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Abstract. Let K be an algebraic number field with non-trivial class group G and OK be its
ring of integers. For k ∈ N and some real x ≥ 1, let Fk(x) denote the number of non-zero
principal ideals aOK with norm bounded by x such that a has at most k distinct factorizations
into irreducible elements. It is well known that Fk(x) behaves for x → ∞ asymptotically like

x(log x)1−1/|G|(log log x)Nk(G). We prove, among other results, that N1(Cn1 ⊕ Cn2) = n1 + n2

for all integers n1, n2 with 1 < n1|n2.

1. Introduction

Let K be an algebraic number field, OK its ring of integers and G its ideal class group. For
a non-zero element a ∈ OK let Z(a) denote the set of all (essentially distinct) factorizations of
a into irreducible elements. Then OK is factorial (in other words, |Z(a)| = 1 for all non-zero
a ∈ OK) if and only if |G| = 1. Suppose that |G| ≥ 2 and let k ∈ N. In the 1960s P. Rémond and
W. Narkiewicz initiated the study of the asymptotic behavior of counting functions associated
with non-unique factorizations (for an overview and historical references see [17, 4]). Among
others, the function

Fk(x) =
∣∣{aOK : a ∈ OK \ {0} , (OK :aOK) ≤ x and |Z(a)| ≤ k}

∣∣
was considered. It counts the number of principal ideals aOK where 0 ̸= a ∈ OK has at most
k distinct factorizations and whose norm is bounded by x. In [15] it was proved that Fk(x)
behaves for x → ∞ asymptotically like

x(log x)1−1/|G|(log log x)Nk(·) .

This result was refined and extended in several ways: the asymptotics were sharpened in [10],
the function field case was handled in [9], Chebotarev formations in [6] and non-principal orders
in global fields in [5]. For more recent development see [4, Section 9.3] and [21, 14, 13, 11, 12].

In [16, 18], W. Narkiewicz and J. Śliwa showed that the exponents Nk(·) depend only on the
class group G, and they gave a combinatorial description of Nk(G) (see Definition 2.1). This
description was used by the first author for a first detailed investigation of Nk(G) in [1]. In
two recent papers [2] and [3], Nk(G) has been continued to investigated with new methods
from Combinatorial Number Theory. Before going into details we briefly outline how these
investigations are embedded into the more general study of the arithmetic of OK .

Suppose that G ∼= Cn1 ⊕ . . . ⊕ Cnr with 1 < n1 | . . . |nr. Since |G| ≥ 2, OK is not factorial.
The non-uniqueness of factorizations in OK is described by a variety of arithmetical invariants—
such as sets of lengths or the catenary degree—and they depend only on the class group G (the
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same is true not only for rings of integers but more generally for Krull monoids with finite class
group where every class contains a prime divisor). Thus the goal is to determine their precise
values in terms of the group invariants n1, . . . , nr, or to describe them in terms of classical
combinatorial invariants, such as the Davenport constant or the Erdős–Ginzburg–Ziv constant.
Roughly speaking, a good understanding of these combinatorial invariants is restricted to groups
of rank at most two, and thus no more can be expected for the more sophisticated arithmetical
invariants.

Back to the Narkiewicz constants. A straightforward example shows that N1(G) ≥ n1+. . .+nr

(see Inequality 2.2), and in 1982 W. Narkiewicz and J. Śliwa stated the conjecture that equality
holds. Since on the other hand the Davenport constant D(G) is a lower bound for N1(G) (see

Inequality 2.1), the Narkiewicz-Śliwa Conjecture, if true, would provide an upper bound for the
Davenport constant which is substantially stronger than all bounds known so far. Thus it is not
surprising that up to now this Conjecture has been validated only for a few classes of groups
including cyclic groups, elementary 2-groups and elementary 3-groups ([4, Theorem 6.2.8]). In
this paper we shall determine N1(G) for groups of rank two and obtain several related results.
Our main results will be presented in the next section (see Theorems 2.3-2.6).

2. Notations and the main results

We denote by N the set of positive integers, by P ⊆ N the set of prime numbers, and we set
N0 = N ∪ {0}. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z : a ≤ x ≤ b}. By a monoid, we
always mean a commutative semigroup with identity which satisfies the cancelation law (that
is, if a, b, c are elements of the monoid with ab = ac, then b = c follows).

Let H be a monoid and a, b ∈ H. We denote by A(H) the set of atoms (irreducible elements)
of H and by H× the set of invertible elements of H. The monoid H is said to be reduced if
H× = {1}. Let Hred = H/H× = {aH× : a ∈ H} be the associated reduced monoid.

A monoid F is called free (with basis P ⊆ F ) if every a ∈ F has a unique representation of
the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

We set F = F(P ) and call

|a|F = |a| =
∑
p∈P

vp(a) the length of a .

