The generalized connectivity of complete equipartition 3 -partite graphs

Shasha Li, Wei Li, Xueliang Li
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China.
Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair of distinct integers i, j with $1 \leq i, j \leq \ell$. Chartrand et al. generalized the concept of connectivity as follows: The k connectivity of G, denoted by $\kappa_{k}(G)$, is defined by $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$. Thus $\kappa_{2}(G)=\kappa(G)$, where $\kappa(G)$ is the connectivity of G; whereas, $\kappa_{n}(G)$ is the maximum number of edge-disjoint spanning trees contained in G.

This paper mainly focuses on the k-connectivity of complete equipartition 3-partite graphs K_{b}^{3}, where $b \geq 2$ is an integer. First, we obtain the number of edge-disjoint spanning trees of a general complete 3-partite graph $K_{x, y, z}$, which is $\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$. Then, based on this result, we get the k-connectivity of K_{b}^{3} for all $3 \leq k \leq 3 b$. Namely, $$
\kappa_{k}\left(K_{b}^{3}\right)= \begin{cases}\left\lfloor\frac{\left\lfloor\frac{k^{2}}{3}\right\rfloor+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k & \text { if } k \geq \frac{3 b}{2} ; \\ \left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k<\frac{3 b}{2} \text { and } k=0(\bmod 3) ; \\ \left\lfloor\frac{\text { if } \frac{3 b}{4}<k<\frac{3 b}{2} \text { and } k=1(\bmod 3) ;}{2 k+1}{ }^{\left\lfloor\frac{3 b+1}{2 k+2 k+1}\right\rfloor}\right\rfloor & \text { if } b \leq k<\frac{3 b}{2} \text { and } k=2(\bmod 3) ; \\ \left\lfloor\frac{3 b+1}{2 k+2}\right\rfloor & \text { otherwise. }\end{cases}
$$

Keywords: k-connectivity, complete equipartition 3-partite graph, internally disjoint trees.
AMS subject classification 2010: 05C40, 05 C 05 .

1 Introduction

We follow the book [1] for all graph theoretical notation and terminology not defined here.
There is an equivalent definition of the connectivity $\kappa(G)$ of a graph G provided by a wellknown theorem of Whitney [9]. For each 2-subset $S=\{u, v\}$ of the vertex set $V(G)$, let $\kappa(S)$ denote the maximum number of internally disjoint $u v$-paths in G. Then $\kappa(G)=\min \{\kappa(S)\}$, where the minimum is taken over all 2 -subsets S of $V(G)$. In [3], the authors generalized this definition and proposed the concept of generalized connectivity.

Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair of distinct integers i, j with $1 \leq i, j \leq \ell$ (note that the trees are vertex-disjoint in $G \backslash S$). A collection $\left\{T_{1}, T_{2}, \ldots, T_{\ell}\right\}$ of trees in G with this
property is called a set of internally disjoint trees connecting S. The generalized k-connectivity of G, abbreviated as k-connectivity of G, denoted by $\kappa_{k}(G)$, is then defined as $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$.

From a theoretical perspective, both extremes of κ_{k} are fundamental concepts in graph theory. $\kappa_{2}(G)=\kappa(G)$ is the connectivity of G, and $\kappa_{n}(G)$ is the maximum number of edgedisjoint spanning trees contained in G. The concept of edge-disjoint spanning trees is another subject we studied. To motivate the edge-disjoint spanning trees problem, assume that our graph represents a communication network, and that for every choice of two vertices we want to be able to find k edge-disjoint paths between them. Menger's theorem [4] tells us that such paths exist as soon as our graph is k-edge-connected, which is clearly also necessary. But the theorem does not tell us how to find those paths; in particular, having found them for one pair of endvertices we are not necessarily better placed to find them for another pair. However, if our graph has k edge-disjoint spanning trees, there will always be k such paths, one in each tree. Once we have stored those trees in our computer, we shall always be able to find the k paths quickly, for any given pair of endvertices. For edge-disjoint spanning trees of a finite graph G, Nash-Williams and Tutte proved the following theorem independently:

Theorem 1.1 (Nash-Williams [5], Tutte [6]) A multigraph contains k edge-disjoint spanning trees if and only if for every partition P of its vertex set it has at least $k(|P|-1)$ cross-edges.

As a consequence of this theorem, Corollary 1.2 gives a sufficient condition for the existence of k edge-disjoint spanning trees.

Corollary 1.2 (Diestel [2]) Every $2 k$-edge-connected multigraph G has k edge-disjoint spanning trees.

According to this corollary, Kriesell conjectured a more general statement: Defining a set $S \subseteq$ $V(G)$ to be j-edge-connected in G if S lies in a single component of any graph obtained by deleting fewer than j edges from G, he conjectured that if S is $2 k$-edge-connected in G, then G has k edge-disjoint trees containing S. For more details about the spanning tree packing problem, see [13].

From a practical perspective, generalized connectivity can measure the reliability and security of a network. Here is an example. Imagine that a given graph represents a communication network. Suppose that k vertices of the graph are users and other vertices are switchers. The users hope that they can communicate on as many frequencies as possible, so that they can communicate with each other in secrecy even if some of the frequencies are subject to interference or eavesdropping. Users can communicate via a tree connecting all users on each frequency. To avoid interference, each edge can carry only one frequency. And in order to ensure secrecy, each switcher can switch only one frequency. So in essence we need to find the maximum number of internally disjoint trees connecting all users. In a communication network, any k nodes may become users and other nodes become switchers. Thus the reliability and security of a network can be measured by its generalized connectivity.

Since Chartrand et al. introduced the concept of generalized connectivity in 1984 [3], there have been only few results about it until they calculated $\kappa_{k}\left(K_{n}\right)$ for every pair of integers k, n with $2 \leq k \leq n$ in 2010 in [7]. Since then, more and more mathematicians begin to study the generalized connectivity and get some progress. In [8] the authors gave the sharp bounds of the generalized 3 -connectivity $\kappa_{3}(G)$. They also studied the bounds of $\kappa_{3}(G)$ for planar graphs. In [14] we calculated $\kappa_{k}\left(K_{a, b}\right)$ for any two integers a, b with $1 \leq a \leq b$ and $2 \leq k \leq a+b$. In [8] and
[10] the authors studied the computational complexity of the generalized connectivity of graphs. In [11] the authors studied the generalized 3-connectivity of Cartesian product graphs. In [12] the authors studied the minimal size among graphs with the generalized 3 -connectivity $\kappa_{3}=2$.

A complete equipartition 3-partite graph is a complete 3-partite graph in which every part contains exactly b vertices for some integer b. We denote this graph by K_{b}^{3}. Actually, all vertices in the same part of K_{b}^{3} are equivalent. So instead of considering all k-subsets S of $V\left(K_{b}^{3}\right)$, we can restrict our attention to the k-subsets $S_{x, y, z}=\left\{u_{1}, u_{2}, \ldots, u_{x}, v_{1}, v_{2}, \ldots, v_{y}, w_{1}, w_{2}, \ldots, w_{z}\right\}$ for $0 \leq x, y, z \leq k$ with $x+y+z=k$. Moreover, since the three parts U, V and W have the same order, $S_{x, y, z}$ and $S_{\alpha, \beta, \gamma}$ are equivalent, where α, β, γ is any permutation of x, y, z. So we can assume that $b \geq x \geq y \geq z \geq 0$. If $z=0$, obviously $\min \left\{\kappa\left(S_{x, y, 0}\right)\right\}=b+\kappa_{k}\left(K_{b, b}\right)$. So we will restrict our attention to the case that $b \geq x \geq y \geq z>0$. For convenience, we denote $U_{x}=\left\{u_{1}, u_{2}, \ldots, u_{x}\right\}, V_{y}=\left\{v_{1}, v_{2}, \ldots, v_{y}\right\}$ and $W_{z}=\left\{w_{1}, w_{2}, \ldots, w_{z}\right\}$.

In the next two sections, we will give the number of edge-disjoint spanning trees in a complete 3-partite graph $K_{x, y, z}$ and get the k-connectivity of K_{b}^{3} for all $3 \leq k \leq 3 b$, respectively.

2 The number of edge-disjoint spanning trees of a complete 3partite graph

Before we give the number of edge-disjoint spanning trees of a general complete 3-partite graph $K_{x, y, z}$, we will introduce a method to find $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees of a complete bipartite graph $K_{a, b}$ quickly and conveniently. Without loss of generality, we can assume that $a \leq b$.

The List Method

Step 1. Calculate $t=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.
Step 2. Assign appropriate values to d_{j} for $1 \leq j \leq a$. The method of assigning appropriate values to d_{j} was introduced in [14]. Generally speaking, consider the numbers $1, t+1,2 t+$ $1, \ldots,(a-1) t+1$, where addition is performed modulo a. If $1, t+1,2 t+1, \ldots,(a-1) t+1$ are pairwise distinct, we can assign the values to d_{j} as follows: Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=(k+1) c+k(a-c)$. If $c=0$, let $d_{j}=k$ for all $1 \leq j \leq a$. If $c>0$, let $d_{(i-1) t+1}=k+1$ for all $1 \leq i \leq c$, and let the other $d_{j}=k$. If some of the numbers $1, t+1,2 t+1, \ldots,(a-1) t+1$ are equal, we can order $1,2, \ldots, a$ by $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-1) t+2, \ldots, s, t+s, 2 t+s, \ldots,(j-1) t+s$. Then we can assign the values of d_{j} as follows: Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=(k+1) c+k(a-c)$. In the case that $c=0$, let $d_{j}=k$ for all $1 \leq j \leq a$. In the case that $c>0$ for the first c numbers of our ordering, if d_{j} uses one of them as subscript, then $d_{j}=k+1$; else $d_{j}=k$.

Step 3. Form a list with row headings of u_{1}, \ldots, u_{a} and column headings of v_{1}, \ldots, v_{b}. Denote the entry in row u_{i} and column v_{j} by $a_{i, j}$.

