right)=d_{U^{*}}\left(v_{d-2}\right)=2$. Thus, all the pendant vertices of U^{*} are adjacent to v_{1} or v_{d-1}.

Claim 3. $\left|P_{c}\right|=0$.

Suppose that $\left|P_{c}\right| \geq 1$, then for vertex u_{1}, there are at least two vertices v_{c-2}, v_{c+2} $(c-2, c+2 \in\{0,1, \ldots, d\})$ such that $d\left(v_{c-2}, u_{1}\right)=d\left(v_{c+2}, u_{1}\right)=3$. But after after applying the operation in Step 4, there is exactly one vertex v_{3} (or v_{d-3}) $\in V(P)$ such that $d\left(v_{3}, u_{1}\right)=3$ (or $d\left(v_{d-3}, u_{1}\right)=3$), since $d_{U^{*}}\left(v_{2}\right)=d_{U^{*}}\left(v_{d-2}\right)=2$. Thus, $\left|P_{c}\right|=0$.

Claim 4. $|C|=3$.
Suppose that $|C| \geq 4$, then for vertex w_{2}, there are at least two vertices v_{c-1}, w_{5} (or $\left.v_{c+1}\right)(c-1, c+1 \in\{0,1, \ldots, d\})$ such that $d\left(v_{c-1}, w_{2}\right)=d\left(w_{5}, w_{2}\right)=3\left(\right.$ or $d\left(v_{c-1}, w_{2}\right)=$ $d\left(v_{c+1}, w_{2}\right)=2$), since $\left|P_{c}\right|=0$. But after smoothing w_{2} to v_{1} or v_{d-1}, there is exactly one vertex $v_{3}\left(\right.$ or $\left.v_{d-3}\right) \in V(P)$ such that $d\left(v_{3}, w_{2}\right)=3$ (or $d\left(v_{d-3}, w_{2}\right)=3$). Thus, $|C|=3$.

Claim 5. $v_{c}=v_{1}$ or v_{d-1}.
Suppose that $v_{c} \neq v_{1}$ or v_{d-1}, then for vertex w_{1}, there are at least two vertices v_{c-2}, $v_{c+2}(c-2, c+2 \in\{0,1, \ldots, d\})$ such that $d\left(v_{c-2}, w_{1}\right)=d\left(v_{c+2}, w_{1}\right)=3$, since $\left|P_{c}\right|=0$ and $|C|=3$. But after identifying w_{1} with v_{1} (or v_{d-1}), there is exactly one vertex v_{3} (or $\left.v_{d-3}\right) \in V(P)$ such that $d\left(v_{3}, w_{1}\right)=3$ (or $d\left(v_{d-3}, w_{1}\right)=3$). Thus, $v_{c}=v_{1}$ or v_{d-1}.

Combining all the claims above, we complete the proof.
(2) There is no path $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$. We pick $P=v_{0} v_{1} \cdots v_{d}$ as the spindle and let $C=v_{f} v_{f+1} \cdots v_{g} w_{q} \cdots w_{1} v_{f}(1 \leq f<g \leq d)$ be the unique cycle of U.

We define Operation III (see Figure 3) as follows. Let U be a unicyclic graph with $E(P) \cap E(C) \neq \emptyset$. Let $P=v_{0} v_{1} \cdots v_{d}$ be the spindle and $C=v_{f} v_{f+1} \cdots v_{g} w_{q} \cdots w_{1} v_{f}(1 \leq$ $f<g \leq d)$ be the unique cycle of U. If $d_{U}\left(w_{1}\right)=2$, then let $U^{\prime}=U-v_{f} w_{1}-w_{1} w_{2}+$ $v_{f+1} w_{2}+w_{1} v_{1}$, where $v_{1} \in V(P)$. We call such an operation shrink w_{1} to v_{1}.

Figure 3: Operation $I I I$ on U.

Let $U_{4}(n-d-2,0)$ be a unicyclic graph, which is obtained from a path $P=v_{0} v_{1} \cdots v_{d}$
of length d by adding $n-d-2$ pendant vertices to v_{1}, and identifying three vertices of a quadrangle to v_{d-2}, v_{d-1}, and v_{d} respectively; $U_{5}(n-d-3,0)$ be a unicyclic graph, which is obtained from a path $P=v_{0} v_{1} \cdots v_{d}$ of length d by adding $n-d-3$ pendant vertices to v_{1}, and identifying three vertices of a pentagons to v_{d-2}, v_{d-1}, and v_{d}, respectively (see Figure 4).

Figure 4: $U_{4}(n-d-2,0)$ and $U_{5}(n-d-3,0)$.

