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Abstract. By using the Hermite–Biehler theorem, we give a new proof of
the real-rootedness of the coordinator polynomials of type D, which was
recently established by Wang and Zhao. As a consequence, we also obtain
the compatibility between the coordinator polynomials of type D and those
of type C.
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1 Introduction

This paper is concerned with the real-rootedness of the following polynomials

n∑
k=0

(
2n

2k

)
zk + 2nz(1 + z)n−2, (1)

which arose in the theory of coordinator polynomials of Weyl group lattices
developed by Conway and Sloane [6]. These polynomials are known as the
coordinator polynomials of type Dn, denoted hDn(z). Wang and Zhao [13]
proved that for any n ≥ 2 the polynomial hDn(z) has only real roots. Their
proof uses a technique of trigonometric substitution. The main objective of
this paper is to give a new proof of the real-rootedness of hDn(z) by using
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the Hermite–Biehler theorem. Our proof is motivated by the Hermite–Biehler
theorem approach to the real-rootedness of the coordinator polynomials of
type Cn given by

hCn(z) =
n∑

k=0

(
2n

2k

)
zk. (2)

As a result of our approach, we get the compatibility between hCn(z) and
hDn(z) in the sense of Chudnovsky and Seymour [5].

Let us first review some background on the coordinator polynomials
hCn(z) and hDn(z). For more information on the coordinator polynomials
of root lattices, see [1, 2, 6] and references therein. Let Z be the ring of
integers, and let R be the field of real numbers. Let

MCn =
{
±ei ± ej

∣∣ 1 ≤ i < j ≤ n
}
∪
{
±2ei

∣∣ 1 ≤ i ≤ n
}
,

MDn =
{
±ei ± ej

∣∣ 1 ≤ i < j ≤ n
}
,

where ei denotes the vector in Rn with the ith entry one and all other entries
zero. It is clear that both MCn and MDn generate the same root lattice

L =
{
(x1, x2, . . . , xn) ∈ Zn

∣∣ ∑xi is even
}

as a monoid. For each u ∈ L, let wCn(u) denote the word length of u with
respect to MCn given by

wCn(u) = min
{∑

ci
∣∣u =

∑
ci ai, ci ∈ N, ai ∈ MCn

}
.

In the same manner, we can define the word length of u with respect to MDn ,
denoted wDn(u). The coordinator polynomials are related to the generating
functions for word lengths over the root lattice L. Baake and Grimm [2]
conjectured that ∑

u∈L

zwCn (u) =
hCn(z)

(1− z)n
,

and Conway and Sloane [6] conjectured that∑
u∈L

zwDn (u) =
hDn(z)

(1− z)n
.
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Subsequently, Bacher et al. [3] confirmed these two conjectures. For other
proofs, see Ardila et al. [1].

Recently, the real-rootedness of the coordinator polynomials hCn(z) and
hDn(z) has drawn attention. As pointed out by Wang and Zhao [13], there
are at least two ways to prove that hCn(z) has only real roots, one using the
theory of total positivity, and the other using the theory of Sturm sequences.
This paper is motivated by another proof of the real-rootedness of hCn(z) by
using the Hermite–Biehler theorem, which we shall recall below.

The Hermite–Biehler theorem is a basic result in the Routh–Hurwitz the-
ory [11, 12], which provides a criterion for determining the Hurwitz stability
of a polynomial. Recall that a polynomial P (z) is said to be Hurwitz sta-
ble (respectively, weakly Hurwitz stable) if P (z) ̸= 0 whenever Re(z) ≥ 0
(respectively, Re(z) > 0), where Re(z) denotes the real part of z. Suppose
that

P (z) =
n∑

k=0

akz
k.

Let

PE(z) =

⌊n/2⌋∑
k=0

a2kz
k and PO(z) =

⌊(n−1)/2⌋∑
k=0

a2k+1z
k. (3)

As will be shown in the Hermite–Biehler theorem, the stability of P (z) is
closely related to the interlacing property between PE(z) and PO(z). Given
two real-rooted polynomials f(z) and g(z) with positive leading coefficients,
let {ri} be the set of zeros of f(z) and {sj} the set of zeros of g(z). We say that
g(z) interlaces f(z), denoted g(z) ⪯ f(z), if either deg f(z) = deg g(z) = n
and

sn ≤ rn ≤ sn−1 ≤ · · · ≤ s2 ≤ r2 ≤ s1 ≤ r1, (4)

or deg f(z) = deg g(z) + 1 = n and

rn ≤ sn−1 ≤ · · · ≤ s2 ≤ r2 ≤ s1 ≤ r1. (5)

If all inequalities in (4) or (5) are strict, then we say that g(z) strictly inter-
laces f(z), denoted g(z) ≺ f(z). The Hermite–Biehler theorem is stated as
follows.
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Theorem 1.1 ([4, Theorem 4.1]). Let P (z) be a polynomial with real co-
efficients, and let PE(z) and PO(z) be defined as in (3). Suppose that
PE(z)PO(z) ̸≡ 0. Then P (z) is Hurwitz stable (respectively, weakly Hur-
witz stable) if and only if PE(z) and PO(z) have only real and negative (re-
spectively, non-positive) zeros, and PE(z) ≺ PO(z) (respectively, PE(z) ⪯
PO(z)).

The Hermite–Biehler theorem has been widely used to study the real-
rootedness of polynomials. Csordas et al. [8] utilized the Hermite–Biehler
theorem to confirm a conjecture on the real-rootedness of some polynomials
related to a class of Jacobi polynomials, which was proposed while developing
a numerical solution for the Navier-Stokes equations. Craven and Csordas [7]
applied stability analysis, in conjunction with the Hermite-Biehler theorem,
to proving that certain Mittag-Leffler-type functions have only real zeros. By
using the Hermite-Biehler theorem, Brändén [4] gave characterizations of two
non-linear operators which send polynomials with only real and non-positive
zeros to polynomials of the same kind.

