
The generalized connectivity of

complete equipartition 3-partite graphs

Shasha Li, Wei Li, Xueliang Li
Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, China.
Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with 2 ≤ k ≤ n.
For a set S of k vertices of G, let κ(S) denote the maximum number ` of edge-disjoint trees
T1, T2, . . . , T` in G such that V (Ti) ∩ V (Tj) = S for every pair of distinct integers i, j with
1 ≤ i, j ≤ `. Chartrand et al. generalized the concept of connectivity as follows: The k-
connectivity of G, denoted by κk(G), is defined by κk(G) =min{κ(S)}, where the minimum
is taken over all k-subsets S of V (G). Thus κ2(G) = κ(G), where κ(G) is the connectivity of
G; whereas, κn(G) is the maximum number of edge-disjoint spanning trees contained in G.

This paper mainly focuses on the k-connectivity of complete equipartition 3-partite
graphs K3

b , where b ≥ 2 is an integer. First, we obtain the number of edge-disjoint spanning
trees of a general complete 3-partite graph Kx,y,z, which is bxy+yz+zx

x+y+z−1 c. Then, based on this
result, we get the k-connectivity of K3

b for all 3 ≤ k ≤ 3b. Namely,

κk(K3
b) =

b d k2
3 e+k2−2kb

2(k−1) c+ 3b− k if k ≥ 3b
2 ;

b 3b
2 c if k < 3b

2 and k = 0 (mod 3);
b 3bk+3b−k+1

2k+1 c if 3b
4 < k < 3b

2 and k = 1 (mod 3);
b 3bk+6b−2k+1

2k+2 c if b ≤ k < 3b
2 and k = 2 (mod 3);

b 3b+1
2 c otherwise.

Keywords: k-connectivity, complete equipartition 3-partite graph, internally disjoint trees.

AMS subject classification 2010: 05C40, 05C05.

1 Introduction

We follow the book [1] for all graph theoretical notation and terminology not defined here.

There is an equivalent definition of the connectivity κ(G) of a graph G provided by a well-
known theorem of Whitney [9]. For each 2-subset S = {u, v} of the vertex set V (G), let κ(S)
denote the maximum number of internally disjoint uv-paths in G. Then κ(G) = min{κ(S)},
where the minimum is taken over all 2-subsets S of V (G). In [3], the authors generalized this
definition and proposed the concept of generalized connectivity.

Let G be a nontrivial connected graph of order n, and k an integer with 2 ≤ k ≤ n. For a set
S of k vertices of G, let κ(S) denote the maximum number ` of edge-disjoint trees T1, T2, . . . , T`

in G such that V (Ti) ∩ V (Tj) = S for every pair of distinct integers i, j with 1 ≤ i, j ≤ ` (note
that the trees are vertex-disjoint in G\S). A collection {T1, T2, . . . , T`} of trees in G with this

1

property is called a set of internally disjoint trees connecting S. The generalized k-connectivity of
G, abbreviated as k-connectivity of G, denoted by κk(G), is then defined as κk(G) = min{κ(S)},
where the minimum is taken over all k-subsets S of V (G).

From a theoretical perspective, both extremes of κk are fundamental concepts in graph
theory. κ2(G) = κ(G) is the connectivity of G, and κn(G) is the maximum number of edge-
disjoint spanning trees contained in G. The concept of edge-disjoint spanning trees is another
subject we studied. To motivate the edge-disjoint spanning trees problem, assume that our
graph represents a communication network, and that for every choice of two vertices we want
to be able to find k edge-disjoint paths between them. Menger’s theorem [4] tells us that such
paths exist as soon as our graph is k-edge-connected, which is clearly also necessary. But the
theorem does not tell us how to find those paths; in particular, having found them for one pair
of endvertices we are not necessarily better placed to find them for another pair. However, if
our graph has k edge-disjoint spanning trees, there will always be k such paths, one in each tree.
Once we have stored those trees in our computer, we shall always be able to find the k paths
quickly, for any given pair of endvertices. For edge-disjoint spanning trees of a finite graph G,
Nash-Williams and Tutte proved the following theorem independently:

Theorem 1.1 (Nash-Williams [5], Tutte [6]) A multigraph contains k edge-disjoint spanning
trees if and only if for every partition P of its vertex set it has at least k(|P | − 1) cross-edges.