We say that a pair of vertices $\left(v_{i}, v_{i+1}\right)(0 \leq i \leq d-1)$ is on cycle C, if there is at least one vertex of v_{i} and v_{i+1} on cycle C. By considering whether $\left(v_{1}, v_{2}\right)$ and $\left(v_{d-2}, v_{d-1}\right)$ are on cycle C or not, there are two cases.

Case 1. There is at most one pair of $\left(v_{1}, v_{2}\right)$ and $\left(v_{d}, v_{d-1}\right)$ on the cycle C.
We get the desired graph by the following four steps.
Step 1. Without loss of generality, assume that $\left(v_{1}, v_{2}\right)$ is not on cycle C. Then we transport $T_{U}\left[v_{2}\right]$ to v_{1}, and denote the new graph by U_{1}. Observe that $d_{U_{1}}\left(v_{2}\right)=2$.

Step 2. Transport all $T_{U_{1}}\left[v_{i}\right](i \in\{3, \ldots, d-1\})$ and $T_{U_{1}}\left[w_{j}\right](j \in\{1, \ldots, q\})$ to v_{1}, and we get a unicyclic graph U_{2}, where the vertices on U_{2} other than v_{1} have no hanging trees.

Step 3. Firstly, smooth $w_{1}, w_{2}, \ldots, w_{t}$ to v_{1} such that $0 \leq(q-t)-(g-f-1) \leq 1$. Secondly, shrink $w_{t+1}, w_{t+2}, \ldots, w_{q-1}$ to v_{1}, respectively. If $(q-t)-(g-f-1)=0$, then we get a new graph U_{3} with a unique cycle $C=w_{s} v_{g-2} v_{g-1} v_{g} w_{q}$. If $(q-t)-(g-f-1)=1$, then we get a new graph U_{3}^{\prime} with a unique cycle $C^{\prime}=w_{q} v_{g-1} v_{g} w_{q}$.

Step 4. If $(q-t)-(g-f-1)=0$, then $U_{4}=U_{3}-w_{q} v_{g-2}-w_{q} v_{g}+w_{q} v_{d-2}+w_{q} v_{d}$; if $(q-t)-(g-f+1)=1$, then $U_{4}^{\prime}=U_{3}^{\prime}-w_{q} v_{g-1}-w_{q} v_{g}+w_{q} v_{d-1}+w_{q} v_{d}$.

Observe that $U_{4}=U_{4}(n-d-2,0)$ and $U_{4}^{\prime}=U_{3}(s, 0)(s=n-d-3)$.
Remark 1. For the situation that $v_{g}=v_{d}$ is on the cycle of U and $(q-t)-(g-f-1)=1$, if we shrink vertices $w_{t+1}, w_{t+2}, \ldots, w_{q-2}$ to v_{1}, then we get a new graph U_{3}^{\prime} with a unique cycle $C^{\prime}=w_{q-1} v_{g-2} v_{g-1} v_{g} w_{q} w_{q-1}$; if we shrink vertices $w_{t+1}, w_{t+2}, \ldots, w_{q-1}$ to v_{1}, then we get a new graph U_{3}^{\prime} with a unique cycle $C^{\prime}=w_{q} v_{g-1} v_{g} w_{q}$. Thus, $U_{4}^{\prime}=U_{5}(n-d-3,0)$ or $U_{3}(s, 0)(s=n-d-3)$.

Remark 2. It is easy to check that $W_{p}\left(U_{3}(n-d-3,0)\right)=W_{p}\left(U_{3}(s, t)\right)(s+t=n-d-3)$.
Case 2. Both $\left(v_{1}, v_{2}\right)$ and $\left(v_{d-2}, v_{d-1}\right)$ are on the cycle C. By considering whether v_{1} or v_{d} is on cycle C or not, we have the following two subcases.

Subcase 1. v_{1} or v_{d-1} is not on cycle C. Without loss of generality, assume that v_{1} is not on cycle C (i.e., $C=v_{2} v_{3} \ldots v_{g} w_{q} \ldots w_{1} v_{2}$).

Firstly, by transporting all $T_{U}\left[v_{2}\right], T_{U}\left[v_{3}\right], T_{U}\left[w_{1}\right], T_{U}\left[w_{2}\right]$ to v_{1}, shrinking w_{1} to v_{1}, we obtain a graph U_{1} with a cycle $C_{1}=v_{3} \ldots v_{g} w_{q} \ldots w_{2} v_{3}$. Observe that $d_{U_{1}}\left(v_{2}\right)=2$. Then we can return to the situation in Case 1.