The monoid Z(H) = F(A(Hred)) is the factorization monoid of H and π : Z(H) → Hred denotes
the natural homomorphism given by mapping a factorization to the element it factorizes. Then
the set Z(a) = π−1(aH×) ⊆ Z(H) is called the set of factorizations of a, and we say that a has
unique factorization if |Z(a)| = 1. The set L(a) = {|z| | z ∈ Z(a)} ⊆ N0 is called the set of
lengths of a.

All abelian groups will be written additively. For n ∈ N, let Cn denote a cyclic group with
n elements. Let G be an abelian group and G0 ⊆ G a subset. Then ⟨G0⟩ ⊆ G is the subgroup
generated by G0, G

•
0 = G0 \ {0}, and −G0 = {−g | g ∈ G0}. A family (ei)i∈I of non-zero

elements of G is said to be independent if∑
i∈I

miei = 0 implies miei = 0 for all i ∈ I, where mi ∈ Z .
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If I = [1, r] and (e1, · · · , er) is independent, then we simply say that e1, · · · , er are independent
elements of G. The tuple (ei)i∈I is called a basis if (ei)i∈I is independent and ⟨{ei : i ∈ I}⟩ = G.
If 1 < |G| < ∞, then we have

G ∼= Cn1 ⊕ . . .⊕ Cnr , and we set d∗(G) =

r∑
i=1

(ni − 1) ,

where r = r(G) ∈ N is the rank of G, n1, · · · , nr ∈ N are integers with 1 < n1 | . . . | nr and
nr = exp(G) is the exponent of G. If |G| = 1, then r(G) = 0, exp(G) = 1, and d∗(G) = 0.

The arithmetic of Krull monoids is studied by using two classes of auxiliary monoids: block
monoids (in other words, monoids of zero-sum sequences) and type monoids (see [4, Sections 3.4
and 3.5]). We need both concepts for our investigations.

Monoid of zero-sum sequences. Let G be a finite additively written abelian group.

The elements of the free monoid F(G0) are called sequences over G0. Let

S =
∏
g∈G0

gvg(S) , where vg(S) ∈ N0 for all g ∈ G0 and vg(S) = 0 for almost all g ∈ G0 ,

be a sequence over G0. We call vg(S) the multiplicity of g in S, and we say that S contains
g if vg(S) > 0. A sequence S1 is called a subsequence of S if S1 |S in F(G) (equivalently,
vg(S1) ≤ vg(S) for all g ∈ G). If a sequence S ∈ F(G0) is written in the form S = g1 · . . . · gl,
we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G. For a sequence

S = g1 · . . . · gl =
∏
g∈G0

gvg(S) ∈ F(G0) ,

we call |S| = l =
∑

g∈G0
vg(S) ∈ N0 the length of S, supp(S) = {g ∈ G0 | vg(S) > 0} ⊂ G0

the support of S, σ(S) =
∑l

i=1 gi =
∑

g∈G0
vg(S)g ∈ G the sum of S, and Σ(S) = {

∑
i∈I gi :

∅ ̸= I ⊆ [1, l]} the set of subsums of S. For g ∈ G, we set g+ S = (g+ g1) · . . . · (g+ gl) ∈ F(G).
The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• short (in G) if 1 ≤ |S| ≤ exp(G),
• zero-sum free if there is no non-empty zero-sum subsequence,
• a minimal zero-sum sequence if S is a non-empty zero-sum sequence and every subse-
quence S′ of S with 1 ≤ |S′| < |S| is zero-sum free.

We denote by B(G0) = {S ∈ F(G0) : σ(S) = 0} the monoid of zero-sum sequences over G0, by
A(G0) the set of all minimal zero-sum sequences over G0 (this is the set of atoms of the monoid
B(G0)), and by

D(G0) = sup{|U | : U ∈ A(G0)} ∈ N ∪ {∞}
the Davenport constant of G0. Every map of abelian groups φ : G → H extends to a homo-
morphism φ : F(G) → F(H) where φ(S) = φ(g1) · . . . · φ(gl). If φ is a homomorphism, then
φ(S) is a zero-sum sequence if and only if σ(S) ∈ Ker(φ).

For many zero-sum problems, the ordering of the elements of a sequence is not important.
But when we count the number of subsequences with given property or consider so called unique
factorization, we need to grant a sequence a ordering or label. There are two popular ways to
label a sequence. One way is introduce the index set as doing by Narkiewicz in 1979 [16], and
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another way is using the concept of type as we doing in a recent paper [2]. In this paper we
shall using the concept of type which was first introduced by Halter-Koch in 1992 [6].
Monoid of zero-sum types. The elements of the free monoid F(G0×N) are called types over
G0. Clearly, they are sequences over G0×N, but we think of them as labeled sequences over G0

where each element from G0 carries a label from the positive integers. Let α : F(G0×N) → F(G0)
denote the unique homomorphism satisfying

α((g, n)) = g for all (g, n) ∈ G0×N ,

and let σ = σ ◦α : F(G0×N) → G. For a type T ∈ F(G0×N), α(T ) ∈ F(G0) is the associated
(unlabeled) sequence. We say that T is a zero-sum type (short, zero-sum free or a minimal zero-
sum type) if the associated sequence has the relevant property, and we set Σ(T ) = Σ(α(T )). We
denote by

T (G0) = {T ∈ F(G0×N) : σ(T ) = 0} = α−1
(
B(G0)

)
⊆ F(G0×N)

the monoid of zero-sum types over G0 (briefly, the type monoid over G0). Type monoids were
introduced by F. Halter-Koch in [8] and applied successfully in the analytic theory of so-called
type-dependent factorization properties (see [4, Section 9.1], and [6, 7] for some early papers).