Step 4. According to the assignment of d_{j} for $1 \leq j \leq a$, mark the edges of the first spanning tree by 1 in the list. Namely, for every row u_{i} with $1 \leq i \leq a$, put $a_{i, d_{1}+d_{2}+\cdots+d_{i-1}-(i-2)}=\cdots=$ $a_{i, d_{1}+d_{2}+\cdots+d_{i}-(i-1)}=1$.

Step 5. For every row u_{i} with $1 \leq i \leq a$, mark the entry next to the last 1 , namely $a_{i, d_{1}+d_{2}+\cdots+d_{i}-(i-2)}$, by 2 . For every row u_{i} with $1 \leq i \leq a-1$, mark the entry just above the 2 of row u_{i+1}, namely $a_{i, d_{1}+d_{2}+\cdots+d_{i+1}-(i-1)}$, by 2 . For row u_{a}, mark the entry in the same column as the last 1 of row u_{1}, namely $a_{a, d_{1}}$, by 2 . Finally, for every row u_{i} with $1 \leq i \leq a$, mark the
entries between the two 2 by 2 . Thus the edges marked by 2 consist of a spanning tree T_{2}.
Step 6. For ℓ with $3 \leq \ell \leq t$, we can find a spanning tree T_{ℓ} similarly. For every row u_{i} with $1 \leq i \leq a$, mark the entry next to the last $\ell-1$ by ℓ. For every row u_{i} with $1 \leq i \leq a-1$, mark the entry just above the ℓ of row u_{i+1} by ℓ. For row u_{a}, mark the entry in the same column as the last $\ell-1$ of row u_{1} by ℓ. Finally, for every row u_{i} with $1 \leq i \leq a$, mark the entries between the two ℓ by ℓ. Thus the edges marked by ℓ consist of a spanning tree T_{ℓ}.

Finally, we find all $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees.
If ℓ is less than $t=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$, similarly we can use this method to find ℓ edge-disjoint spanning trees of $K_{a, b}$ such that for every pair of vertices u_{i} and u_{j} with $1 \leq i, j \leq a$, the difference between the number of unused edges incident with u_{i} and the number of unused edges incident with u_{j} is at most 1 . For every pair of vertices v_{i} and v_{j} with $1 \leq i, j \leq b$, we also can use this method to find ℓ edge-disjoint spanning trees of $K_{a, b}$ such that the difference between the number of unused edges incident with v_{i} and the number of unused edges incident with v_{j} is at most 1 . Just replace $t=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ by ℓ.

With this method, we can prove the next theorem.
Theorem 2.1 For a complete 3-partite graph $K_{x, y, z}$, we have

$$
\kappa_{x+y+z}\left(K_{x, y, z}\right)=\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor
$$

Proof. Let $U=\left\{u_{1}, \ldots, u_{x}\right\}, V=\left\{v_{1}, \ldots, v_{y}\right\}$ and $W=\left\{w_{1}, \ldots, w_{z}\right\}$ be the three parts of $K_{x, y, z}$. Without loss of generality, we may assume that $z \leq y \leq x$. Since $K_{x, y, z}$ contains $x y+y z+z x$ edges and a spanning tree needs $x+y+z-1$ edges, the number of edge-disjoint spanning trees of $K_{x, y, z}$ is at most $\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$, namely, $\kappa_{x+y+z}\left(K_{x, y, z}\right) \leq\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$. Thus, it suffices to prove that $\kappa_{x+y+z}\left(K_{x, y, z}\right) \geq\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$. To this end, we want to find out all the $\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$ edge-disjoint spanning trees. In other words, we will prove that after we have found some edge-disjoint spanning trees of $K_{x, y, z}$, the number of unused edges is at most $x+y+z-2$, namely they are not enough to form a spanning tree.

Firstly, consider the complete bipartite graph $K_{y, x}$, which is a subgraph of $K_{x, y, z}$. We can use The List Method to find $\left\lfloor\frac{y x}{y+x-1}\right\rfloor$ edge-disjoint spanning trees of $K_{y, x}$, and leave at most $y+x-2$ unused edges. If we connect each w_{i} to some spanning tree of $K_{y, x}$, we can get a spanning tree of $K_{x, y, z}$. So we can get $\left\lfloor\frac{y x}{y+x-1}\right\rfloor$ edge-disjoint spanning trees of $K_{x, y, z}$ as long as we guarantee that the edges which we used to connect w_{i} are all distinct. So we can first use The List Method to find $t=\left\lfloor\frac{z(y+x)-z\left(\left\lfloor\frac{y x}{y+x-1}\right\rfloor\right)}{z+y+x-1}\right\rfloor$ spanning trees of $K_{z, y+x}$. Now, since for every pair of vertices w_{i} and w_{j} with $1 \leq i, j \leq z$, the difference between the number of unused edges incident with w_{i} and the number of unused edges incident with w_{j} is at most 1 , every w_{i} is incident with at least $\left\lfloor\frac{y x}{y+x-1}\right\rfloor$ unused edges. So we can indeed find $\left\lfloor\frac{y x}{y+x-1}\right\rfloor$ edge-disjoint spanning trees of $K_{x, y, z}$. Now the number of unused edges is at most $y+x-2+z+y+x-2<2(z+y+x-1)$. If it is less than $z+y+x-1$, we are done. If it is at least $z+y+x-1$, we need to find one more spanning tree using the rest unused edges.

Let R be the set of the rest unused edges. If $G=(V, R)$ is connected, we are done. If there are at least two components in $G=(V, R)$, there must be a component containing a cycle. Since $|R| \geq z+y+x-1$ and the number of unused edges in $K_{y, x}$ is at most $y+x-2$, the number of unused edges in $K_{z, y+x}$ is at least $z+1$. According to The List Method, each w_{i} has almost the same number of unused edges. So each w_{i} has degree at least 1 in G. Again, according to The List Method, the unused edges in $K_{y, x}$ can not form a cycle, neither can the unused edges
in $K_{z, y+x}$. So the component containing a cycle must contain some unused edges both in $K_{y, x}$ and in $K_{z, y+x}$. And the cycle must be one of the two cases shown in Figure 1. In case 1 , $w_{i} u_{j}$ and $u_{j} v_{k}$ are edges and $w_{i} v_{k}$ is a path. In case $2, w_{i} v_{k}$ and $u_{j} v_{k}$ are edges and $w_{i} u_{j}$ is a path. Now consider another component. Without loss of generality, we can assume that it contains a vertex u_{q}. If the cycle is the first case, we can exchange the signs of column u_{j} and column u_{q} in the list of $K_{z, y+x}$, but keep the list of $K_{y, x}$ unchanged. Namely, for every vertex w_{i} with $1 \leq i \leq z$, which is adjacent to exactly one of u_{j} and u_{q} originally, say u_{j}, now w_{i} is adjacent to u_{q}, the other one of the two vertices. But the other adjacency relations are kept unchanged. Similarly, if the cycle is the second case, we can exchange the signs of column v_{k} and column u_{q} in the list of $K_{z, y+x}$, but keep the list of $K_{y, x}$ unchanged. Now with the new list, we have the edges $w_{i} u_{q}, u_{j} v_{k}$. Since u_{q} and $u_{j}\left(v_{k}\right)$ can not appear in the original path $w_{i} v_{k}\left(w_{i} u_{j}\right)$, the path still exists and keeps unchanged. Then the two components become one, but the other components remain the same as before. So the total number of components is reduced by 1. Repeating the procedure, we can finally make G connected and find out a spanning tree of G. Now the number of rest unused edges is less than $z+y+x-1$. So we have already found $\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$ edge-disjoint spanning trees of $K_{x, y, z}$, and hence, $\kappa_{x+y+z}\left(K_{x, y, z}\right) \geq\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$. So we have proved that $\kappa_{x+y+z}\left(K_{x, y, z}\right)=\left\lfloor\frac{x y+y z+z x}{x+y+z-1}\right\rfloor$.

Figure 1. The component containing a cycle.

3 The k-connectivity of a complete equipartition 3-partite graph

For simplicity, denote K_{b}^{3} by G. Now, let \mathfrak{A}_{0} be the set of trees connecting $S_{x, y, z}$ whose vertex set is $S_{x, y, z}$, let \mathfrak{A}_{1} be the set of trees connecting $S_{x, y, z}$ whose vertex set is $S_{x, y, z} \cup\{u\}$, where $u \notin S_{x, y, z}$, and let \mathfrak{A}_{2} be the set of trees connecting $S_{x, y, z}$ whose vertex set is $S_{x, y, z} \cup\{u, v\}$, where $u, v \notin S_{x, y, z}$ and they belong to distinct parts.