Subcase 2. v_{1} and v_{d-1} are both on cycle C.
If v_{0} or v_{d} is not on cycle C, without loss of generality, assume that v_{0} is not on cycle C, then by transporting all $T_{U}\left[v_{2}\right], T_{U}\left[v_{3}\right], T_{U}\left[w_{1}\right], T_{U}\left[w_{2}\right], T_{U}\left[w_{3}\right]$ to v_{1}, shrinking w_{1} and w_{2} to v_{1}, we obtain a graph U_{1} with a cycle $C_{1}=v_{3} \ldots v_{g} w_{q} \ldots w_{3} v_{3}$. Observe that $d_{U_{1}}\left(v_{2}\right)=2$; If v_{0} and v_{d} are both on cycle C (it is obvious that $U=C=v_{0} \ldots v_{d} w_{q} \ldots w_{1} v_{0}$ and $0 \leq q-(d-1) \leq 1)$, then by shrinking w_{1}, w_{2} and w_{3} to v_{1}, we obtain a graph U_{1}^{\prime} with a cycle $C_{1}^{\prime}=v_{3} \ldots v_{d} w_{q} \ldots w_{4} v_{3}$. Observe that $d_{U_{1}^{\prime}}\left(v_{2}\right)=2$. Now we can return to the situation in Case 1.

Lemma 2.4. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 5), P=v_{0} v_{1} \cdots v_{d}$ be its spindle, and $C=v_{f} v_{f+1} \cdots v_{g} w_{q} \cdots w_{1} v_{f}(1 \leq f<g \leq d)$ denote its unique cycle. If $d_{U}\left(v_{2}\right)=2$ and $d_{U}\left(w_{1}\right)=2$, then $W_{p}\left(U^{\prime}\right) \leq W_{p}(U)$, where U^{\prime} is the unicyclic graph obtained from U by shrinking w_{1} to v_{1}.

Proof. We just consider the change on the Wiener polarity index brought by Operation $I I I:$ shrink $w_{1} \in V(C)$ to v_{1}.

It is easy to check that there is at least one vertex $v \in V(P)$ such that $d_{U}\left(v, w_{1}\right)=3$.

But after shrinking $w_{1} \in V(C)$ to v_{1} there exists only one vertex $v_{3} \in V\left(U^{\prime}\right)$ such that $d_{U^{\prime}}\left(v_{3}, w_{1}\right)=3$. Thus, $W_{p}\left(U^{\prime}\right) \leq W_{p}(U)$ follows.

Combining Lemmas 2.2, 2.3 and 2.4, we can easily get the following theorem:
Theorem 2.2. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 5)$, and there exists no path $P \in$ $\mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$. Then $W_{p}\left(U^{*}\right) \leq W_{p}(U)$, where $U^{*} \in\left\{U_{3}(s, t)(s+t=\right.$ $\left.n-d-3), U_{4}(n-d-2,0), U_{5}(n-d-3,0)\right\}$.

Proof. Let $P=v_{0} v_{1} \cdots v_{d}$ be the spindle and let $C=v_{f} v_{f+1} \cdots v_{g} w_{q} \cdots w_{1} v_{f}(1 \leq f<$ $g \leq d)$ be the unique cycle of U. By Lemmas 2.2, 2.3 and 2.4, we have $W_{p}\left(U^{*}\right) \leq W_{p}(U)$. It suffices to show that equality holds if and only if $U^{*} \in\left\{U_{3}(s, t)(s+t=n-d-\right.$ $\left.3), U_{4}(n-d-2,0), U_{5}(n-d-3,0)\right\}$.

Suppose that $d_{U^{*}}\left(v_{2}\right) \neq 2$, then for arbitrary vertex $v \in N_{U^{*}}\left(v_{2}\right) \cap V\left(T_{U^{*}}\left[v_{2}\right]\right)$, there are at least two vertices v_{0}, v_{4} such that $d\left(v_{0}, v\right)=d\left(v_{4}, v\right)=3$. But after transporting v to v_{1}, there is exactly one vertex $v_{3} \in V(P)$ such that $d\left(v_{3}, v\right)=3$. Thus, $d_{U^{*}}\left(v_{2}\right)=2$.

Suppose that there is some vertex $x \in V\left(T_{U^{\prime}}[v] \backslash v\right)$ adjacent to v, where $v \in\left\{v_{2}, \ldots, v_{d-1}\right.$, $\left.w_{1}, \ldots, w_{q}\right\}$, then there are at least two vertices $v^{\prime}, v^{\prime \prime} \in V(P) \cup V(C)$ such that $d\left(v^{\prime}, v\right)=$ $d\left(v^{\prime \prime}, v\right)=3$. But after transporting v to v_{1}, there is exactly one vertex $v_{3} \in V(P)$ such that $d\left(v_{3}, x\right)=3$, since $d_{U^{*}}\left(v_{2}\right)=2$. Thus, all the pendant vertices of U^{*} are adjacent to v_{1}.