As a consequence of this theorem, Corollary 1.2 gives a sufficient condition for the existence of
k edge-disjoint spanning trees.

Corollary 1.2 (Diestel [2]) Every 2k-edge-connected multigraph G has k edge-disjoint spanning
trees.

According to this corollary, Kriesell conjectured a more general statement: Defining a set S ⊆
V (G) to be j-edge-connected in G if S lies in a single component of any graph obtained by
deleting fewer than j edges from G, he conjectured that if S is 2k-edge-connected in G, then
G has k edge-disjoint trees containing S. For more details about the spanning tree packing
problem, see [13].

From a practical perspective, generalized connectivity can measure the reliability and security
of a network. Here is an example. Imagine that a given graph represents a communication
network. Suppose that k vertices of the graph are users and other vertices are switchers. The
users hope that they can communicate on as many frequencies as possible, so that they can
communicate with each other in secrecy even if some of the frequencies are subject to interference
or eavesdropping. Users can communicate via a tree connecting all users on each frequency. To
avoid interference, each edge can carry only one frequency. And in order to ensure secrecy, each
switcher can switch only one frequency. So in essence we need to find the maximum number
of internally disjoint trees connecting all users. In a communication network, any k nodes may
become users and other nodes become switchers. Thus the reliability and security of a network
can be measured by its generalized connectivity.

Since Chartrand et al. introduced the concept of generalized connectivity in 1984 [3], there
have been only few results about it until they calculated κk(Kn) for every pair of integers k, n
with 2 ≤ k ≤ n in 2010 in [7]. Since then, more and more mathematicians begin to study the
generalized connectivity and get some progress. In [8] the authors gave the sharp bounds of the
generalized 3-connectivity κ3(G). They also studied the bounds of κ3(G) for planar graphs. In
[14] we calculated κk(Ka,b) for any two integers a, b with 1 ≤ a ≤ b and 2 ≤ k ≤ a+ b. In [8] and

2

[10] the authors studied the computational complexity of the generalized connectivity of graphs.
In [11] the authors studied the generalized 3-connectivity of Cartesian product graphs. In [12]
the authors studied the minimal size among graphs with the generalized 3-connectivity κ3 = 2.

A complete equipartition 3-partite graph is a complete 3-partite graph in which every part
contains exactly b vertices for some integer b. We denote this graph by K3

b . Actually, all vertices
in the same part of K3

b are equivalent. So instead of considering all k-subsets S of V (K3
b), we

can restrict our attention to the k-subsets Sx,y,z = {u1, u2, . . . , ux, v1, v2, . . . , vy, w1, w2, . . . , wz}
for 0 ≤ x, y, z ≤ k with x + y + z = k. Moreover, since the three parts U , V and W have the
same order, Sx,y,z and Sα,β,γ are equivalent, where α, β, γ is any permutation of x, y, z. So we
can assume that b ≥ x ≥ y ≥ z ≥ 0. If z = 0, obviously min{κ(Sx,y,0)} = b + κk(Kb,b). So
we will restrict our attention to the case that b ≥ x ≥ y ≥ z > 0. For convenience, we denote
Ux = {u1, u2, . . . , ux}, Vy = {v1, v2, . . . , vy} and Wz = {w1, w2, . . . , wz}.

In the next two sections, we will give the number of edge-disjoint spanning trees in a complete
3-partite graph Kx,y,z and get the k-connectivity of K3

b for all 3 ≤ k ≤ 3b, respectively.

2 The number of edge-disjoint spanning trees of a complete 3-
partite graph

Before we give the number of edge-disjoint spanning trees of a general complete 3-partite graph
Kx,y,z, we will introduce a method to find b ab

a+b−1c edge-disjoint spanning trees of a complete
bipartite graph Ka,b quickly and conveniently. Without loss of generality, we can assume that
a ≤ b.

The List Method

Step 1. Calculate t = b ab
a+b−1c.