Every map of abelian groups φ : G → H extends to a unique homomorphism φ : F(G0×N) →
F(H×N) satisfying φ((g, n)) = (φ(g), n) for all (g, n) ∈ G0×N . We denote by φ = φ◦α : F(G0×
N) → F(H) the unique homomorphism satisfying φ((g, n)) = φ(g) for all (g, n) ∈ G0×N .

Let τ : F(G0) → F(G0×N) be defined by

τ(S) =
∏
g∈G0

vg(S)∏
k=1

(g, k) ∈ F(G0×N) .

For S ∈ F(G0), we call τ(S) the type associated with S. The map β = α | T (G0) : T (G0) → B(G0)
is a transfer homomorphism (see [4, Proposition 3.5.5]), and hence we have in particular that
L(B) = L

(
τ(B)

)
for all B ∈ B(G•). Let T and T ′ be two squarefree zero-sum types with

α(T ) = α(T ′). Then there is a bijection from Z(T ) to Z(T ′), and hence |Z(T )| = |Z(T ′)|. In
particular, we have |Z(T )| = |Z(τ(α(T )))|. Let T = (g1, a1) · . . . · (gl, al) ∈ F(G×N) be a type.
For every g ∈ G, define (g, 0) + T = (g + g1, a1) · . . . · (g + gl, al).

The greatest common divisor of sequences S, S′ ∈ F(G0), denoted by gcd(S, S′), is defined to
be the greatest common subsequence of S and S′ (i.e. it is always taken in the monoid F(G0)).
Sequences S and S′ are called coprime if gcd(S, S′) = 1. Similarly, the greatest common divisor
of types T, T ′ ∈ F(G0×N), denoted by gcd(T, T ′), is defined to be the greatest common subtype
of T and T ′ (i.e. it is always taken in F(G0×N)). Types T and T ′ are called coprime if
gcd(T, T ′) = 1.

Narkiewicz constants. We start with the definition of the Narkiewicz constants (see [4,
Definition 6.2.1]). Theorem 9.3.2 in [4] provides an asymptotic formula for the Fk(x) function—
the Narkiewicz constants occur as exponents of the log log x term—in the frame of obstructed
quasi-formations (this setting includes non-principal orders in holomorphy rings in global fields).

Definition 2.1. A type T ∈ F(G×N) is called squarefree if vg,n(T ) ≤ 1 for all (g, n) ∈ G×N.
For every k ∈ N, the Narkiewicz constant Nk(G) of G is defined by

Nk(G) = sup
{
|T | : T ∈ T (G•) squarefree, |Z(T )| ≤ k

}
∈ N0 ∪ {∞} .
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If U ∈ A(G•), then τ(U) has unique factorization, and hence we get

(2.1) D(G) ≤ N1(G) .

Let G = Cn1⊕. . .⊕Cnr with 1 < n1 | . . . |nr and let (e1, · · · , er) be a basis of G with ord(ei) = ni

for all i ∈ [1, r]. If

B =
r∏

i=1

eni
i , then τ(B) =

r∏
i=1

ni∏
k=1

(ei, k)

has unique factorization, and hence

(2.2)
r∑

i=1

ni ≤ N1(G) ≤ N2(G) ≤ . . .

In [18], W. Narkiewicz and J. Śliwa conjectured that N1(G) equals the above lower bound for
all finite abelian groups.

And we need some other definitions:

Definition 2.2. Let G be a finite abelian group and g ∈ G. We denote by

• s(G) the smallest integer ℓ ∈ N such that every sequence S ∈ F(G) of length |S| ≥ ℓ
has a zero-sum subsequence T of length |T | = exp(G). The invariant s(G) is called the
Erdős-Ginzburg-Ziv constant of G.

• η(G) the smallest integer ℓ ∈ N such that every sequence S ∈ F(G) of length |S| ≥ ℓ has a
short zero-sum subsequence (equivalently, S has a short minimal zero-sum subsequence).

• η∗g(G) the smallest integer ℓ ∈ N such that every sequence S ∈ F(G•) of length |S| ≥ ℓ and
with sum σ(S) = g satisfies that S has two different short minimal zero-sum subsequences
T1 and T2 such that 1 ̸= gcd(T1, T2). We set

η∗(G) = max{η∗h(G) : h ∈ G} .