Suppose that $|C| \geq 6$, then for vertex w_{1}, there are at least two vertices v_{f-2} (or w_{4}) and v_{f+2} such that $d\left(v_{f-2}, w_{1}\right)=d\left(v_{f+2}, w_{1}\right)=3$ (or $\left.d\left(w_{4}, w_{1}\right)=d\left(v_{f+2}, w_{1}\right)=3\right)$. But after smoothing or shrinking w_{1} to v_{1}, there is exactly one vertex $v_{3} \in V(P)$ such that $d\left(v_{3}, w_{1}\right)=3$. Thus, $|C| \leq 5$.

For the case that $|C|=3$, suppose that $v_{f} \neq v_{d-1}$, then for vertex w_{1}, there are at least two vertices $v_{f-2}, v_{f+2}(f-2, f+2 \in\{0,1, \ldots, d\})$ such that $d\left(v_{f-2}, w_{1}\right)=d\left(v_{f+2}, w_{1}\right)=3$. But after identifying v_{f} with v_{d-1}, v_{g} with v_{d}, there is exactly one vertex $v_{d-3} \in V(P)$ such that $d\left(v_{d-3}, w_{1}\right)=3$. Thus, $v_{f}=v_{d-1}$ and $v_{g}=v_{d}$. Therefore, $U^{*} \cong U_{3}(s, t)(s+t=$ $n-d-3)$ as stated.

For the case that $|C|=4$, suppose that $v_{f} \neq v_{d-2}$, then for vertex w_{1}, there are at least two vertices $v_{f-2}, v_{f+2}(f-2, f+2 \in\{0,1, \ldots, d\})$ such that $d\left(v_{f-2}, w_{1}\right)=d\left(v_{f+2}, w_{1}\right)=3$.

But after identifying v_{f} and v_{d-2}, v_{g} and v_{d}, there is exactly one vertex $v_{d-4} \in V(P)$ such that $d\left(v_{d-4}, w_{1}\right)=3$. Thus, $v_{f}=v_{d-2}$ and $v_{g}=v_{d}$. Therefore, $U^{*} \cong U_{4}(n-d-2,0)$ as stated.

Similar to the case $|C|=4$, if $|C|=5$, then $U^{*} \cong U_{5}(n-d-5,0)$ follows.
Combining all the situations above, the proof is complete.

For any $U^{*} \in\left\{U_{3}(s, t), U_{4}(s+t, 0), U_{5}(s+t-1,0)\right\}$, we can easily get the following by some calculations:

$$
W_{p}\left(U^{*}\right)=n-3 .
$$

Finally, by Theorems 2.1, 2.2 and some calculations, the minimum Wiener polarity index of unicyclic graphs with order n and diameter d is determined.

Theorem 2.3. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 3)$, and U^{*} denote the unicyclic graph with minimum Wiener polarity index.
(1) If $d=3$, then $U^{*} \cong U_{3}(0, t)(t=n-6)$, and $W_{p}\left(U^{*}\right)=n-3$;
(2) If $d=4$, then $U^{*} \cong U_{3}(s, t)(s+t=n-7)$, and $W_{p}\left(U^{*}\right)=n-3$;
(3) If $d \geq 5$, then $U^{*} \cong U_{3}(s, t)(s+t=n-d-3), U_{4}(n-d-2,0), U_{5}(n-d-3,0)$, and $W_{p}\left(U^{*}\right)=n-3$.

3 The maximum Wiener polarity index of unicyclic graphs with order n and diameter d

In this section, we will determine the maximum Wiener polarity index among all unicyclic graphs with order n and diameter d, and characterize the extremal unicyclic graph. Note that the unicyclic graphs with maximum Wiener polarity index among all unicyclic graphs with order n and diameter $d=3$ was characterized in [12], and that the extremal graph of unicyclic graphs with order n, diameter $d(n \leq d+7)$ can be characterized easily, we only consider the case that $d \geq 4$ and $n \geq d+8$ in the following paper.

Let P be the spindle of U and C be its unique cycle. In [12], a transformation is introduced on unicyclic graphs with $g(U) \geq 4$, named Sigma. In order to characterize
the unicyclic graphs with diameter d and order n with respect to the maximum Wiener polarity index, we need to introduce a similar operation.

We define Operation $I V$ ("sigma") (see Figure 5) as follows. Let U be a unicyclic graph with a unique cycle C, and $T_{U}[v]$ denote a hanging tree on vertex $v \in V(P) \cup V(C)$. Among all hanging trees, suppose $P_{l}=v t_{1} \cdots t_{l}$ is one of the longest path from the root v to a leaf t_{l} of the hang tree $T_{U}[v]$. If $l \geq 2$, then after deleting the edge $v t_{1}$ from U, we obtain a unicyclic graph A and a tree B such that $v \in A$ and $t_{1} \in B$. Let U^{\prime} denote the unicyclic graph obtained from A and B by identifying t_{1} and $v^{\prime}\left(v^{\prime} \in V(P) \cup V(C)\right.$ is a neighbor of v), and adding a new pendant vertex x to v.