Lemma 3.1 Let A be a maximum set of internally disjoint trees connecting $S_{x, y, z}$. Then we can always find a set A^{\prime} of internally disjoint trees connecting $S_{x, y, z}$, such that $|A|=\left|A^{\prime}\right|$ and $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Proof. Let $A=\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$. If for some tree T_{j} in $A, T_{j} \notin \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$, then let $V\left(T_{j}\right)=$ $S_{x, y, z} \cup U^{\prime} \cup V^{\prime} \cup W^{\prime}$, where $\left(U^{\prime} \cup V^{\prime} \cup W^{\prime}\right) \cap S_{x, y, z}=\emptyset, U^{\prime} \subseteq U, V^{\prime} \subseteq V$ and $W^{\prime} \subseteq W$. At most two of U^{\prime}, V^{\prime} and W^{\prime} can be empty. If at least two of them are nonempty, say U^{\prime}, V^{\prime}, let $u^{\prime} \in U^{\prime}$ and $v^{\prime} \in V^{\prime}$. The tree T_{j}^{\prime} with vertex set $V\left(T_{j}^{\prime}\right)=S_{x, y, z} \cup\left\{u^{\prime}, v^{\prime}\right\}$ and edge set $E\left(T_{j}^{\prime}\right)=\left\{u^{\prime} w_{1}, \ldots, u^{\prime} w_{z}, u^{\prime} v_{1}, \ldots, u^{\prime} v_{y}, v^{\prime} u_{1}, \ldots, v^{\prime} u_{x}, u^{\prime} v^{\prime}\right\}$ is a tree in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ (See Figure 2). Since $V\left(T_{j}\right) \cap V\left(T_{i}\right)=S_{x, y, z}$ and $E\left(T_{j}\right) \cap E\left(T_{i}\right)=\emptyset$ for every tree $T_{i} \in A$, where $i \neq j$, T_{i} does not contain u^{\prime}, v^{\prime} nor the edges incident with u^{\prime}, v^{\prime}. Therefore, $V\left(T_{j}^{\prime}\right) \cap V\left(T_{i}\right)=S_{x, y, z}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{i}\right)=\emptyset$ for $1 \leq i \leq p, i \neq j$. If exactly one of U^{\prime}, V^{\prime} and W^{\prime} is nonempty,
say U^{\prime}, let $U^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{q}^{\prime}\right\}$. Then we delete $u_{2}^{\prime}, \ldots, u_{q}^{\prime}$. It may produce some connected components. For each component which does not contain u_{1}^{\prime}, there must be an edge connecting one of $u_{2}^{\prime}, \ldots, u_{q}^{\prime}$ with it originally. Thus each component which does not contain u_{1}^{\prime} must contain a vertex in $V \cup W$. Find such a vertex and connect it with u_{1}^{\prime} by an edge. Obviously, the new graph we obtain is a tree $T_{j}^{\prime} \in \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ that connects $S_{x, y, z}$ (See Figure 3). For every tree $T_{i} \in A$, where $i \neq j, T_{i}$ does not contain u_{1}^{\prime} nor the edges incident with u_{1}^{\prime}. Therefore, $V\left(T_{j}^{\prime}\right) \cap V\left(T_{i}\right)=S_{x, y, z}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{i}\right)=\emptyset$ for $1 \leq i \leq p, i \neq j$. Replacing each $T_{j} \notin \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ by T_{j}^{\prime}, we finally get the set $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ which has the same cardinality as A.

Figure 2. If U^{\prime} and V^{\prime} are not empty.

Figure 3. If only U^{\prime} is nonempty.

So, we can assume that the maximum set A of internally disjoint trees connecting $S_{x, y, z}$ is contained in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Next, we will define the standard structure of trees in $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ and \mathfrak{A}_{2}, respectively.

Every tree in \mathfrak{A}_{0} is of standard structure. A tree T in \mathfrak{A}_{1} with vertex set $V(T)=S_{x, y, z} \cup\{u\}$, where $u \in U \backslash S_{x, y, z}$, is of standard structure if u is adjacent to every vertex in $S_{x, y, z} \cap(V \cup W)$. Since $|E(T)|=|V(T)|-1=k$ and $d_{T}(u)=\left|S_{x, y, z} \cap(V \cup W)\right|=k-x$, there are x edges incident with $S_{x, y, z} \cap U$. We know that $\left|S_{x, y, z} \cap U\right|=x$ and each vertex must have degree at least 1 in T. So every vertex in $S_{x, y, z} \cap U$ has degree 1. A tree T in \mathfrak{A}_{1} with vertex set $V(T)=S_{x, y, z} \cup\{v\}$, where $v \in V \backslash S_{x, y, z}$, is of standard structure if v is adjacent to every vertex in $S_{x, y, z} \cap(U \cup W)$. Similarly, every vertex in $S_{x, y, z} \cap V$ has degree 1. A tree T in \mathfrak{A}_{1} with vertex set $V(T)=S_{x, y, z} \cup\{w\}$, where $w \in W \backslash S_{x, y, z}$, is of standard structure if w is adjacent to every vertex in $S_{x, y, z} \cap(U \cup V)$. Similarly, every vertex in $S_{x, y, z} \cap W$ has degree 1. A tree T in \mathfrak{A}_{2} with
vertex set $V(T)=S_{x, y, z} \cup\{u, v\}$, where $u \notin S_{x, y, z}, v \notin S_{x, y, z}$ and u, v belong to distinct parts, is of standard structure if u is adjacent to v and every vertex in $S_{x, y, z}$ is adjacent to exactly one of u, v. We then denote the set of trees in $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ and \mathfrak{A}_{2} with the standard structure by \mathcal{A}_{0}, \mathcal{A}_{1} and \mathcal{A}_{2}, respectively. Clearly, $\mathcal{A}_{0}=\mathfrak{A}_{0}$.

Lemma 3.2 Let A be a maximum set of internally disjoint trees connecting $S_{x, y, z}, A \subset \mathfrak{A}_{0} \cup$ $\mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Then we can always find a set $A^{\prime \prime}$ of internally disjoint trees connecting $S_{x, y, z}$, such that $|A|=\left|A^{\prime \prime}\right|$ and $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$.

Proof. Let $A=\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$. Suppose that there is a tree T_{j} in A such that $T_{j} \in \mathfrak{A}_{1}$, but $T_{j} \notin \mathcal{A}_{1}$. Let $V\left(T_{j}\right)=S_{x, y, z} \cup\{u\}$, where $u \in U \backslash S_{x, y, z}$. Note that the case $u \in V \backslash S_{x, y, z}$ and the case $u \in W \backslash S_{x, y, z}$ are similar. Since $T_{j} \notin \mathcal{A}_{1}$, there are some vertices in $S_{x, y, z} \cap(V \cup W)$, say $v_{1}^{\prime}, \ldots, v_{s}^{\prime}, w_{1}^{\prime}, \ldots, w_{t}^{\prime}$, not adjacent to u. Then we can connect v_{1}^{\prime} to u by a new edge. It will produce a unique cycle. Delete the other edge incident with v_{1}^{\prime} on the cycle. The graph remains a tree. Do the same operation on $v_{2}^{\prime}, \ldots, v_{s}^{\prime}, w_{1}^{\prime}, \ldots, w_{t}^{\prime}$ in turn. Finally we get a tree T_{j}^{\prime} whose vertex set is $S_{x, y, z} \cup\{u\}$ and u is adjacent to every vertex in $S_{x, y, z} \cap(V \cup W)$, that is, T_{j}^{\prime} is of standard structure. For each tree $T_{r} \in A \backslash\left\{T_{j}\right\}$, clearly T_{r} does not contain u nor the edges incident with u. So $V\left(T_{j}^{\prime}\right) \cap V\left(T_{r}\right)=S_{x, y, z}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{r}\right)=\emptyset$. Suppose that there is a tree T_{j} in A such that $T_{j} \in \mathfrak{A}_{2}$, but $T_{j} \notin \mathcal{A}_{2}$. Let $V\left(T_{j}\right)=S_{x, y, z} \cup\{u, v\}$, where $u, v \notin S_{x, y, z}$ and they belong to distinct parts. Without loss of generality, suppose that $u \in U \backslash S_{x, y, z}$ and $v \in V \backslash S_{x, y, z}$. If u and v are not adjacent, connect u and v by the edge $u v$. It will produce a unique cycle. Delete the other edge incident with u on the cycle. Then for every vertex $w \in S_{x, y, z}$, if w is adjacent to neither u nor v, connect w with an edge to one of them which is in the different part from w. It will produce a unique cycle. Delete the other edge incident with w on the cycle. The graph remains a tree, denoted by T_{j}^{\prime}. By our operation, T_{j}^{\prime} is a tree in \mathcal{A}_{2}. For each tree $T_{r} \in A \backslash\left\{T_{j}\right\}, V\left(T_{j}^{\prime}\right) \cap V\left(T_{r}\right)=S_{x, y, z}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{r}\right)=\emptyset$. Replacing each $T_{j} \notin \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ by T_{j}^{\prime}, we finally get the set $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting $S_{x, y, z}$ is contained in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by $V(A)$ and the union of the edge sets of all trees in set A by $E(A)$. Let $A_{0}:=A \cap \mathcal{A}_{0}, A_{1}:=A \cap \mathcal{A}_{1}$ and $A_{2}:=A \cap \mathcal{A}_{2}$. Then $A=A_{0} \cup A_{1} \cup A_{2}$.

Lemma 3.3 Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{x, y, z}$. Then at most one of $U \backslash V(A), V \backslash V(A)$ and $W \backslash V(A)$ is nonempty.

Proof. If at least two of $U \backslash V(A), V \backslash V(A)$ and $W \backslash V(A)$ are nonempty, without loss of generality, let $u \in U \backslash V(A)$ and $v \in V \backslash V(A)$. Then the tree $T^{\prime} \in \mathcal{A}_{2}$ with vertex set $V\left(T^{\prime}\right)=S_{x, y, z} \cup\{u, v\}$ and edge set $E\left(T^{\prime}\right)=\left\{u_{1} v, \ldots, u_{x} v, v_{1} u, \ldots, v_{y} u, w_{1} u, \ldots, w_{z} u, u v\right\}$ is a tree that connects $S_{x, y, z}$. Moreover, $V\left(T^{\prime}\right) \cap V(A)=S_{x, y, z}$ and since all edges of T^{\prime} are incident with u or v, T^{\prime} and T are edge-disjoint for any tree $T \in A$. So, $A \cup\left\{T^{\prime}\right\}$ is also a set of internally disjoint trees connecting $S_{x, y, z}$, contradicting to the maximality of A.

Lemma 3.4 Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{x, y, z}$, and $A=A_{0} \cup A_{1} \cup A_{2}$. If $V(A) \neq V(G)$ and $A_{0} \neq \emptyset$, then we can find a maximum set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting $S_{x, y, z}$, such that $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1$, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1$, and $A_{2}^{\prime}=A_{2}$.

Proof. Let $u \in V(G) \backslash V(A)$ and $T \in A_{0}$. Without loss of generality, suppose $u \in U$. Then we can add the edge $u v_{1}$ to T and get a tree $T^{\prime} \in \mathfrak{A}_{1}$. Using the method in Lemma 3.2, we can transform T^{\prime} into a tree $T^{\prime \prime}$ of standard structure. Then $T^{\prime \prime} \in \mathcal{A}_{1}$. Since for $T_{j} \in A \backslash\{T\}$, T_{j} does not contain u nor the edges incident with u and $E\left(T_{j}\right) \cap E(T)=\emptyset, T^{\prime \prime}$ and T_{j} are edge-disjoint, and $V\left(T^{\prime \prime}\right) \cap V\left(T_{j}\right)=S_{x, y, z}$. Let $A_{0}^{\prime}:=A_{0} \backslash\{T\}, A_{1}^{\prime}:=A_{1} \cup\left\{T^{\prime \prime}\right\}$ and $A_{2}^{\prime}=A_{2}$. It is easy to see that $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ is a set of internally disjoint trees connecting $S_{x, y, z}$. Since $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1,\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1$, and $A_{2}^{\prime}=A_{2}, A^{\prime}$ is a maximum set of internally disjoint trees connecting $S_{x, y, z}$ we want to find.