Now we can state our main results

Theorem 2.3. Let G = Cn1 ⊕ Cn2 with 1 < n1 |n2. Then

N1(G) = n1 + n2.

Theorem 2.4. Let G = Cp⊕Cp, where p is a prime and let T ∈ F(G•×N) be a squarefree type
of length |T | = 2p. If T does not have two minimal zero-sum subtypes which are not coprime,
then there exists a basis (e1, e2) of G such that

α(T ) = ep1

p∏
i=1

(aie1 + e2),

where
∑p

i=1 ai ≡ 0 (mod p).

Theorem 2.5. Let G = Cp⊕Cp, where p is a prime. Let S ∈ F(G•×N) be a squarefree type of
length |S| = 3p. If S does not have two short minimal zero-sum subtypes which are not coprime,
then there exists a basis (e1, e2) of G and a1, a2 ∈ [1, p− 1] such that α(S) = ep1e

p
2(a1e1+ a2e2)

p.

Theorem 2.6. Let G = Cn ⊕ Cn, where n is a positive integer. Then η∗(G) = 3n+ 1.
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3. preliminaries

In this section we first gather some known results needed in this paper, and then we employ
group algebra as a tool to derive a result on subsequences sum (see Theorem 3.12), which will
be crucial in the proof of Theorem 2.4 and might be of its own interesting.

Lemma 3.1. [4, Theorem 5.8.3] Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2. Then

s(G) = 2n1 + 2n2 − 3 , η(G) = 2n1 + n2 − 2 and D(G) = n1 + n2 − 1 .

Lemma 3.2. [4, Proposition 5.7.7] Let G = Cp ⊕ Cp, where p is a prime. Suppose S ∈ F(G)
is a sequence with |S| ≥ 3p − 2. Then S has a zero-sum subsequence T ∈ F(G) of length
|T | ∈ {p, 2p}.

Lemma 3.3. [2, Lemma 2.2] Let G be an abelian group with |G| > 1 and T ∈ T (G•) be a
squarefree zero-sum type. Then the following statements are equivalent :

(a) |Z(T )| = 1.

(b) If U, V ∈ T (G) with U |T and V |T , then gcd(U, V ) has sum zero.

Lemma 3.4. [2, Lemma 3.9] Let G be a finite abelian group with |G| > 1, and let T = U1·. . .·Ur ∈
T (G•) be a squarefree type with r ∈ N and U1, · · · , Ur ∈ A(T (G•)).

1. If |Z(T )| = 1, then
∏r

i=1 |Ui| ≤ |G|.
2. Let S1, · · · , St ∈ F(G×N) such that S1 · . . . · St is a zero-sum subtype of T .

If |Z(T )| = 1, then τ
(
σ(S1) · . . . · σ(St)

)
has unique factorization.

3. If T does not have two short minimal zero-sum subtypes which are not coprime and
|T | ≤ 2 exp(G) + 1, then |Z(T )| = 1.

Lemma 3.5. [3, Theorem 1.2] N1(Cp ⊕ Cp) = 2p, where p is a prime.

We need the following well known result

Lemma 3.6. If S is a minimal zero-sum sequence over Cn of length |S| = n, then S = gn for
some g ∈ Cn.

Lemma 3.7. [2, Theorem 3.14(a)] Let G = Cmn⊕Cmn with n,m ≥ 2. If η∗(Cm⊕Cm) = 3m+1
and η∗(Cn ⊕ Cn) = 3n+ 1 then η∗(Cmn ⊕ Cmn) = 3mn+ 1.

Lemma 3.8. [3, Lemma 4.4] Let G = Cn1p ⊕ Cn2p with 1 ≤ n1 |n2 and p being a prime.
Suppose that N1(Cn1 ⊕Cn2) = n1+n2 for n1 > 1, and suppose that η∗(Cp⊕Cp) = 3p+1. Then,
N1(G) = n1p+ n2p.

Remark 3.9. If n1 = 1 then N1(Cn1⊕Cn2) = N1(Cn2) = n2 has been proved by Narkiewicz [16]
(see also [4, Theorem 6.2.8] or [2, Theorem 5.1]). In [3], Lemma 3.8 is stated only for n1 > 1,
but the proof given there works also for the case of n1 = 1.
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Let F be a field, and let G be a finite abelian group. The group algebra F [G] of G over F is a
free F -module with basis {Xg, g ∈ G} (built with a symbol X), where multiplication is defined
by

(
∑
g∈G

agX
g)(

∑
g∈G

bgX
g) =

∑
g∈G

(
∑
h∈G

ahbg−h)X
g.

Let p be a prime. From now on, let F = Fp be the finite field of p elements. Let G be a finite
abelian p-group. For any non-empty sequence S = g1 · . . . · gℓ ∈ F(G), we define

Π(S) =
ℓ∏

i=1

(1−Xgi) =
∏
g∈G

(1−Xg)vg(S) ∈ Fp[G]

and

HS = {g ∈ G : (1−Xg)Π(S) = 0 ∈ Fp[G]}.
Then HS is a subgroup of G.