Figure 5: Operation IV on U.

Now we consider the maximum Wiener polarity index of unicyclic graphs with order n and diameter $d(d \geq 4, n \geq d+8)$ by the following cases.
(1) If there exists some $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$, then we pick $P=$ $v_{0} v_{1} \cdots v_{d}$ as the spindle. Let $C=w_{1} w_{2} \ldots w_{p}$ be its unique cycle, and $P_{c}=v_{c} u_{1} \ldots u_{t} w_{1}$ be the path connecting path P and cycle C, where $v_{c} \in P \cap P_{c}(1 \leq c \leq d-1)$ is the common vertex of P and P_{c}. Specially, $w_{1}=v_{c}$ whenever $\left|P_{c}\right|=1$. We get the desired graph by the following steps.

Step 1. Firstly, apply Operation $I V$ ("sigma") on vertices $v_{i}(2 \leq i \leq d-2), w_{k}$ $(1 \leq k \leq p) \in V(U)$; secondly, if $w_{1}=v_{c}$, then we do nothing; if $w_{1} \neq v_{c}$, then by regarding the spindle as a pendant vertex adjacent to u_{1}, we can apply Operation $I V$ on vertex $w_{1} \in V(C)$. Finally we obtain graph U_{1}, where $P=v_{0} v_{1} \cdots v_{d}$ remains to be the spindle, $P_{c}^{\prime}=v_{c} w_{1}$ is a path connecting v_{c} and cycle C. Observe that $T_{U_{1}}\left[v_{i}\right](1 \leq i \leq d-1)$ and $T_{U_{1}}\left[w_{j}\right](1 \leq j \leq p)$ are stars.

Step 2. Let $V_{i}:=T_{U_{1}}\left[v_{i}\right] \backslash v_{i}(1 \leq i \leq d-1), W_{j}:=T_{U_{1}}\left[w_{j}\right] \backslash w_{j}(1 \leq j \leq p)$. By
considering whether $w_{1}=v_{c}$ or not, we have the following two cases.
Case 1. $w_{1}=v_{c}$.
Firstly, for $V_{i}(i \in\{1, \ldots, c-1, c+1, \ldots, d-1\})$, if $|i-c|$ is odd, then move V_{i} to w_{2}; if $|i-c|$ is even, then move V_{i} to w_{1}. Secondly, for $W_{j}(j \in\{3, \ldots, p-1\})$, if j is odd, then move W_{j} to w_{1} and smooth vertex w_{j} to w_{2}; if j is even, then move W_{j} to w_{2} and smooth vertex w_{j} to w_{1}.

Case 2. $w_{1} \neq v_{c}$.
Firstly, for $V_{i}(i \in\{1, \ldots, d-1\})$, if $|i-c|$ is odd, then move V_{i} to w_{1}; if $|i-c|$ is even, then move V_{i} to w_{2}. Secondly, for $W_{j}(j \in\{3, \ldots, p-1\})$, if j is odd, then move W_{j} to w_{1} and smooth vertex w_{j} to w_{2}; if j is even, then move W_{j} to w_{2} and smooth vertex w_{j} to w_{1}. Finally, identify w_{1} with v_{c}, delete edge $w_{1} v_{c}$, and meanwhile add a pendant vertex to w_{1}.

At last, we get a new graph U_{2}, where the unique cycle of U_{2} is a triangle. Observe that $T_{U_{2}}\left[w_{i}\right](i=1,2, p)$ is a star and $V\left(T_{U_{2}}\left[v_{k}\right] \backslash v_{k}\right)=\emptyset(k \in\{1, \ldots, c-1, c+1, \ldots, d-1\})$.
(2) There is no path $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$, where $C=v_{f} v_{f+1} \cdots v_{g}$ $w_{q} \cdots w_{1} v_{f}(1 \leq f<g \leq d)$ is the unique cycle of U. We pick $P=v_{0} v_{1} \cdots v_{d}$ as the spindle. We reach the desired graph by the following two steps.

Step 1. Apply Operation $I V$ on $v_{i}(2 \leq i \leq d-2)$ and $w_{j}(1 \leq j \leq q)$. The new graph obtained is denoted by U_{1}, where $T_{U_{1}}\left[v_{i}\right](1 \leq i \leq d-1)$ and $T_{U_{1}}\left[w_{j}\right](1 \leq j \leq q)$ are stars.