Step 2. Assign appropriate values to dj for 1 ≤ j ≤ a. The method of assigning appropriate
values to dj was introduced in [14]. Generally speaking, consider the numbers 1, t + 1, 2t +
1, . . . , (a− 1)t + 1, where addition is performed modulo a. If 1, t + 1, 2t + 1, . . . , (a− 1)t + 1 are
pairwise distinct, we can assign the values to dj as follows: Let a + b − 1 = ka + c, where k, c
are integers, and 0 ≤ c ≤ a − 1. Then a + b − 1 = (k + 1)c + k(a − c). If c = 0, let dj = k
for all 1 ≤ j ≤ a. If c > 0, let d(i−1)t+1 = k + 1 for all 1 ≤ i ≤ c, and let the other dj = k.
If some of the numbers 1, t + 1, 2t + 1, . . . , (a − 1)t + 1 are equal, we can order 1, 2, . . . , a by
1, t + 1, 2t + 1, . . . , (j− 1)t + 1, 2, t + 2, 2t + 2, . . . , (j− 1)t + 2, . . . , s, t + s, 2t + s, . . . , (j− 1)t + s.
Then we can assign the values of dj as follows: Let a + b− 1 = ka + c, where k, c are integers,
and 0 ≤ c ≤ a− 1. Then a + b− 1 = (k + 1)c + k(a− c). In the case that c = 0, let dj = k for
all 1 ≤ j ≤ a. In the case that c > 0 for the first c numbers of our ordering, if dj uses one of
them as subscript, then dj = k + 1; else dj = k.

Step 3. Form a list with row headings of u1, . . . , ua and column headings of v1, . . . , vb.
Denote the entry in row ui and column vj by ai,j .

Step 4. According to the assignment of dj for 1 ≤ j ≤ a, mark the edges of the first spanning
tree by 1 in the list. Namely, for every row ui with 1 ≤ i ≤ a, put ai,d1+d2+···+di−1−(i−2) = · · · =
ai,d1+d2+···+di−(i−1) = 1.

Step 5. For every row ui with 1 ≤ i ≤ a, mark the entry next to the last 1, namely
ai,d1+d2+···+di−(i−2), by 2. For every row ui with 1 ≤ i ≤ a− 1, mark the entry just above the 2
of row ui+1, namely ai,d1+d2+···+di+1−(i−1), by 2. For row ua, mark the entry in the same column
as the last 1 of row u1, namely aa,d1 , by 2. Finally, for every row ui with 1 ≤ i ≤ a, mark the

3

entries between the two 2 by 2. Thus the edges marked by 2 consist of a spanning tree T2.

Step 6. For ` with 3 ≤ ` ≤ t, we can find a spanning tree T` similarly. For every row ui with
1 ≤ i ≤ a, mark the entry next to the last `− 1 by `. For every row ui with 1 ≤ i ≤ a− 1, mark
the entry just above the ` of row ui+1 by `. For row ua, mark the entry in the same column as
the last `− 1 of row u1 by `. Finally, for every row ui with 1 ≤ i ≤ a, mark the entries between
the two ` by `. Thus the edges marked by ` consist of a spanning tree T`.

Finally, we find all b ab
a+b−1c edge-disjoint spanning trees.

If ` is less than t = b ab
a+b−1c, similarly we can use this method to find ` edge-disjoint spanning

trees of Ka,b such that for every pair of vertices ui and uj with 1 ≤ i, j ≤ a, the difference between
the number of unused edges incident with ui and the number of unused edges incident with uj

is at most 1. For every pair of vertices vi and vj with 1 ≤ i, j ≤ b, we also can use this method
to find ` edge-disjoint spanning trees of Ka,b such that the difference between the number of
unused edges incident with vi and the number of unused edges incident with vj is at most 1.
Just replace t = b ab

a+b−1c by `.

With this method, we can prove the next theorem.

Theorem 2.1 For a complete 3-partite graph Kx,y,z, we have

κx+y+z(Kx,y,z) = bxy + yz + zx

x + y + z − 1
c.

Proof. Let U = {u1, . . . , ux}, V = {v1, . . . , vy} and W = {w1, . . . , wz} be the three parts of
Kx,y,z. Without loss of generality, we may assume that z ≤ y ≤ x. Since Kx,y,z contains
xy + yz + zx edges and a spanning tree needs x + y + z − 1 edges, the number of edge-disjoint
spanning trees of Kx,y,z is at most bxy+yz+zx

x+y+z−1 c, namely, κx+y+z(Kx,y,z) ≤ bxy+yz+zx
x+y+z−1 c. Thus, it

suffices to prove that κx+y+z(Kx,y,z) ≥ bxy+yz+zx
x+y+z−1 c. To this end, we want to find out all the

bxy+yz+zx
x+y+z−1 c edge-disjoint spanning trees. In other words, we will prove that after we have found

some edge-disjoint spanning trees of Kx,y,z, the number of unused edges is at most x+y + z−2,
namely they are not enough to form a spanning tree.