Lemma 3.10. Let p be a prime, G be a finite abelian p-group, and let S ∈ F(G•).

1. If |S| ≥ D(G) then Π(S) = 0 ∈ Fp[G].
2. If |S| = D(G)− 1 and Π(S) ̸= 0 then G• ⊆ Σ(S).
3. If HS = G and Π(S) ̸= 0 then G• ⊆ Σ(S).
4. If |S| = D(G)− 2 and Π(S) ̸= 0 then there exists h ∈ G such that G• \ (Σ(S)) ⊆ h+HS.

Proof. Let

Π(S) =
∑
g∈G

agX
g.

1. See [19] or [4, Proposition 5.5.8].

2. See [4, Proposition 5.5.8].

3. If HS = G then for any element h ∈ G we have (1 − Xh)
∑

g∈G agX
g =

∑
g∈G(ag −

ag−h)X
g = 0. It follows that a0 = a−h for every h ∈ G. Thus α = a0

∑
g∈G g ̸= 0. This implies

that G• ⊆ Σ(S).

4. We only need to prove that for any h1, h2 ∈ G•\(Σ(S)), h1−h2 ∈ HS . If h1−h2 ̸∈ HS , then
(1−Xh1−h2)Π(S) ̸= 0 and |(h1 − h2)S| = D(G)− 1. By Conclusion 3, G• ⊆

∑
((h1 − h2)S). So

there exists a subsequence T |S such that h1 = (h1−h2)+σ(T ). It follows that h2 = σ(T ) ∈ Σ(S),
a contradiction. �

Let p be a prime, and let G = Cp ⊕ Cp. Let S ∈ F(G) and let A ⊆ G. Define

• SA to be the maximal subsequence of S such that supp(SA) ⊆ A;
• λ(S) = max{|SH | : H is a subgroup of G of order p};
• Λ(S) = |{H : H is a subgroup of G of order p and SH ̸= 1}|.

Lemma 3.11. [20, Theorem 1] Let G = Cp ⊕ Cp and S ∈ F(G•) with p ≤ |S| ≤ 2p − 2. If
λ(S) ≤ p− 1 and Λ(S) ≤ 2p− 1− |S|, then Π(S) ̸= 0 ∈ Fp[G].

Theorem 3.12. Let p be a prime, G = Cp ⊕ Cp, and let S ∈ F(G•) with |S| = 2p − 2. If
λ(S) ≤ p− 1 then there exists an element g ∈ G such that G \ {g} ⊆ Σ(S).
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Proof. Let
S = a1 · · · a2p−2.

Assume to the contrary that, G• \ {g} ̸⊆ Σ(S) holds for every g ∈ G. It follows that

G• ̸⊆ Σ(S).

Let Λ(S) = t with 1 ≤ t ≤ p+ 1. By renumbering if necessary we assume that

a1, a2, · · · , at
are in distinct cyclic subgroups of G.

Let S0 = S(a1a2 · · · at)−1. Then λ(S0) ≤ λ(S) ≤ p − 1 and Λ(S0) ≤ t = 2p − 2 − |S0| <
2p − 1 − |S0|. By Lemma 3.11,

∏
g|S0

(1 − Xg) ̸= 0. Let S1 be the maximal subsequence of S

such that S0

∣∣S1 and
∏

g|S1
(1−Xg) ̸= 0.

If |S1| = 2p− 2, then G• ⊆ Σ(S1) ⊆ Σ(S) by Lemma 3.10, a contradiction.
If |S1| ≤ 2p−4, then there exist ai, aj with 1 ≤ i < j ≤ t such that (1−Xai)

∏
g|S1

(1−Xg) =

(1 −Xaj )
∏

g|S1
(1 −Xg) = 0. Therefore, G = ⟨ai, aj⟩ ⊆ HS1 ⊆ G. Hence, HS1 = G. It follows

from Lemma 3.10 that G• ⊆ Σ(S1) ⊆ Σ(S), again a contradiction. Therefore,

|S1| = 2p− 3.

By renumbering if necessary we can assume that S = S1a1. Since D(G) − 2 = 2p − 3 ,
G• ̸⊆ Σ(S) and a1 ∈ HS1 , it follows from Lemma 3.10 that, there exists h1 ∈ G such that
G• \ (Σ(S1)) ⊆ h1 + ⟨a1⟩.

Let S′
0 = S(a2, · · · , at)−1. Then λ(S′

0) ≤ λ(S) ≤ p − 1 and Λ(S′
0) ≤ t = 2p − 2 − |S′

0| + 1 =
2p− 1− |S′

0|. By Lemma 3.11,
∏

g|S′
0
(1−Xg) ̸= 0.