Step 2. Let $V_{i}:=T_{U_{1}}\left[v_{i}\right] \backslash v_{i}(1 \leq i \leq d-1), W_{j}:=T_{U_{1}}\left[w_{j}\right] \backslash w_{j}(1 \leq j \leq q)$.
Firstly, move $W_{l}(2 \leq l \leq q-1)$ and $V_{k}(1 \leq k \leq f-1, f+2 \leq k \leq d-1)$ to v_{f} and v_{f+1} alternately such that $T_{U_{1}}[a], T_{U_{1}}[b]\left(a, b \in\left\{v_{1}, \ldots, v_{f-1}, v_{f+2}, \ldots, v_{d-1}, w_{2}, \ldots, w_{s}\right\}\right)$ are moved to different vertices (i.e. v_{f} and v_{f+1}) whenever a is adjacent to b, move W_{q} to w_{1}. Secondly, shrink w_{2}, \ldots, w_{q} to v_{f+1} and v_{f} alternately. Thus, we get a new graph U_{2} with a unique cycle $C^{\prime}=w_{1} v_{f} v_{f+1} w_{1}$. Observe that $T_{U_{2}}\left[v_{f}\right], T_{U_{2}}\left[v_{f+1}\right]$ and $T_{U_{2}}\left[w_{1}\right]$ are stars.

Lemma 3.1. Let U be a unicyclic graph with diameter $d \geq 4$ and $n \geq d+8, C$ be its unique cycle. Let U^{*} be the unicyclic graph obtained by applying Operation IV on the corresponding vertices. Then $W_{p}(U) \leq W_{p}\left(U^{*}\right)$.

Proof. Under the condition that $P=v_{0} v_{1} \ldots v_{d}$ remains to be the spindle of the resultant unicyclic graph after the repeated operation, we get the conclusion directly by an analogous proof to that of Lemma 3.1. in [12].

Lemma 3.2. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4, n \geq d+8)$. By taking Step 2 in the two cases on the corresponding unicyclic graph we obtain a new graph U^{\prime}, satisfying $W_{p}(U) \leq W_{p}\left(U^{\prime}\right)$.

Proof. During the procedure there are mainly three operations: "move", "smooth" and "shrink". We want to prove that each operation ensures that the value of the Wiener polarity index is not decreasing. Here we denote the final unicyclic graph by U^{\prime}.

There are three kinds of unordered vertices pair $\{u, v\}$ such that $d_{U}(u, v)=3$ on $U: u$ and v are both pendant vertices; u and v are both on the cycle (or the spindle) of $U ; u$ is a pendant vertex and v is on the cycle (or the spindle) of U.

Since we move $V_{i}:=T_{U_{1}}\left[v_{i}\right] \backslash v_{i}(1 \leq i \leq d-1), W_{j}:=T_{U_{1}}\left[w_{j}\right] \backslash w_{j}(1 \leq j \leq p$ (or $\left.q)\right)$ to two adjacent vertices v_{f} and v_{f+1} alternately, we keep the unordered vertices pair $\{u, v\}$, where u and v are both pendant vertices. When we apply Operation II ("smooth"), in the same way, we smooth the vertices to two adjacent vertices v_{f} and v_{f+1} alternately which remains the unordered vertices pair $\{u, v\}$ of the second kind. At last, we only need to consider the unordered vertices pair $\{u, v\}$ of the third kind. Since there are at most three vertices w_{1}, w_{2} and w_{3} (or w_{1}, v_{f} and v_{f+1}) with pendant vertices, then if the unordered vertices pair $\{u, v\}$ in the original graph is composed by $u \in V_{i}(i \in\{1,2, \ldots, d-1\})$ (or $\left.W_{j}(j \in\{1,2, \ldots, p(q)\})\right)$ and $v \in V(C) \cup V(P)$, then after such an operation it will be replaced by u^{\prime} (a vertex in the three hanging trees) and a vertex $v^{\prime} \in N_{U^{\prime}}^{2}\left(u^{\prime}\right)$.

Combining the three situations above, we complete the proof.

Let $U_{3}\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}+a_{2}+a_{3}=n-d-3\right)$ be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4)$, which is obtained from a path $P=v_{0} v_{1} \ldots v_{d}$ by identifying one vertex w_{1} of a triangle $C=w_{1} w_{2} w_{3}$ with $v_{c}(2 \leq c \leq d-2)$, and adding $a_{i}(i \in\{1,2,3\})$ pendant vertices to w_{i}. Let $U_{3}^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)\left(a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime}=n-d-2\right)$ be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4)$, which is obtained from a path $P=v_{0} v_{1} \ldots v_{d}$ by identifying two vertices w_{2} and w_{3} of a triangle $C=w_{1} w_{2} w_{3}$ with v_{f} and v_{f+1} (if $d \geq 5$, then $2 \leq f \leq d-3$; if $d=4$, then
$f=1$), and adding $a_{i}^{\prime}(i \in\{1,2,3\})$ pendant vertices to w_{i} (see Figure 6). Denote the unicyclic graph $U_{3}\left(a_{1}, a_{2}, a_{3}\right)$ with $\left|a_{i}-a_{j}\right| \leq 1(i, j \in\{1,2,3\})$ of order n and diameter d by U^{*}; the unicyclic graph $U_{3}^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ with $\left|a_{i}^{\prime}-a_{j}^{\prime}\right| \leq 1(i, j \in\{1,2,3\})$ of order n and diameter d by $U^{* *}$.