Firstly, consider the complete bipartite graph Ky,x, which is a subgraph of Kx,y,z. We can
use The List Method to find b yx

y+x−1c edge-disjoint spanning trees of Ky,x, and leave at most
y + x − 2 unused edges. If we connect each wi to some spanning tree of Ky,x, we can get a
spanning tree of Kx,y,z. So we can get b yx

y+x−1c edge-disjoint spanning trees of Kx,y,z as long as
we guarantee that the edges which we used to connect wi are all distinct. So we can first use The

List Method to find t = b z(y+x)−z(b yx
y+x−1

c)
z+y+x−1 c spanning trees of Kz,y+x. Now, since for every pair of

vertices wi and wj with 1 ≤ i, j ≤ z, the difference between the number of unused edges incident
with wi and the number of unused edges incident with wj is at most 1, every wi is incident with
at least b yx

y+x−1c unused edges. So we can indeed find b yx
y+x−1c edge-disjoint spanning trees of

Kx,y,z. Now the number of unused edges is at most y + x− 2 + z + y + x− 2 < 2(z + y + x− 1).
If it is less than z + y + x − 1, we are done. If it is at least z + y + x − 1, we need to find one
more spanning tree using the rest unused edges.

Let R be the set of the rest unused edges. If G = (V, R) is connected, we are done. If there
are at least two components in G = (V, R), there must be a component containing a cycle. Since
|R| ≥ z + y + x − 1 and the number of unused edges in Ky,x is at most y + x − 2, the number
of unused edges in Kz,y+x is at least z + 1. According to The List Method, each wi has almost
the same number of unused edges. So each wi has degree at least 1 in G. Again, according to
The List Method, the unused edges in Ky,x can not form a cycle, neither can the unused edges

4

in Kz,y+x. So the component containing a cycle must contain some unused edges both in Ky,x

and in Kz,y+x. And the cycle must be one of the two cases shown in Figure 1. In case 1, wiuj

and ujvk are edges and wivk is a path. In case 2, wivk and ujvk are edges and wiuj is a path.
Now consider another component. Without loss of generality, we can assume that it contains
a vertex uq. If the cycle is the first case, we can exchange the signs of column uj and column
uq in the list of Kz,y+x, but keep the list of Ky,x unchanged. Namely, for every vertex wi with
1 ≤ i ≤ z, which is adjacent to exactly one of uj and uq originally, say uj , now wi is adjacent
to uq, the other one of the two vertices. But the other adjacency relations are kept unchanged.
Similarly, if the cycle is the second case, we can exchange the signs of column vk and column
uq in the list of Kz,y+x, but keep the list of Ky,x unchanged. Now with the new list, we have
the edges wiuq, ujvk. Since uq and uj(vk) can not appear in the original path wivk(wiuj), the
path still exists and keeps unchanged. Then the two components become one, but the other
components remain the same as before. So the total number of components is reduced by 1.
Repeating the procedure, we can finally make G connected and find out a spanning tree of G.
Now the number of rest unused edges is less than z + y + x − 1. So we have already found
bxy+yz+zx

x+y+z−1 c edge-disjoint spanning trees of Kx,y,z, and hence, κx+y+z(Kx,y,z) ≥ bxy+yz+zx
x+y+z−1 c. So

we have proved that κx+y+z(Kx,y,z) = bxy+yz+zx
x+y+z−1 c.

wi

uj vk

wi

uj vk
case 1 case 2

Figure 1. The component containing a cycle.

3 The k-connectivity of a complete equipartition 3-partite graph

For simplicity, denote K3
b by G. Now, let A0 be the set of trees connecting Sx,y,z whose vertex

set is Sx,y,z, let A1 be the set of trees connecting Sx,y,z whose vertex set is Sx,y,z ∪ {u}, where
u /∈ Sx,y,z, and let A2 be the set of trees connecting Sx,y,z whose vertex set is Sx,y,z ∪ {u, v},
where u, v /∈ Sx,y,z and they belong to distinct parts.

Lemma 3.1 Let A be a maximum set of internally disjoint trees connecting Sx,y,z. Then we
can always find a set A′ of internally disjoint trees connecting Sx,y,z, such that | A |=| A′ | and
A′ ⊂ A0 ∪ A1 ∪ A2.