So, we can assume that for the maximum set A of internally disjoint trees connecting $S_{x, y, z}$, either $V(A)=V(G)$ or $A_{0}=\emptyset$. Moreover, if A^{\prime} is a set of internally disjoint trees connecting $S_{x, y, z}$ which we find currently, $V\left(A^{\prime}\right) \neq V(G)$ and the edges in $E\left(G\left[S_{x, y, z}\right]\right) \backslash E\left(A^{\prime}\right)$ can form a tree T in \mathcal{A}_{0}, then by Lemma 3.4 we will add to A^{\prime} a tree $T^{\prime \prime} \in \mathcal{A}_{1}$ rather than a tree $T \in \mathcal{A}_{0}$ to form a larger set of internally disjoint trees connecting $S_{x, y, z}$. In a similar way, we can prove the following lemma.

Lemma 3.5 Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{x, y, z}$, and $A=A_{0} \cup A_{1} \cup A_{2}$. If $V(A) \neq V(G),(V(G) \backslash V(A)) \subseteq X$ and $V\left(A_{1}\right) \backslash\left(S_{x, y, z} \cup X\right) \neq \emptyset$, where $X=U, V$, or W, then we can find a maximum set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting $S_{x, y, z}$, such that $A_{0}^{\prime}=A_{0},\left|A_{1}^{\prime}\right|=\left|A_{1}\right|-1$, and $\left|A_{2}^{\prime}\right|=\left|A_{2}\right|+1$.

Lemma 3.6 We can always find a maximum set A of internally disjoint trees connecting $S_{x, y, z}$, such that $V(A)=V(G)$.

Proof. Let A be the maximum set of internally disjoint trees connecting $S_{x, y, z}$ we find. If $V(A) \neq V(G)$, by Lemmas 3.4 and 3.5, we can assume that $A_{0}=\emptyset,(V(G) \backslash V(A)) \subseteq X$ and $\left(V\left(A_{1}\right) \backslash S_{x, y, z}\right) \subseteq X$, where $X=U, V$, or W. Since $A_{0}=\emptyset, A_{1} \neq \emptyset$ by the maximality of A.
Case 1. $X=U$.
Since $(V(G) \backslash V(A)) \subseteq U$ and $\left(V\left(A_{1}\right) \backslash S_{x, y, z}\right) \subseteq U$, any vertex $v \in(V \cup W) \backslash S_{x, y, z}$ is in some tree $T \in A_{2}$.
Claim: If there is a tree $T \in A_{2}$ with vertex set $S_{x, y, z} \cup\{v, w\}$, where $v \in V \backslash S_{x, y, z}$ and $w \in W \backslash S_{x, y, z}$, then $|V(G) \backslash V(A)|=1$.
Proof. By contradiction, suppose that there are two vertices in $V(G) \backslash V(A)$, say $u^{\prime}, u^{\prime \prime}$. Let T_{1} and T_{2} be two trees in \mathcal{A}_{2} with vertex sets $S_{x, y, z} \cup\left\{v, u^{\prime}\right\}$ and $S_{x, y, z} \cup\left\{u^{\prime \prime}, w\right\}$, respectively. Since for $T^{\prime} \in A \backslash\{T\}, T^{\prime}$ does not contain $u^{\prime}, u^{\prime \prime}, v, w$ nor the edges incident with them, T_{i} and T^{\prime} are edge-disjoint, and $V\left(T_{i}\right) \cap V\left(T^{\prime}\right)=S_{x, y, z}$ for $i=1,2$. Clearly, $E\left(T_{1}\right) \cap E\left(T_{2}\right)=\emptyset$ and $V\left(T_{1}\right) \cap V\left(T_{2}\right)=S_{x, y, z}$. Let $A^{\prime}=A \backslash\{T\} \cup\left\{T_{1}, T_{2}\right\}$. It is easy to see that A^{\prime} is a set of internally disjoint trees connecting $S_{x, y, z}$. But $\left|A^{\prime}\right|=|A|+1$, contradicting to the maximality of A.

Since $\left|W \backslash S_{x, y, z}\right|=b-z \geq b-x=\left|U \backslash S_{x, y, z}\right|>\left|U \backslash V\left(A_{1}\right)\right|$, there must be a tree $T \in A_{2}$ with vertex set $S_{x, y, z} \cup\{v, w\}$, where $v \in V \backslash S_{x, y, z}$ and $w \in W \backslash S_{x, y, z}$. So $|V(G) \backslash V(A)|=1$. Denote the vertex in $V(G) \backslash V(A)$ by u^{\prime}. Take a tree $T_{1} \in A_{1}$ with vertex set $S_{x, y, z} \cup\left\{u^{\prime \prime}\right\}$, where $u^{\prime \prime} \in U \backslash S_{x, y, z}$. Let T_{2} and T_{3} be two trees in \mathcal{A}_{2} with vertex sets $S_{x, y, z} \cup\left\{v, u^{\prime}\right\}$ and $S_{x, y, z} \cup\left\{u^{\prime \prime}, w\right\}$, respectively. Since for $T^{\prime} \in A \backslash\left\{T, T_{1}\right\}, T^{\prime}$ does not contain $u^{\prime}, u^{\prime \prime}, v, w$ nor the edges incident with them, T_{i} and T^{\prime} are edge-disjoint, and $V\left(T_{i}\right) \cap V\left(T^{\prime}\right)=S_{x, y, z}$ for $i=2,3$. Clearly, $E\left(T_{3}\right) \cap E\left(T_{2}\right)=\emptyset$ and $V\left(T_{3}\right) \cap V\left(T_{2}\right)=S_{x, y, z}$. Let $A^{\prime}=A \backslash\left\{T, T_{1}\right\} \cup\left\{T_{3}, T_{2}\right\}$. It is easy to see that A^{\prime} is a set of internally disjoint trees connecting $S_{x, y, z}$. Since $\left|A^{\prime}\right|=|A|, A^{\prime}$ is a maximum set of internally disjoint trees connecting $S_{x, y, z}$, such that $V\left(A^{\prime}\right)=V(G)$.

Case 2. $X=V$.
The proof is similar to that of Case 1.
Case 3. $X=W$.
In this case, since $\left|W \backslash S_{x, y, z}\right|=b-z \geq b-y \geq b-x=\left|U \backslash S_{x, y, z}\right|$, it seems that it is possible that there is no tree $T \in A_{2}$ with vertex set $S_{x, y, z} \cup\{v, u\}$, where $v \in V \backslash S_{x, y, z}$ and $u \in U \backslash S_{x, y, z}$, and hence any vertex $v \in(V \cup U) \backslash S_{x, y, z}$ is in some tree $T \in A_{2}$ with vertex set $S_{x, y, z} \cup\{v, w\}$, where $w \in W \backslash V\left(A_{1}\right)$. But actually this is impossible. This is because it implies that $b-x+b-y<b-z$, namely, $b+z<x+y$. Since $\left(V\left(A_{1}\right) \backslash S_{x, y, z}\right) \subseteq W$, $\left|A_{1}\right|=\left|V\left(A_{1}\right) \backslash S_{x, y, z}\right|<b-z<b+z<x+y$ and $E(A) \cap E\left(G\left[U_{x} \cup V_{y}\right]\right)=\emptyset$. Now $\left|A_{1}\right|<x+y$ implies that for every vertex $w_{i} \in S_{x, y, z}, i=1, \ldots, z$, there is at least one unused edge in $E\left(G\left[S_{x, y, z}\right]\right)$ incident with w_{i}. These edges together with the edges in $E\left(G\left[U_{x} \cup V_{y}\right]\right.$ will form a tree in \mathcal{A}_{0}, which is internally disjoint with all trees in A, contradicting to the maximality of A. So there must be a tree $T \in A_{2}$ with vertex set $S_{x, y, z} \cup\{v, u\}$, where $v \in V \backslash S_{x, y, z}$ and $u \in U \backslash S_{x, y, z}$. Similar to the proof of Case 1, we can transform A to A^{\prime}, which is a maximum set of internally disjoint trees connecting $S_{x, y, z}$, such that $V\left(A^{\prime}\right)=V(G)$.

So, we can assume that if A is a maximum set of internally disjoint trees connecting $S_{x, y, z}$, then $V(A)=V(G)$.

Lemma 3.7 Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{x, y, z}$, and $A=A_{0} \cup A_{1} \cup A_{2}$. If $A_{0} \neq \emptyset$ and $A_{2} \neq \emptyset$, then we can find a maximum set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting $S_{x, y, z}$, such that $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1$, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+2$, and $\left|A_{2}^{\prime}\right|=\left|A_{2}\right|-1$.