Figure 6: $U_{3}\left(a_{1}, a_{2}, a_{3}\right)$ and $U_{3}^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$.

Theorem 3.1. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4, n \geq d+8)$ and there exists some $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$ to be the spindle of U. Let U^{*} denote the unicyclic graph with maximum Wiener polarity index. Then $U^{*} \cong U_{3}^{*}$, and

$$
W_{p}\left(U^{*}\right)= \begin{cases}\frac{(n-d-3)(n-d+3)}{}+d+2, & \text { if } a_{1}+a_{2}+a_{3} \equiv 0(\bmod 3), \\ \frac{(n-d-4)(n-d+4)}{3}+d+4, & \text { if } a_{1}+a_{2}+a_{3} \equiv 1(\bmod 3), \\ \frac{(n-d-5)(n-d+5)}{3}+d+7, & \text { if } a_{1}+a_{2}+a_{3} \equiv 2(\bmod 3) .\end{cases}
$$

Proof. By Lemma 3.1 and Lemma 3.2, we know that the unicyclic graph with order n and diameter $d(d \geq 4)$ attaining the maximum Wiener polarity index is $U_{3}\left(a_{1}, a_{2}, a_{3}\right)$ under the condition $E(P) \cap E(C)=\emptyset$. To complete the proof, it suffices to show that $U^{*} \cong U_{3}^{*}$.

By contradiction. Without loss of generality, assume that $a_{1}-a_{2}>1$, then by moving a pendant edge of w_{1} to w_{2}, we have a new graph denoted by U^{\prime}, and $W_{p}\left(U^{\prime}\right)-W_{p}(U)=$ $\left(a_{1}-1+2+a_{3}\right)-\left(a_{2}+a_{3}+2\right)=a_{1}-a_{2}-1>0$, a contradiction. Thus, $\left|a_{i}-a_{j}\right| \leq$ $1(1 \leq i, j \leq 3)$ is attained, which implies that $U^{*} \cong U_{3}^{*}$. We can calculate the value of $W_{p}\left(U^{*}\right)$ by Lemma 2.1.

Therefore, the proof is complete.
Theorem 3.2. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4, n \geq d+8)$, and there exists no path $P \in \mathcal{P}(U, d)$ such that $E(P) \cap E(C)=\emptyset$. Let U^{*} denote the unicyclic graph with maximum Wiener polarity index.
(1) If $d=4$, then $U^{*} \cong U_{3}^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ with $\left|\left(a_{1}^{\prime}+1\right)-a_{i}^{\prime}\right| \leq 1(i \in\{2,3\}),\left|a_{2}^{\prime}-a_{3}^{\prime}\right| \leq 1$, and

$$
W_{p}\left(U^{*}\right)= \begin{cases}\frac{(n-6)(n-1)}{3}+3, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 0(\bmod 3), \\ \frac{n(n-7)}{3}+5, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 1(\bmod 3), \\ \frac{(n-8)(n+1)}{3}+8, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 2(\bmod 3)\end{cases}
$$

(2) If $d \geq 5$, then $U^{*} \cong U_{3}^{* *}$, and

$$
W_{p}\left(U^{*}\right)= \begin{cases}\frac{(n-d-2)(n-d+4)}{}+d, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 0(\bmod 3), \\ \frac{(n-d-3)(n-d+5)}{3}+d+2, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 1(\bmod 3), \\ \frac{(n-d-4)(n-d+6)}{3}+d+5, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 2(\bmod 3) .\end{cases}
$$

Proof. The proof is analogous to the proof of Theorem 3.1.
Finally, by Theorems 3.1, 3.2 and some calculations, the maximum Wiener polarity index of unicyclic graphs with order n and diameter $d(d \geq 4, n \geq d+8)$ is determined.