Let S′
1 be the maximal subsequence of S such that S′

0

∣∣S′
1 and

∏
g|S′

1
(1−Xg) ̸= 0. In a similar

way to above we deduce that |S′
1| = 2p − 3 and there exists h2 ∈ G such that G• \ (Σ(S1)) ⊆

h2 + ⟨ai⟩ for some i ∈ [2, t].
Since 1 ̸= i we have |h1 + ⟨a1⟩

∩
h2 + ⟨ai⟩| = 1. Let h1 + ⟨a1⟩

∩
h2 + ⟨ai⟩ = {g}. Then,

(3.1) G• \ (Σ(S)) ⊆ h1 + ⟨a1⟩
∩

h2 + ⟨ai⟩ = {g}

Since
∏

g|S(1 − Xg) = 0, we have 0 ∈ Σ(S). This together with (3.1) gives that G \ {g} ⊆
Σ(S). �

4. Proof of the main results

In this section we first generalize the concept on unique factorization to any square free type
(not necessarily zero-sum).

Definition 4.1. Let G be an abelian group with |G| > 1 and T ∈ F(G•×N) be a squarefree type.
We say T has unique factorization if there is only one way to write T in the form T = U1 · · ·UrU

′,
where U1, · · · , Ur are all minimal zero-sum types and U ′ is zero-sum free.

We have the following similar result to Lemma 3.3.

Lemma 4.2. Let G be an abelian group with |G| > 1 and T ∈ F(G•×N) be a squarefree type.
Then the following statements are equivalent :
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(a) T has unique factorization.

(b) If U, V ∈ T (G) with U |T and V |T , then gcd(U, V ) has sum zero.

Lemma 4.3. Let G be a finite abelian group and let T ∈ F(G•×N) be a squarefree type of length
|T | = N1(G). If T has unique factorization then T is zero-sum.

Proof. If σ(α(T )) ̸= 0, there exists a squarefree type T1 ∈ T (G•) such that T1 = Tw, where
w ∈ G•×N and α(w) = −σ(α(T )). Since |T1| > N1(G), T1 have two distinct factorizations:

T1 = Z1Z2 · · ·ZrX1X2 · · ·Xu = Z1Z2 · · ·ZrY1Y2 · · ·Yv
where Zi, Xi, Yk are all minimal zero-sum types, Xi ̸= Yj for all i ∈ [1, u] and j ∈ [1, v], and
u, v ≥ 2. So, X1X2 · · ·Xu = Y1Y2 · · ·Yv. It follows that there exist Xi and Yj with w ̸ |Xi, w ̸ |Yj
such that gcd(Xi, Yj) ̸= 1, a contradiction to Lemma 4.2. �

We also need the following easy result.

Lemma 4.4. Let G = Cn with n ̸= 4, and let T ∈ F(G•×N) be a squarefree type of length
|T | = n. If T has unique factorization then there exists g ∈ G such that α(T ) = gn.

Proof. By Lemma 4.3, we know that T ∈ T (G•). If T is a minimal zero-sum type then the result
follows from Lemma 3.6. Otherwise n ≥ 5 and T = X1X2 · · ·Xu with u ≥ 2 and all Xi being
minimal zero-sum subtypes of length not less than two. It follows that |X1||X2| · · · |Xu| > n, a
contradiction to Lemma 3.4. �

Proof of Theorem 2.4. We distinguish two cases:

CASE 1: λ(α(T )) ≥ p.

There exists a subtype T1

∣∣T of length |T1| = p such that α(T1) is a zero-sum sequence over
some subgroup H of G with H ∼= Cp. Since T1 has unique factorization, by Lemma 4.4 there
exists e1 ∈ G• such that α(T1) = ep1. Now T1 is a minimal zero-sum subtype of T of length

|T1| = p. From Lemma 3.4 we infer that TT−1
1 is also a minimal zero-sum type of T . We can

assume that

α(T ) = ep1

p∏
i=1

(aie1 + bie2)

for some basis (e1, e2) of G.

If b1 · · · bp is a minimal zero-sum sequence over Cp then b1 = . . . = bp by Lemma 3.6. Let
e′2 = b1e2. Then, (e1, e

′
2) is also a basis of G and α(T ) has the desired form with the basis

(e1, e
′
2). So, we may assume that b1 · · · bp is not minimal zero-sum. Then, there is a subset

I ⊆ [1, p] such that
∑

i∈I bi = 0 and 1 ≤ |I| < p. Since TT−1
1 is a minimal zero-sum type, we

have
∑

i∈I ai ̸= 0 ∈ Cp. Therefore,

e
p−

∑
i∈I ai

1

∏
i∈I

(aie1 + bie2)

is a zero-sum subsequence of α(T ) and p −
∑

i∈I ai ∈ [1, p − 1]. So, we can find two zero-

sum types W1 and W2 of T such that α(W1) = α(W2) = e
p−

∑
i∈I ai

1

∏
i∈I(aie1 + bie2) and

α(gcd(W1,W2)) = e1 has not zero-sum, a contradiction.