Proof. Let T be a tree in A_{2} with vertex set $S_{x, y, z} \cup\{u, v\}$, where $u \in U \backslash S_{x, y, z}$ and $v \in V \backslash S_{x, y, z}$. Let T_{1} be a tree in A_{0}. We want to transform T and T_{1} to two trees $T_{2}, T_{3} \in \mathcal{A}_{1}$ with vertex sets $S_{x, y, z} \cup\{u\}$ and $S_{x, y, z} \cup\{v\}$ respectively. In T_{2}, every vertex in U_{x} must be incident with an edge in $E\left(T_{1}\right)$. In T_{3}, every vertex in V_{y} must be incident with an edge in $E\left(T_{1}\right)$. And all these edges must be distinct. To do this, let the vertices in W_{z} be in Layer 0 . Let the vertices having distance i to W_{z} in T_{1} be in Layer i. Every vertex in $U_{x} \cup V_{y}$ is in some Layer $i, 1 \leq i \leq k$, since T_{1} is connected. For each vertex $u^{\prime} \in U_{x} \cup V_{y}$, assume that u^{\prime} is in Layer i. Take one edge connecting u^{\prime} with some vertex in Layer $i-1$. There must be such an edge by our construction. According to our choices of edges, these edges are all distinct. So T_{2} and T_{3} are edge-disjoint and $V\left(T_{3}\right) \cap V\left(T_{2}\right)=S_{x, y, z}$. Since for $T^{\prime} \in A \backslash\left\{T, T_{1}\right\}, T^{\prime}$ does not contain u, v nor the edges incident with them and T^{\prime} does not contain the edges of T_{1}, T_{i} and T^{\prime} are edge-disjoint, and $V\left(T_{i}\right) \cap V\left(T^{\prime}\right)=S_{x, y, z}$ for $i=2,3$. Let $A^{\prime}=A \backslash\left\{T, T_{1}\right\} \cup\left\{T_{3}, T_{2}\right\}$. It is easy to see that A^{\prime} is a set of internally disjoint trees connecting $S_{x, y, z}$. Since $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1,\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+2$, and $\left|A_{2}^{\prime}\right|=\left|A_{2}\right|-1,\left|A^{\prime}\right|=|A|$. Thus A^{\prime} is a maximum set of internally disjoint trees connecting $S_{x, y, z}$ we want to find.

So, we can assume that if A is a maximum set of internally disjoint trees connecting $S_{x, y, z}$, then either A_{0} or A_{2} is empty.

From the above lemmas, we can form our principle in finding the maximum set of internally disjoint trees connecting $S_{x, y, z}$. First we find as many trees in \mathcal{A}_{1} as possible. If $V\left(A_{1}\right) \neq V(G)$, we then find as many trees in \mathcal{A}_{2} as possible; else if $V\left(A_{1}\right)=V(G)$, we then find as many trees in \mathcal{A}_{0} as possible. So the final maximum set A of internally disjoint trees connecting $S_{x, y, z}$ is of the form $A_{0} \cup A_{1}$ or $A_{1} \cup A_{2}$. If $A=A_{0} \cup A_{1}$, then every vertex $v \in V(G) \backslash S_{x, y, z}$ is contained in some tree $T \in A_{1}$ with vertex set $S_{x, y, z} \cup\{v\}$. Since $\left|V(G) \backslash S_{x, y, z}\right|=3 b-k$, there are $(3 b-k)$ trees in A_{1}. So $|A| \geq 3 b-k$. If $A=A_{1} \cup A_{2}$, every tree in A must contain one vertex in
$V(G) \backslash S_{x, y, z}$ and some trees may contain two such vertices. So $|A| \leq\left|V(G) \backslash S_{x, y, z}\right|=3 b-k$. Since $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$, for fixed k, if there exists $x=x_{1}, y=y_{1}$ and $z=z_{1}$ such that $A=A_{1} \cup A_{2}$, then we need not consider other $x=x_{2}, y=y_{2}$ and $z=z_{2}$ such that $A=A_{0} \cup A_{1}$. But for some $k, A=A_{0} \cup A_{1}$ holds for any x, y, z such that $x+y+z=k$. Next we will give a necessary and sufficient condition to $A=A_{0} \cup A_{1}$.

Lemma 3.8 Let A be the final maximum set of internally disjoint trees connecting $S_{x, y, z}$ we find. Then $A_{2}=\emptyset$ if and only if $x(b-x)+y(b-y)+z(b-z) \leq x y+y z+z x$.

Proof. If $A_{2}=\emptyset$, then every vertex $v \in V(G) \backslash S_{x, y, z}$ is contained in some tree $T \in A_{1}$ with vertex set $S_{x, y, z} \cup\{v\}$. There are $(b-x)$ trees in A_{1} with vertex set $S_{x, y, z} \cup\{u\}$, where $u \in U \backslash S_{x, y, z}$. We denote the trees by $\mathcal{T}^{U}=\left\{T_{1}^{U}, \ldots, T_{b-x}^{U}\right\}$. In T_{i}^{U}, every vertex in U_{x} is incident with an edge in $E\left(G\left[S_{x, y, z}\right]\right)$ and these edges must be distinct. So T_{i}^{U} contains x edges in $E\left(G\left[S_{x, y, z}\right]\right) . T_{1}^{U}, \ldots, T_{b-x}^{U}$ contain altogether $x(b-x)$ edges in $E\left(G\left[S_{x, y, z}\right]\right)$. Similarly, There are $(b-y)$ trees in A_{1} with vertex set $S_{x, y, z} \cup\{v\}$, where $v \in V \backslash S_{x, y, z}$. We denote the trees by $\mathcal{T}^{V}=\left\{T_{1}^{V}, \ldots, T_{b-y}^{V}\right\}$. These trees contain altogether $y(b-y)$ edges in $E\left(G\left[S_{x, y, z}\right]\right)$. There are $(b-z)$ trees in A_{1} with vertex set $S_{x, y, z} \cup\{w\}$, where $w \in W \backslash S_{x, y, z}$. We denote the trees by $\mathcal{T}^{W}=\left\{T_{1}^{W}, \ldots, T_{b-z}^{W}\right\}$. These trees contain altogether $z(b-z)$ edges in $E\left(G\left[S_{x, y, z}\right]\right)$. Since these trees are edge-disjoint, $x(b-x)+y(b-y)+z(b-z) \leq\left|E\left(G\left[S_{x, y, z}\right]\right)\right|=x y+y z+z x$.

If $x(b-x)+y(b-y)+z(b-z) \leq x y+y z+z x$, we want to prove that $A_{2}=\emptyset . \quad$ Let $d_{S}(v)$ denote the number of unused edges incident with vertex v in $E\left(G\left[S_{x, y, z}\right]\right)$ currently. Let $d_{X, Y}(v)$ denote the number of unused edges incident with vertex v in $E(G[X \cup Y])$ currently, where $X, Y \in\left\{U_{x}, V_{y}, W_{z}\right\}$. If we replace the vertex v by a set Q in above notation, then $d_{S}(Q)=\sum_{v \in Q} d_{S}(v)$, and other notation is similar. Then we can find $(b-x)$ trees $T_{1}^{U}, \ldots, T_{b-x}^{U}$ with vertex set $S_{x, y, z} \cup\{u\}$, where $u \in U \backslash S_{x, y, z}$ if and only if for every vertex u_{i} with $1 \leq i \leq x$, $d_{S}\left(u_{i}\right) \geq b-x$, and we can find $b-y$ trees $T_{1}^{V}, \ldots, T_{b-y}^{V}$ with vertex set $S_{x, y, z} \cup\{v\}$, where $v \in V \backslash S_{x, y, z}$ if and only if for every vertex v_{i} with $1 \leq i \leq y, d_{S}\left(v_{i}\right) \geq b-y$, and we also can find $b-z$ trees $T_{1}^{W}, \ldots, T_{b-z}^{W}$ with vertex set $S_{x, y, z} \cup\{w\}$, where $w \in W \backslash S_{x, y, z}$ if and only if for every vertex w_{i} with $1 \leq i \leq z, d_{S}\left(w_{i}\right) \geq b-z$. Since $x(b-x)+y(b-y)+z(b-z) \leq x y+y z+z x$, at least one of $x(b-x) \leq x y, y(b-y) \leq y z$ and $z(b-z) \leq z x$ must hold. We distinct three cases.

Case 1. $y(b-y) \leq y z$.
Since $y(b-y) \leq y z, b-y \leq z$. So $b \leq y+z \leq x+z \leq x+y$, and hence $b-x \leq y$ and $b-z \leq x$ hold. Since $d_{U_{x}, W_{z}}\left(w_{i}\right)=x \geq b-z$, we can find $b-z$ trees $T_{1}^{W}, \ldots, T_{b-z}^{W}$ with vertex sets $S_{x, y, z} \cup$ $\left\{w_{z+1}\right\}, S_{x, y, z} \cup\left\{w_{z+2}\right\}, \ldots, S_{x, y, z} \cup\left\{w_{b}\right\}$, respectively. Let the neighbors of w_{1} in $T_{1}^{W}, \ldots, T_{b-z}^{W}$ be u_{1}, \ldots, u_{b-z}, respectively. Let the neighbors of w_{2} in $T_{1}^{W}, \ldots, T_{b-z}^{W}$ be $u_{b-z+1}, \ldots, u_{2(b-z)}$ respectively. Let the neighbors of w_{i} in $T_{1}^{W}, \ldots, T_{b-z}^{W}$ be $u_{(i-1)(b-z)+1}, \ldots, u_{i(b-z)}$, respectively, and so on and so forth. Here and in what follows, the subscript j of $u_{j} \in U_{x}$ is expressed modulo x as one of $1,2, \ldots, x$. Now, since $d_{V_{y}, W_{z}}\left(v_{i}\right)=z \geq b-y$, we can find $b-y$ trees $T_{1}^{V}, \ldots, T_{b-y}^{V}$ with vertex sets $S_{x, y, z} \cup\left\{v_{y+1}\right\}, S_{x, y, z} \cup\left\{v_{y+2}\right\}, \ldots, S_{x, y, z} \cup\left\{v_{b}\right\}$, respectively. Let the neighbors of v_{1} in $T_{1}^{V}, \ldots, T_{b-y}^{V}$ be w_{1}, \ldots, w_{b-y}, respectively. Let the neighbors of v_{2} in $T_{1}^{V}, \ldots, T_{b-y}^{V}$ be $w_{b-y+1}, \ldots, w_{2(b-y)}$, respectively. Let the neighbors of v_{i} in $T_{1}^{V}, \ldots, T_{b-y}^{V}$ be $w_{(i-1)(b-y)+1}, \ldots, w_{i(b-y)}$, respectively, and so on and so forth. Here and in what follows, the subscript j of $w_{j} \in W_{z}$ is expressed modulo z as one of $1,2, \ldots, z$. Now, since $d_{U_{x}, V_{y}}\left(u_{i}\right)=y \geq b-$ x, we can find $b-x$ trees $T_{1}^{U}, \ldots, T_{b-x}^{U}$ with vertex sets $S_{x, y, z} \cup\left\{u_{x+1}\right\}, S_{x, y, z} \cup\left\{u_{x+2}\right\}, \ldots, S_{x, y, z} \cup$ $\left\{u_{b}\right\}$, respectively. Let the neighbors of u_{1} in $T_{1}^{U}, \ldots, T_{b-x}^{U}$ be v_{1}, \ldots, v_{b-x}, respectively. Let the
neighbors of u_{2} in $T_{1}^{U}, \ldots, T_{b-x}^{U}$ be $v_{b-x+1}, \ldots, v_{2(b-x)}$, respectively. Let the neighbors of u_{i} in $T_{1}^{U}, \ldots, T_{b-x}^{U}$ be $v_{(i-1)(b-x)+1}, \ldots, v_{i(b-x)}$, respectively, and so on and so forth. Here and in what follows, the subscript j of $v_{j} \in V_{y}$ is expressed modulo y as one of $1,2, \ldots, y$. Now we have found $3 b-k$ trees in A_{1}, and thus every vertex in $V(G) \backslash S_{x, y, z}$ is contained in a tree in A_{1}. Thus, $V\left(A_{1}\right)=V(G)$, and so $A_{2}=\emptyset$.