Theorem 3.3. Let U be a unicyclic graph in $\mathcal{U}(n, d)(d \geq 4, n \geq d+8)$, and U^{*} denote the unicyclic graph with the maximum Wiener polarity index.
(1) If $d=4$, then $U^{*} \cong U_{3}^{\prime}\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ with $\left|\left(a_{1}^{\prime}+1\right)-a_{i}^{\prime}\right| \leq 1(i \in\{2,3\}),\left|a_{2}^{\prime}-a_{3}^{\prime}\right| \leq 1$, and

$$
W_{p}\left(U^{*}\right)= \begin{cases}\frac{(n-6)(n-1)}{3}+3, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 0(\bmod 3), \\ \frac{n(n-7)}{3}+5, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 1(\bmod 3), \\ \frac{(n-8)(n+1)}{3}+8, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 2(\bmod 3)\end{cases}
$$

(2) If $d \geq 5$, then $U^{*} \cong U_{3}^{* *}$, and

$$
W_{p}\left(U^{*}\right)= \begin{cases}\frac{(n-d-2)(n-d+4)}{(n)}+d, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 0(\bmod 3), \\ \frac{(n-d-3)(n-d+5)}{3}+d+2, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 1(\bmod 3), \\ \frac{(n-d-4)(n-d+6)}{3}+d+5, & \text { if } a_{1}^{\prime}+a_{2}^{\prime}+a_{3}^{\prime} \equiv 2(\bmod 3) .\end{cases}
$$

References

[1] J.A. Bondy, U.S.R Murty, Graph Therory, GTM 244, Springer-Verlag, New York, 2008.
[2] F. Cataldo, O. Ori, A. Graovac, Wiener index of 1-pentagon fullerenic infinite lattice, International Journal of Chemical Modeling 2(2010), 165-180.
[3] N. Chen, W. Du, Y. Fan, On Wiener polarity index of cactus graphs, arXiv:1211.3513v1 [math.CO], 2012.
[4] H. Deng, On the extremal Wiener polarity index of chemical trees, MATCH Commum. Math. Comput. Chem. 66(2011), 305-314.
[5] H. Deng, H. Xiao, The maximum Wiener polarity index of trees with k pendants, Appl. Math. Lett. 23(2010), 710-715.
[6] H. Deng, H. Xiao, The Wiener polarity index of molecular graphs of alkanes with a given number of methyl groups, J. Serb. Chem. Soc. 75(2010), 1405-1412.
[7] H. Deng, H. Xiao, F. Tang, On the extremal Wiener polarity index of trees with a given diameter, MATCH Commum. Math. Comput. Chem. 63(2010), 257-264.
[8] A.A. Dobrynin, R.C. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66(2001), 211-249.
[9] W. Du, X. Li, Y. Shi, Algorithms and extremal problem on Wiener polarity index, MATCH Commum. Math. Comput. Chem. 62(2009), 235-244.
[10] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8(1991), 53-62.
[11] H. Hosoya, Mathematical and chemical analysis of Wiener's polarity number, in: D.H. Rouvray, R.B. King (Eds.), Topology in Chemistry-Discrete Mathematics of Molecules, vol. 57, Horwood, Chichester, 2002.
[12] H. Hou, B. Liu, Y. Huang, On the Wiener polarity index of unicyclic graphs, Appl. Math. Comput. 218(2012), 10149-10157.
[13] A. Iranmanesh, A.R. Ashrafi, A. Graovac, F. Cataldo, O. Ori, Wiener index. Role in topological modeling of hexagonal systems. From fullerenes to graphene in: I. Gutman, B. Furtula (Eds.), Distance in Molecular Graphs-Applications (Mathematical Chemistry Monographs 13), Univ. Kragujevac, Kragujevac, 2012, pp. 135-155.
[14] M. Juvan, B. Mohar, A. Graovac, S. Klavžar, J. Žerovnik, Fast computation of the Wiener index fasciagraphs and rotagraphs, J. Chem. Inform. Comput. Sci. 35(1995), 834-840.
[15] X. Li, J. Ma, Y. Shi, J. Yue, The maximum Wiener polarity index of bicyclic graphs, submitted.
[16] B. Liu, H. Hou, Y. Huang, On the Wiener polarity index of trees with maximum degree or given number of leaves, Comput. Math. Appl. 60(2010), 2053-2057.
[17] M. Liu, B. Liu, On the Wiener polarity index, MATCH Commun. Math. Comput. Chem. 66(2011), 293-304.
[18] I. Lukovits, W. Linert, Polarity-numbers of cycle-containing structures, J. Chem. Inform. Comput. Sci. 38(1998), 715-719.
[19] J. Sedlar, D. Vukičević, F. Cataldo, O. Ori, A. Graovac, Compression ratio of Wiener index in 2D-rectangular and polygonal lattices, Ars Math. Contemp. 7(2014), 1-12.
[20] D. Vukičević, A. Graovac, On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem. 50(2004), 93-108.
[21] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69(1947), 17-20.

[^0]: *Supported by the National Science Foundation of China.
 ${ }^{\dagger}$ Corresponding author.