CASE 2: λ(α(T )) ≤ p− 1.
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Let T2 be a minimal zero-sum subtype of T . It follows from λ(α(T )) ≤ p−1 that |supp(α(T2))| ≥
2. Let a, b ∈ G•×N such that ab|T2 and α(a) ̸= α(b). Since |α(T (ab)−1)| = 2p − 2, by
λ(α(T (ab)−1)) ≤ p − 1 and Theorem 3.12, −α(a) ∈ Σ(α(T (ab)−1) or −α(b) ∈ Σ(α(T (ab)−1).
Without loss of generality, we can assume that −α(a) ∈ Σ(α(T (ab)−1). It follows that there
exists a minimal zero-sum subtype T3 such that a|T3 and b - T3, a contradiction. �

Proof of Theorem 2.5.
Clearly every subtype of S does not have two short minimal zero-sum subtypes which are not

coprime. Since |S| = 3p > 3p− 2, by Lemma 3.2 S has a zero-sum subtype T ∈ T (G•) of length
|T | ∈ {p, 2p}. We distinguish two cases.

CASE 1: S has a zero-sum subtype T ∈ T (G•) of length |T | = 2p.
Since T does not have two short minimal zero-sum subtypes which are not coprime, by

Theorem 2.4, T = T1T2 with T1, T2 are minimal zero-sum subtypes of length p.
Choose x, y ∈ G•×N with x|T1 and y|T2. Since |Sx−1y−1| = 3p− 2, by Lemma 3.2 Sx−1y−1

has a zero-sum subtype T ′ ∈ T (G•) of length |T ′| ∈ {p, 2p}.
If |T ′| = 2p, then again by Theorem 2.4 we know that T ′ = T ′

1T
′
2 with T ′

1, T
′
2 are minimal

zero-sum subtypes of length p. So T1T2T
′
1T

′
2|S, yielding a contradiction.

If |T ′| = p, then gcd(T1, T
′) = gcd(T2, T

′) = 1. Thus S = T1T2T
′. Since T1T2, T1T

′ and T2T
′

are zero-sum subtypes of length 2p, by using Theorem 2.4 repeatedly, we infer that there exists
a basis (e1, e2) of G such that α(S) = ep1e

p
2

∏p
i=1(aie1+bie2)

p. Now in a similar way to the proof
of Theorem 2.4 we deduce that a1 = . . . = ap and b1 = . . . = bp.

CASE 2: S does not have a zero-sum subtype of length 2p.
Let T1, T2, · · · , Tr be the all zero-sum subtypes of S of length p. We show next that

(4.1) gcd(T1, T2, · · · , Tr) = 1.

Assume to the contrary that x | gcd(T1, T2, · · · , Tr) for some x ∈ G•×N. Consider Sx−1.
Since |Sx−1| = 3p − 1, by Lemma 3.2 we have Sx−1 has a zero-sum subtype T ′ ∈ T (G•) of
length |T ′| ∈ {p, 2p}. Since S does not have a zero-sum subtype of length 2p, we have |T ′| = p.
But T ′ is different from all of T1, T2, · · · , Tr, a contradiction to that T1, T2, · · · , Tr are the all of
the zero-sum subtypes of S of length p. This proves that gcd(T1, T2, · · · , Tr) = 1. It follows that

r ≥ 2

Clearly |Z(T1)| = . . . = |Z(Tr)| = 1. Since S does not have a zero-sum subtype of length 2p,
we infer that | gcd(Ti, Tj)| ≠ 1 for all i, j ∈ [1, r]. Therefore,

gcd(Ti, Tj) is a nonempty zero-sum type

for all i, j ∈ [1, r].
This together with r ≥ 2 shows that each Ti is not a minimal zero-sum type. Hence,

p ≥ 5.

If p = 5, then Ti = X
(i)
1 X

(i)
2 for each i ∈ [1, r], where |X(i)

1 | = 2, |X(i)
2 | = 3, and X

(i)
1 , X

(i)
2

are both minimal zero-sum types. From (4.1) we know that there exist i, j ∈ [1, r] such that

X
(i)
1 ̸= X

(1)
1 and X

(j)
2 ̸= X

(2)
1 . So X

(1)
1 X

(i)
1 X

(1)
2 X

(j)
2 is a zero-sum type of T of length 10 = 2×5,

a contradiction.
Let p = 7. If there exists Ti = X1X2 such that |X1| = 2, |X2| = 5, where X1, X2 are minimal

zero-sum types, then from (4.1) we know that there exists Tj = X1X3 such that gcd(Tj , X2) = 1,
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where X3 is a zero-sum type. Let W = X1X2X3, then |Z(W )| = 1 by Lemma 3.4. But
|X1||X2||X3| = 50 > 49, a contradiction to Lemma 3.4.