Case 2. $y(b-y)>y z, z(b-z) \leq z x$, and Case 3. $y(b-y)>y z, z(b-z)>z x$ and $x(b-x) \leq x y$ can be dealt with similarly. The details are omitted.

Now we know that if $x(b-x)+y(b-y)+z(b-z) \leq x y+y z+z x$, then $A_{2}=\emptyset$. It is clear that $x(b-x)+y(b-y)+z(b-z) \leq x y+y z+z x \Leftrightarrow(x+y+z) b \leq x^{2}+y^{2}+z^{2}+x y+y z+z x \Leftrightarrow 2 k b \leq$ $(x+y)^{2}+(y+z)^{2}+(z+x)^{2} \Leftrightarrow 2 k b \leq(k-z)^{2}+(k-x)^{2}+(k-y)^{2} \Leftrightarrow 2 k b-k^{2} \leq x^{2}+y^{2}+z^{2}$. Since $x+y+z=k, x^{2}+y^{2}+z^{2} \geq \frac{k^{2}}{3}$. If $\frac{k^{2}}{3} \geq 2 k b-k^{2}, A=A_{0} \cup A_{1}$ holds for any x, y, z such that $x+y+z=k$. Since $\frac{k^{2}}{3} \geq 2 k b-k^{2} \Leftrightarrow k \geq \frac{3 b}{2}$, then when $k \geq \frac{3 b}{2}, A=A_{0} \cup A_{1}$.

If $A=A_{0} \cup A_{1},\left|A_{1}\right|=3 b-k$. Next we will consider $\left|A_{0}\right|$.
Lemma 3.9 When $k \geq \frac{3 b}{2}$, we can find $\left\lfloor\frac{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)\rfloor}{k-1}\right\rfloor$ trees in A_{0} and $3 b-k$ trees in A_{1}.

Proof. For convenience, denote $\left\lfloor\frac{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]}{k-1}\right\rfloor=a$. Similar to the proof of Lemma 3.8, we will distinct three cases to prove this lemma. Since $a \leq\left\lfloor\frac{x y+y z+z x}{k-1}\right\rfloor$, we can find a trees in A_{0} using the method in the proof of Theorem 2.1. If $z+y \leq z+x<b \leq y+x$, then $a<\left\lfloor\frac{x y-x(b-x)}{k-1}\right\rfloor$. Namely, we can use The List Method to find a edge-disjoint spanning trees of $K_{y, x}$, such that $d_{U_{x}, V_{y}}\left(u_{i}\right) \geq b-x$ for $1 \leq i \leq x$. So we can find $b-x$ trees $T_{1}^{U}, \ldots, T_{b-x}^{U}$ with vertex sets $S_{x, y, z} \cup\left\{u_{x+1}\right\}, S_{x, y, z} \cup\left\{u_{x+2}\right\}, \ldots, S_{x, y, z} \cup\left\{u_{b}\right\}$, respectively, without using the edges in $E\left(G\left[U_{x} \cup W_{z}\right]\right)$. According to The List Method, for every pair of vertices v_{i} and v_{j} with $1 \leq i, j \leq y$, the difference between the number of unused edges incident with v_{i} and the number of unused edges incident with v_{j} is at most 1 . For simplicity, we refer V_{y} to satisfy property P. Then for every spanning tree of $K_{y, x}$, we can connect each w_{i} to some v_{j} to form a spanning tree of $K_{x, y, z}$ and keep V_{y} satisfying property P. Now the number of unused edges incident with each w_{i} is $x+y-a$. Since $x+y-a>b-z$, we can find $b-z$ trees $T_{1}^{W}, \ldots, T_{b-z}^{W}$ with vertex sets $S_{x, y, z} \cup\left\{w_{z+1}\right\}, S_{x, y, z} \cup\left\{w_{z+2}\right\}, \ldots, S_{x, y, z} \cup\left\{w_{b}\right\}$, respectively. Since $x<b-z$, all edges in $E\left(G\left[U_{x} \cup W_{z}\right]\right)$ are used. So all unused edges are incident with V_{y}. Since the number of all unused edges is at least $y(b-y)$ and V_{y} satisfies property $P, d_{S}\left(v_{i}\right) \geq b-y$ for $1 \leq i \leq y$. So we can find $b-y$ trees $T_{1}^{V}, \ldots, T_{b-y}^{V}$ with vertex sets $S_{x, y, z} \cup\left\{v_{y+1}\right\}, S_{x, y, z} \cup\left\{v_{y+2}\right\}, \ldots, S_{x, y, z} \cup\left\{v_{b}\right\}$, respectively. So we can find altogether $b-x+b-y+b-z=3 b-k$ trees in A_{1}. The proofs for the other two cases are similar.

Now we know that, when $k \geq \frac{3 b}{2}$,

$$
\kappa\left(S_{x, y, z}\right)=\left\lfloor\frac{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]}{k-1}\right\rfloor+3 b-k .
$$

Next, we will calculate $\kappa_{k}\left(K_{b}^{3}\right)$ for $k \geq \frac{3 b}{2}$.
Lemma 3.10 When $k \geq \frac{3 b}{2}, \kappa_{k}\left(K_{b}^{3}\right)=\left\lfloor\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k$.

Proof. Since $\kappa\left(S_{x, y, z}\right)=\left\lfloor\frac{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]}{k-1}\right\rfloor+3 b-k, k-1$ and $3 b-k$ are constants, all we have to do is to calculate $\min \{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]\}$. Since

$$
\begin{aligned}
& (x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)] \\
= & \frac{(x+y)^{2}+(y+z)^{2}+(z+x)^{2}-2 k b}{2} \\
= & \frac{(k-z)^{2}+(k-x)^{2}+(k-y)^{2}-2 k b}{2} \\
= & \frac{x^{2}+y^{2}+z^{2}-2 k b+k^{2}}{2},
\end{aligned}
$$

then

$$
\begin{aligned}
& \min \{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]\} \\
= & \min \left\{\frac{x^{2}+y^{2}+z^{2}-2 k b+k^{2}}{2}\right\} \\
= & \frac{\min \left\{x^{2}+y^{2}+z^{2}\right\}}{2}-k b+\frac{k^{2}}{2} .
\end{aligned}
$$

Now the problem is reduced to the one of calculating $\min \left\{x^{2}+y^{2}+z^{2}\right\}$, where $x+y+z=k$ and x, y, z are integers. We know that, when $x+y+z=k$ and x, y, z are real numbers, the minimum value is $\frac{k^{2}}{3}$. If $k=0(\bmod 3)$, obviously when $x=y=z=\frac{k}{3}$, it attains the minimum value. However, if $k=1(\bmod 3)$ or $k=2(\bmod 3)$, namely $k^{2}=1(\bmod 3)$, it can not attain the minimum value. But since x, y, z are integers, $\min \left\{x^{2}+y^{2}+z^{2}\right\}$ should also be an integer, and $\frac{k^{2}+2}{3}=\left\lceil\frac{k^{2}}{3}\right\rceil$ should be the minimum value, when x, y, z are integers. If $k=1(\bmod 3)$, when $x=\frac{k+2}{3}, y=z=\frac{k-1}{3}$, it indeed attains $\frac{k^{2}+2}{3}$. If $k=2(\bmod 3)$, when $x=y=\frac{k+1}{3}, z=\frac{k-2}{3}$, it indeed attains $\frac{k^{2}+2}{3}$, too. So for $z \neq 0$,

$$
\begin{aligned}
& \min \left\{\kappa\left(S_{x, y, z}\right)\right\} \\
= & \min \left\{\left\lfloor\frac{(x y+y z+z x)-[x(b-x)+y(b-y)+z(b-z)]}{k-1}\right\rfloor+3 b-k\right\} \\
= & \left\lfloor\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k .
\end{aligned}
$$

On the other hand, if $z=0$,

$$
\min \left\{\kappa\left(S_{x, y, 0}\right)\right\}=b+\kappa_{k}\left(K_{b, b}\right)= \begin{cases}2 b-\frac{k}{2}+\left\lfloor\frac{k^{2}}{4(k-1)}\right\rfloor & \text { if } k \text { is even } \\ 2 b-\frac{k-1}{2}+\left\lfloor\frac{(k-1)^{2}}{4(k-1)}\right\rfloor & \text { if } k \text { is odd }\end{cases}
$$