To apply the Hermite–Biehler theorem to proving the real-rootedness of
hCn(z), in view of (2), we only need to take

P (z) = (1 + z)2n =
n∑

k=0

(
2n

k

)
zk.

It is clear that P (z) is Hurwitz stable and hCn(z) = PE(z).

Although the expression of hDn(z) looks very similar to that of and hCn(z),
it is not an easy task to prove that hDn(z) has only real zeros. By a technique
of substituting the variable z by a trigonometric function, Wang and Zhao [13]
managed to prove the real-rootedness of hDn(z). Considering the similarity
of (1) and (2), it is natural to ask whether the real-rootedness of hDn(z) has
a proof using the Hermite–Biehler theorem. In the next section, we shall give
such a proof.

2 Real-rootedness and compatibility

The main objective of this section is to prove the following result by using
the Hermite–Biehler theorem.
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Theorem 2.1 ([13, Theorem 2.1]). For any n ≥ 2, the polynomial hDn(z)
has only real zeros.

Proof. To use the Hermite–Biehler theorem, as indicated in the proof of the
real-rootedness of hCn(z), we shall take

P (z) = (1 + z)2n − 2nz2(1 + z2)n−2

=
n∑

k=0

(
2n

k

)
zk − 2nz2(1 + z2)n−2,

and whence hDn(z) = PE(z).

We proceed to show the Hurwitz stability of P (z). It is clear that P (0) ̸=
0. Without loss of generality, we may assume that z ̸= 0. Note that

P (z) = (1 + z)2n − 2nz2(1 + z2)n−2

= (1 + 2z + z2)n − 2nz2(1 + z2)n−2

= 2nzn

((
z + 1/z

2
+ 1

)n

− n

2

(
z + 1/z

2

)n−2
)
.

Moreover, it is routine to verify that Re((z + 1/z)/2) ≥ 0 if and only if
Re(z) ≥ 0. Therefore, it suffices to prove the Hurwitz stability of the poly-
nomial

Q(z) = (z + 1)n − n

2
zn−2.

Suppose that Re(z) ≥ 0. We need to show that Q(z) ̸= 0. By the triangle
inequality, we have

|Q(z)| ≥ |z + 1|n − n

2
|z|n−2.

Note that the assumption Re(z) ≥ 0 implies that

|z + 1| ≥
√
|z|2 + 1.

Thus, we get

|Q(z)| ≥
(√

|z|2 + 1
)n

− n

2
|z|n−2.
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Now it suffices to prove that((√
|z|2 + 1

)n)2
>
(n
2
|z|n−2

)2
,

namely,

(|z|2 + 1)n >
n2

4
|z|2n−4.

Expanding the left hand side by the binomial theorem, we find that for n ≥ 2,

(|z|2 + 1)n =
n∑

k=0

(
n

k

)
|z|2k >

(
n

n− 2

)
|z|2(n−2) ≥ n2

4
|z|2n−4.

Therefore, |Q(z)| > 0 if Re(z) ≥ 0. This means that Q(z) is Hurwitz stable,
so is P (z). By the Hermite–Biehler theorem, we obtain the real-rootedness
of hDn(z). This completes the proof.

Remark. Following the lines of the above proof, it is easy to show that, for
any n ≥ 2 and |r| ≤ 2

√
2n(n− 1), the polynomial

n∑
k=0

(
2n

2k

)
zk + rz(1 + z)n−2, (6)

has only real zeros. In this case, we only need to take

P (z) =
n∑

k=0

(
2n

k

)
zk + rz2(1 + z2)n−2.

The Hermite–Biehler theorem approach to the real-rootedness of hCn(z)
and hDn(z) also leads us to the discovery of their compatibility. The notion of
compatibility was introduced by Chudnovsky and Seymour [5] in the study of
the real-rootedness of independence polynomials of claw-free graphs. Given
two real-rooted polynomials f(z) and g(z) with positive leading coefficients,
they are said to be compatible if for all real a, b ≥ 0, the polynomial af(z)+
bg(z) has only real zeros. The compatibility also has a characterization in
terms of certain interlacing property of polynomials. We say that f(z) and
g(z) have a common interleaver if there exists another real-rooted polynomial
h(z) such that f(z) ⪯ h(z) and g(z) ⪯ h(z). The following lemma is a special
case of a result of Chudnovsky and Seymour [5].
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Lemma 2.2. Suppose that f(z) and g(z) have only real zeros. Then f(z)
and g(z) are compatible if and only if they have a common interleaver.

It should be mentioned that in the special case deg f(z) = deg g(z), the
above result has been proved by Dedieu [9]; see also Fisk [10, Chapter 1].

With the above results, we now proceed to show the compatibility be-
tween hCn(z) and hDn(z).

Corollary 2.3. For n ≥ 2, the polynomials hCn(z) and hDn(z) are compati-
ble.

Proof. Let

g(z) =
n−1∑
k=0

(
2n

2k + 1

)
zk.

As before, applying the Hermite–Biehler theorem to P (z) = (1 + z)2n, we
obtain that hCn(z) ≺ g(z). If P (z) is taken to be

(1 + z)2n − 2nz2(1 + z2)n−2,

then we get that hDn(z) ≺ g(z). Therefore, hCn(z) and hDn(z) have a com-
mon interleaver g(z). By Lemma 2.2, these two polynomials are compatible.
This completes the proof.
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