Otherwise for every i, Ti = X
(i)
1 X

(i)
2 , where |X(i)

1 | = 3, |X(i)
2 | = 4, X

(i)
1 is a minimal zero-sum

type and X
(i)
2 is a zero-sum types. If X

(i)
2 is a minimal zero-sum type for each i ∈ [1, r], then

similarly to the case of p = 5 we infer that there exist i, j ∈ [1, r] such that X
(i)
1 ̸= X

(1)
1 and

X
(j)
2 ̸= X

(2)
1 . So X

(1)
1 X

(i)
1 X

(1)
2 X

(j)
2 is a zero-sum type of T of length 14 = 2× 7, a contradiction.

So, X
(i)
2 = Y1Y2 for some i ∈ [1, r], where |Y1| = |Y2| = 2, and both Y1 and Y2 are minimal

zero-sum types. Without loss of generality, we assume that i = 1. From (4.1) we know that there

exists some i ∈ [1, r] such that X
(i)
1 ̸= X

(1)
1 . If there is some j ∈ [2, r] such that X

(j)
2 is a minimal

zero-sum type . Then, X
(1)
1 Y1Y2X

(i)
1 X

(j)
2 is a zero-sum type of length 14 = 2×7, a contradiction.

Therefore, for every j ∈ [2, r], X
(j)
2 is a product of two minimal zero-sum types each of length

two. Again from (4.1) we know that there exist some j ∈ [2, r] such that Tj has a minimal

zero-sum subtype Z such that |Z| = 2 and gcd(Z, T1) = 1. So, T1X
(i)
1 Z = X

(1)
1 Y1Y2X

(i)
1 Z has

unique factorization by Lemma 3.4. But |X(1)
1 ||Y1||Y2||X(i)

1 ||Z| = 72 > 49, a contradiction. So
we can assume that

p ≥ 11.

SUBCASE 2.1: There exists i ∈ [1, r] such that Ti has a minimal zero-sum subtype X1 with

|X1| ≥ p+1
2 .

From (4.1) we know that there exists some j ∈ [1, r] \ {i} such that gcd(Tj , X1) = 1. It

follows that | gcd(Ti, Tj)| ≤ p−1
2 . Let Ti = A1 · · ·AtX1 · · ·Xu and Tj = A1 · · ·AtY1 · · ·Yv, where

A1, · · · , At, X1, · · · , Xu, Y1, · · · , Yv are different minimal zero-sum subtypes of S. Let

T = A1 · · ·AtX1 · · ·XuY1 · · ·Yv.

Clearly |T | < 2p. Since T does not have two short minimal zero-sum subtypes which are not
coprime, by Lemma 3.4.(3) we infer that |Z(T )| = 1. Since p ≥ 11 and 2 ≤ |A1| + · · · + |At| ≤
p−1
2 , it follows from Lemma 3.4(1) that p2 ≥ |A1| · · · |At||X1| · · · |Xu||Y1| · · · |Yv| ≥ (|A1|+ . . .+

|At|)(|X1|+. . .+|Xu|)(|Y1|+. . .+|Yv|) = (|A1|+. . .+|At|)(p−(|A1|+. . .+|At|))2 ≥ 2(p−2)2 > p2,
a contradiction.

SUBCASE 2.2: For every i ∈ [1, r] and every minimal zero-sum subtype X of Ti, we have

|X| ≤ p−1
2 .

Since |T1| = p and p is an odd prime, we infer that T1 contains a minimal zero-sum subtype X1

of length |X1| ≥ 3. From (4.1) we know that there exists some i ∈ [2, r] such that gcd(Ti, X1) = 1.
It follows that | gcd(T1, Ti)| ≤ p − 3. Let T1 = A1 · · ·AtX1 · · ·Xu and Ti = A1 · · ·AtY1 · · ·Yv,
where A1, · · · , At, X1, · · · , Xu, Y1, · · · , Yv are different minimal zero-sum subtypes of S. Let

T = A1 · · ·AtX1 · · ·XuY1 · · ·Yv.
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Clearly |T | < 2p. Since T does not have two short minimal zero-sum subtypes which are not
coprime, by Lemma 3.4.(3) we infer that |Z(T )| = 1. By Lemma 3.4(1),

p2 ≥ |A1| · · · |At||X1| · · · |Xu||Y1| · · · |Yv|
≥ |A1| · · · |At||X1||X2| · · · |Xu|(|Y1|+ . . .+ |Yv|)
= |A1| · · · |At||X1||X2| · · · |Xu|(|X1|+ . . .+ |Xu|)

≥


3 · p− 1

2

p− 5

2
· 3 > p2 If |X1|+ . . .+ |Xu| = 3 and p ≥ 11,

2 · p− 1

2

p− 3

2
· 4 > p2 If |X1|+ . . .+ |Xu| > 3 and p ≥ 11,

yielding a contradiction. �

Proof of Theorem 2.6. By Lemma 3.7, it suffices to show that the theorem is true for n = p
is a prime. Now the result follows from Theorem 2.5. �

Proof of Theorem 2.3. Since N1(C1 ⊕ Cn) = N1(Cn) = n for every integer n and N1(Cp ⊕
Cp) = 2p for every prime number p, the result follows from Theorem 2.6 and Lemma 3.8 by
induction. �
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