Note that $b \geq x \geq y \geq z=0, k=x+y \leq 2 b$ and $k \geq 3$. If k is even, we have

$$
\begin{aligned}
& {\left[\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b+2(k-1)(3 b-k)}{2(k-1)}\right]-\left[\frac{4(k-1)\left(2 b-\frac{k}{2}\right)+k^{2}}{4(k-1)}\right] } \\
\leq & {\left[\frac{\frac{k^{2}+2}{3}+k^{2}-2 k b+2(k-1)(3 b-k)}{2(k-1)}\right]-\left[\frac{4(k-1)\left(2 b-\frac{k}{2}\right)+k^{2}}{4(k-1)}\right] } \\
= & \frac{2 k-4 b-\frac{k^{2}}{3}+\frac{4}{3}}{4(k-1)} \\
\leq & 0
\end{aligned}
$$

and so

$$
\left\lfloor\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b+2(k-1)(3 b-k)}{2(k-1)}\right\rfloor \leq\left\lfloor\frac{4(k-1)\left(2 b-\frac{k}{2}\right)+k^{2}}{4(k-1)}\right\rfloor,
$$

namely,

$$
\left\lfloor\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k \leq 2 b-\frac{k}{2}+\left\lfloor\frac{k^{2}}{4(k-1)}\right\rfloor .
$$

The proof for the case that k is odd is similar.
Thus $\min \left\{\kappa\left(S_{x, y, z}\right)\right\} \leq \min \left\{\kappa\left(S_{x, y, 0}\right)\right\}$, and for $k \geq \frac{3 b}{2}$,

$$
\kappa_{k}\left(K_{b}^{3}\right)=\left\lfloor\frac{\left\lceil\frac{k^{2}}{3}\right\rceil+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k .
$$

Next, we will calculate $\kappa_{k}\left(K_{b}^{3}\right)$ for $k<b$. Notice that now $x^{2}+y^{2}+z^{2} \leq k^{2}<2 k b-k^{2}$, namely, $x(b-x)+y(b-y)+z(b-z)>x y+y z+z x$ for any x, y, z such that $x+y+z=k$. So $A=A_{1} \cup A_{2}$, then not every vertex $v \in V(G) \backslash S_{x, y, z}$ is contained in some tree $T \in A_{1}$. Thus the problem appears: which vertices should we choose to form trees in A_{1} ? We know that every T_{i}^{U} needs x edges in $E\left(G\left[S_{x, y, z}\right]\right)$, every T_{i}^{V} needs y edges in $E\left(G\left[S_{x, y, z}\right]\right)$ and every T_{i}^{W} needs z edges in $E\left(G\left[S_{x, y, z}\right]\right)$. Since $x \geq y \geq z$, a natural idea is that we first pick up as many trees in \mathcal{T}^{W} as possible, then pick up as many trees in \mathcal{T}^{V} as possible, and finally pick up as many trees in \mathcal{T}^{U} as possible. Since $k<b$, namely, $x+y<b-z$, we can pick up $x+y$ trees in \mathcal{T}^{W}, and run out of all edges incident with W_{z}. Since $x<b-y$, we can pick up x trees in \mathcal{T}^{V}, and now we run out of all edges in $E\left(G\left[S_{x, y, z}\right]\right)$. So the rest of vertices can only form trees in A_{2}. Now there remain $b-x$ vertices in $U \backslash S_{x, y, z}, b-y-x$ vertices in $V \backslash S_{x, y, z}$ and $b-z-y-x$ vertices in $W \backslash S_{x, y, z}$. If $b-x \leq b-y-x+b-z-y-x$, namely, $y \leq b-k$, we can pair up all these vertices except for at most one vertex. In this case, we do not waste any vertices. So we have found the maximum number of internally disjoint trees connecting $S_{x, y, z}$.

Lemma 3.11 If $k<b$ and $y \leq b-k$, then $\kappa\left(S_{x, y, z}\right)=\left\lfloor\frac{3 b+k-y-2 z}{2}\right\rfloor$.
Proof. As the above statement, there are $x+y+x$ trees in A_{1} and $\left\lfloor\frac{b-x+b-x-y+b-x-y-z}{2}\right\rfloor$ trees in A_{2}. So

$$
\kappa\left(S_{x, y, z}\right)=\left\lfloor\frac{3 b-3 x+4 x-2 y+2 y-z}{2}\right\rfloor=\left\lfloor\frac{3 b+k-y-2 z}{2}\right\rfloor .
$$

However, if $b-x>b-y-x+b-z-y-x$, the thing is not so simple, because we may have "wasted" vertices. How to avoid wasting? We should pick up the trees more carefully. After we have picked up $x+y$ trees in \mathcal{T}^{W}, there remain $b-k$ vertices in $W \backslash S_{x, y, z}$. Since we have run out of all edges incident with W_{z}, these vertices can not form a tree in A_{1}. Not to waste them, we pair them up with $b-k$ vertices in $U \backslash S_{x, y, z}$. Now there remain $b-x-(b-k)=k-x$ vertices in $U \backslash S_{x, y, z}$ and $b-y$ vertices in $V \backslash S_{x, y, z}$. Now we pick up $b-y-(k-x)=b-k+x-y$ trees in \mathcal{T}^{V}, and there remain $k-x$ vertices in both $U \backslash S_{x, y, z}$ and $V \backslash S_{x, y, z}$. Since we can find altogether at most x trees in \mathcal{T}^{V} and we have already picked up $b-k+x-y$ of them, we can pick up at most $x-(b-k+x-y)=k-b+y$ more trees in \mathcal{T}^{V}. Since $b-y>x, k-b+y<k-x$. If we pick up trees as in the case that $y \leq b-k$, then with these $k-x$ pairs of vertices in $U \backslash S_{x, y, z}$ and $V \backslash S_{x, y, z}$, we can find $k-b+y$ trees in \mathcal{T}^{V} and $k-x-(k-b+y)=b-x-y$ trees in $\mathcal{T}^{U, V}$. There are altogether $k-b+y+b-x-y=k-x$ trees and $k-b+y$ vertices
in $U \backslash S_{x, y, z}$ remaining unused. But we can simply find $k-x$ trees in $\mathcal{T}^{U, V}$ by pairing up these $k-x$ pairs of vertices without using any edges in $E\left(G\left[S_{x, y, z}\right]\right)$. It means that we do not use the edges efficiently. The most efficient way to use the edges is that we pick up as many pairs of trees in \mathcal{T}^{U} and \mathcal{T}^{V} as possible and then pair up the remaining vertices. The following lemma gives $\kappa\left(S_{x, y, z}\right)$ for $k<b$ and $y \geq b-k$.

Lemma 3.12 If $k<b$ and $y \geq b-k$, then $\kappa\left(S_{x, y, z}\right)=2 b-y-z+\left\lfloor\frac{(k-b) y+y^{2}}{k-z}\right\rfloor$.
Proof. As the above statement, we find $x+y$ trees in \mathcal{T}^{W} and $b-k$ trees in $\mathcal{T}^{U, W}$. Then we find $b-k+x-y$ trees in \mathcal{T}^{V} and there are $x y-(b-k+x-y) y=(k-b+y) y$ unused edges left. So we can find $\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor$ trees in \mathcal{T}^{U} and $\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor$ trees in \mathcal{T}^{V}. Finally, there remain $k-x-\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor$ pairs of vertices unused, and so we can find $k-x-\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor$ trees in $\mathcal{T}^{U, V}$. Thus

$$
\begin{aligned}
& \kappa\left(S_{x, y, z}\right) \\
= & x+y+b-k+b-k+x-y+2\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor+k-x-\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor \\
= & 2 b-k+x+\left\lfloor\frac{(k-b+y) y}{x+y}\right\rfloor \\
= & 2 b-y-z+\left\lfloor\frac{(k-b) y+y^{2}}{k-z}\right\rfloor .
\end{aligned}
$$

Next, we will calculate $\min \left\{\kappa\left(S_{x, y, z}\right)\right\}$ for $k<b$.
Lemma 3.13 For $k<b$ and $y \leq b-k$, we have

$$
\min \left\{\kappa\left(S_{x, y, z}\right)\right\}= \begin{cases}2 k & \text { if } k \geq \frac{3 b}{4} ; \\ \left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k<\frac{3 b}{4} \text { and } k=0(\bmod 3) \\ \left\lfloor\frac{3 b+1}{2}\right\rfloor & \text { if } k<\frac{3 b}{4} \text { and } k \neq 0(\bmod 3)\end{cases}
$$

Proof. To get $\min \left\{\kappa\left(S_{x, y, z}\right)\right\}$, first let us consider the function $f_{1}(z, y)=\frac{3 b+k-y-2 z}{2}$. We want to find out the optimal solution of

$$
\begin{gathered}
\min \left\{f_{1}(z, y)\right\} \\
\text { subject to } \\
2 y+z \leq k \\
z-y \leq 0 \\
y \leq b-k
\end{gathered}
$$

y, z are positive integers.
To this end, first let us ignore the integer restriction and consider

$$
\begin{gathered}
\min \left\{g_{1}(z, y)=f_{1}(z, y)\right\} \\
\text { subject to } \\
2 y+z \leq k \\
z-y \leq 0 \\
y \leq b-k .
\end{gathered}
$$

Since $\frac{\partial g_{1}}{\partial y}=-\frac{1}{2}<0$ and $\frac{\partial g_{1}}{\partial z}=-1<0, g_{1}(z, y)$ is a decreasing function in y, and it is also a decreasing function in z. Next we will illustrate it in two cases.
Case 1. $b-k \leq \frac{k}{3}$.
The feasible region of $g_{1}(z, y)$ is shown in Figure 4. Obviously, $g_{1}(z, y)$ attains the minimum value at $(b-k, b-k)$. Since $b-k$ is a positive integer, $(b-k, b-k)$ is also the optimal solution of $f_{1}(z, y)$ in this case. So $\min \left\{f_{1}(z, y)\right\}=f_{1}(b-k, b-k)=2 k$.

Figure 4. The feasible zone of g_{1} for Case 1.

Case 2. $b-k>\frac{k}{3}$.
The feasible region of $g_{1}(z, y)$ is shown in Figure 5. Obviously, $g_{1}(z, y)$ attains the minimum value at some point on the segment $y=\frac{k-z}{2}, 3 k-2 b \leq z \leq \frac{k}{3}$. When $y=\frac{k-z}{2}, g_{1}(z, y)=$ $\frac{3 b+k-y-2 z}{2}=\frac{6 b+k-3 z}{4}$, which is decreasing in z. So $g_{1}(z, y)$ attains the minimum value at $\left(\frac{k}{3}, \frac{k}{3}\right)$. If $k=0(\bmod 3),\left(\frac{k}{3}, \frac{k}{3}\right)$ is also the optimal solution of $f_{1}(z, y)$ in this case and $\min \left\{f_{1}(z, y)\right\}=$ $f_{1}\left(\frac{k}{3}, \frac{k}{3}\right)=\frac{3 b}{2}$. If $k=1(\bmod 3), f_{1}(z, y)$ can attain the minimum value only at $\left(\frac{k-1}{3}, \frac{k-1}{3}\right)$ or $\left(\frac{k-4}{3}, \frac{k+2}{3}\right)$. Since $f_{1}\left(\frac{k-4}{3}, \frac{k+2}{3}\right)-f_{1}\left(\frac{k-1}{3}, \frac{k-1}{3}\right)=\frac{1}{2}>0, \min \left\{f_{1}(z, y)\right\}=f_{1}\left(\frac{k-1}{3}, \frac{k-1}{3}\right)=\frac{3 b+1}{2}$. If $k=2(\bmod 3), f_{1}(z, y)$ can attain the minimum value only at $\left(\frac{k-2}{3}, \frac{k+1}{3}\right)$. So $\min \left\{f_{1}(z, y)\right\}=$ $f_{1}\left(\frac{k-2}{3}, \frac{k+1}{3}\right)=\frac{3 b+1}{2}$.

Figure 5. The feasible zone of g_{1} for Case 2.

Thus, for $k<b$ and $y \leq b-k$, we have

$$
\min \left\{\kappa\left(S_{x, y, z}\right)\right\}=\left\lfloor\min \left\{f_{1}(z, y)\right\}\right\rfloor= \begin{cases}2 k & \text { if } k \geq \frac{3 b}{4} \\ \left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k<\frac{3 b}{4} \text { and } k=0(\bmod 3) \\ \left\lfloor\frac{3 b+1}{2}\right\rfloor & \text { if } k<\frac{3 b}{4} \text { and } k \neq 0(\bmod 3)\end{cases}
$$

Similarly, we can get the next result.
Lemma 3.14 For $k<b$ and $y \geq b-k$, we have

$$
\min \left\{\kappa\left(S_{x, y, z}\right)\right\}= \begin{cases}3 b-2 k & \text { if } k \leq \frac{3 b}{4} ; \\ \left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k>\frac{3 b}{4} \text { and } k=0(\bmod 3) ; \\ \left\lfloor\frac{3 b k+3 b-k+1}{2 k+1}\right\rfloor & \text { if } k>\frac{3 b}{4} \text { and } k=1(\bmod 3) ; \\ \left\lfloor\frac{3 b+1}{2}\right\rfloor & \text { if } k>\frac{3 b}{4} \text { and } k=2(\bmod 3) .\end{cases}
$$

Combine Lemma 3.13 and Lemma 3.14, we can get the following result.
Lemma 3.15 When $k<b$,

$$
\kappa_{k}\left(K_{b}^{3}\right)= \begin{cases}\left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k=0(\bmod 3) ; \\ \left\lfloor\frac{3 b k+3 b-k+1}{2 k+1}\right\rfloor & \text { if } k>\frac{3 b}{4} \text { and } k=1(\bmod 3) \\ \left\lfloor\frac{3 b+1}{2}\right\rfloor & \text { otherwise }\end{cases}
$$

Finally, we will calculate $\kappa_{k}\left(K_{b}^{3}\right)$ for $b \leq k<\frac{3 b}{2}$. First, we will calculate $\kappa\left(S_{x, y, z}\right)$. Notice that it suffices to calculate $\kappa\left(S_{x, y, z}\right)$ such that $x(b-x)+y(b-y)+z(b-z)>x y+y z+z x$. Namely, at least one of $x(b-x)>x y, y(b-y)>y z$ and $z(b-z)>z x$ must hold. Since $b-x>y$ and $b-z>x$ both imply that $b-z>y, b-z>y$ must hold and this will be used later.

Lemma 3.16 If $b \leq k<\frac{3 b}{2}$, then $\kappa\left(S_{x, y, z}\right)=2 b-z-y+\left\lfloor\frac{(k-b) z+y^{2}}{k-z}\right\rfloor$.
Proof. The way we find trees is similar to that in the case $k<b$. Since $b \leq k=x+y+z$, $b-z \leq x+y$ and we can find $b-z$ trees in \mathcal{T}^{W} and run out of all vertices in $W \backslash S_{x, y, z}$. Then we find $x-y$ trees in \mathcal{T}^{V} and there are $b-x$ unused vertices left in both $U \backslash S_{x, y, z}$ and $V \backslash S_{x, y, z}$. Now we have used altogether $(b-z) z+(x-y) y$ edges in $E\left(G\left[S_{x, y, z}\right]\right)$ and left $x y+y z+z x-(b-z) z-(x-y) y=y z+z x+z^{2}+y^{2}-b z$ edges unused. So we can find $\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor$ trees in \mathcal{T}^{U} and $\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor$ trees in \mathcal{T}^{V}. Finally, there remain $b-x-\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor$ pairs of vertices unused, and so we can find $b-x-\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor$ trees in $\mathcal{T}^{U, V}$. Thus,

$$
\begin{aligned}
& \kappa\left(S_{x, y, z}\right) \\
= & b-z+x-y+2\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor+b-x-\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor \\
= & 2 b-z-y+\left\lfloor\frac{y z+z x+z^{2}+y^{2}-b z}{x+y}\right\rfloor \\
= & 2 b-z-y+\left\lfloor\frac{(k-b) z+y^{2}}{k-z}\right\rfloor .
\end{aligned}
$$

Similar to Lemmas 3.10 3.13, 3.14 and 3.15, we can get the next results.

Lemma 3.17 For $b \leq k<\frac{3 b}{2}$, we have

$$
\min \left\{\kappa\left(S_{x, y, z}\right)\right\}= \begin{cases}\left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k=0(\bmod 3) ; \\ \left\lfloor\frac{b b k+3 b-k+1}{2 k+1}\right\rfloor & \text { if } k=1(\bmod 3) ; \\ \left\lfloor\frac{3 b k+6-2 k+1}{2 k+2}\right\rfloor & \text { if } k=2(\bmod 3) .\end{cases}
$$

Lemma 3.18 When $b \leq k<\frac{3 b}{2}$, we have

$$
\kappa_{k}\left(K_{b}^{3}\right)= \begin{cases}\left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k=0(\bmod 3) ; \\ \left\lfloor\frac{3 b k+3 b-k+1}{22+1}\right\rfloor & \text { if } k=1(\bmod 3) ; \\ \left\lfloor\frac{3 b+6 b-2 k+1}{2 k+2}\right\rfloor & \text { if } k=2(\bmod 3) .\end{cases}
$$

Now we can give our main result.
Theorem 3.1 Given any positive integer $b \geq 2$, let K_{b}^{3} denote a complete 3-partite graph in which every part contains exactly b vertices. Then we have

$$
\kappa_{k}\left(K_{b}^{3}\right)= \begin{cases}\left\lfloor\frac{\left\lfloor\frac{k^{2}}{3}\right\rfloor+k^{2}-2 k b}{2(k-1)}\right\rfloor+3 b-k & \text { if } k \geq \frac{3 b}{2} ; \\ \left\lfloor\frac{3 b}{2}\right\rfloor & \text { if } k<\frac{3 b}{2} \text { and } k=0(\bmod 3) ; \\ \left\lfloor\frac{3 k+3 b-k+1}{2 k+1}\right\rfloor & \text { if } \frac{3 b}{4}<k<\frac{3 b}{2} \text { and } k=1(\bmod 3) ; \\ \left\lfloor\frac{3 k+6 b-2 k+1}{2 k+2}\right\rfloor & \text { if } b \leq k<\frac{3 b}{2} \text { and } k=2(\bmod 3) ; \\ \left\lfloor\frac{3 b+1}{2}\right\rfloor & \text { otherwise. }\end{cases}
$$

Proof. The result follows directly from Lemmas 3.10, 3.15 and 3.18.
Remark: Note that

$$
\begin{aligned}
& \left\lfloor\frac{3 b}{2}\right\rfloor \leq\left\lfloor\frac{3 b k+3 b-k+1}{2 k+1}\right\rfloor \leq\left\lfloor\frac{3 b+1}{2}\right\rfloor, \\
& \left\lfloor\frac{3 b}{2}\right\rfloor \leq\left\lfloor\frac{3 b k+6 b-2 k+1}{2 k+2}\right\rfloor \leq\left\lfloor\frac{3 b+1}{2}\right\rfloor,
\end{aligned}
$$

and

$$
\left\lfloor\frac{3 b+1}{2}\right\rfloor-\left\lfloor\frac{3 b}{2}\right\rfloor \leq 1 .
$$

Also, note that when $k=\frac{3 b}{2}, \kappa_{k}\left(K_{b}^{3}\right)=\left\lfloor\frac{3 b}{2}\right\rfloor$. So, when $k \leq \frac{3 b}{2}$, the k-connectivity of K_{b}^{3} is almost the same. But $\kappa_{k}\left(K_{b}^{3}\right)$ is neither increasing nor decreasing on k.
Acknowledgement: The authors would like to thank the reviewers for their useful comments and suggestions which helped to shorten the paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] Reinhard Diestel, Graph Theory, 3rd ed, GTM 173, Springer, 2008.
[3] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
[4] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10(1927), 95-115.
[5] C.St.J.A.Nash-Williams, Edge disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36(1961), 445-450.
[6] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36(1961), 221-230.
[7] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
[8] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147-2163.
[9] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150-168.
[10] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optimization. 24(2012), 389-396.
[11] H. Li, X. Li, Y. Sun, The generalized 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012).
[12] S. Li, X. Li, Y. Shi, The minimal size of a graph with generalized connectivity $\kappa_{3}=2$, Australasian J. Combin. 51(2011).
[13] E. Palmer, On the spanning tree packing number of a graph: a survey, Discrete Math. 230(2001), 13-21.
[14] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104(2012), 65-79.
[15] X. Li, Y. Sun, On the strong rainbow connection of a graph, Bull. Malays. Math. Sci. Soc. (2), accepted.