Proof. Let A = {T1, T2, . . . , Tp}. If for some tree Tj in A, Tj /∈ A0 ∪ A1 ∪ A2, then let V (Tj) =
Sx,y,z ∪ U ′ ∪ V ′ ∪ W ′, where (U ′ ∪ V ′ ∪ W ′) ∩ Sx,y,z = ∅, U ′ ⊆ U , V ′ ⊆ V and W ′ ⊆ W . At
most two of U ′, V ′ and W ′ can be empty. If at least two of them are nonempty, say U ′, V ′,
let u′ ∈ U ′ and v′ ∈ V ′. The tree T ′j with vertex set V (T ′j) = Sx,y,z ∪ {u′, v′} and edge set
E(T ′j) = {u′w1, . . . , u

′wz, u
′v1, . . . , u

′vy, v
′u1, . . . , v

′ux, u′v′} is a tree in A0 ∪A1 ∪A2 (See Figure
2). Since V (Tj) ∩ V (Ti) = Sx,y,z and E(Tj) ∩ E(Ti) = ∅ for every tree Ti ∈ A, where i 6= j,
Ti does not contain u′, v′ nor the edges incident with u′, v′. Therefore, V (T ′j) ∩ V (Ti) = Sx,y,z

and E(T ′j) ∩ E(Ti) = ∅ for 1 ≤ i ≤ p, i 6= j. If exactly one of U ′, V ′ and W ′ is nonempty,

5

say U ′, let U ′ = {u′1, u′2, . . . , u′q}. Then we delete u′2, . . . , u
′
q. It may produce some connected

components. For each component which does not contain u′1, there must be an edge connecting
one of u′2, . . . , u

′
q with it originally. Thus each component which does not contain u′1 must

contain a vertex in V ∪W . Find such a vertex and connect it with u′1 by an edge. Obviously,
the new graph we obtain is a tree T ′j ∈ A0 ∪ A1 ∪ A2 that connects Sx,y,z (See Figure 3).
For every tree Ti ∈ A, where i 6= j, Ti does not contain u′1 nor the edges incident with u′1.
Therefore, V (T ′j) ∩ V (Ti) = Sx,y,z and E(T ′j) ∩ E(Ti) = ∅ for 1 ≤ i ≤ p, i 6= j. Replacing each
Tj /∈ A0 ∪A1 ∪A2 by T ′j , we finally get the set A′ ⊂ A0 ∪A1 ∪A2 which has the same cardinality
as A.

· · ·

· · ·

· · ·

u1 u2 ux u
′

u
′′

v1 v2 vy v
′

w1
w2 wz w

′

· · ·

· · ·

· · ·

u1 u2 ux u
′

v1 v2 vy v
′

w1 w2 wz

Figure 2. If U ′ and V ′ are not empty.

· · ·

· · ·

· · ·

u1 u2 ux u
′

1
u
′

2
u
′

q

v1 v2

vy

w1 w2 wz

· · ·

· · ·

· · ·

u1 u2 ux u
′

1

v1 v2 vy

w1 w2 wz

Figure 3. If only U ′ is nonempty.

So, we can assume that the maximum set A of internally disjoint trees connecting Sx,y,z is
contained in A0 ∪ A1 ∪ A2. Next, we will define the standard structure of trees in A0, A1 and
A2, respectively.

Every tree in A0 is of standard structure. A tree T in A1 with vertex set V (T) = Sx,y,z∪{u},
where u ∈ U \Sx,y,z, is of standard structure if u is adjacent to every vertex in Sx,y,z ∩ (V ∪W).
Since |E(T)| = |V (T)| − 1 = k and dT (u) = |Sx,y,z ∩ (V ∪ W)| = k − x, there are x edges
incident with Sx,y,z ∩ U . We know that |Sx,y,z ∩ U | = x and each vertex must have degree
at least 1 in T . So every vertex in Sx,y,z ∩ U has degree 1. A tree T in A1 with vertex set
V (T) = Sx,y,z ∪{v}, where v ∈ V \Sx,y,z, is of standard structure if v is adjacent to every vertex
in Sx,y,z ∩ (U ∪W). Similarly, every vertex in Sx,y,z ∩V has degree 1. A tree T in A1 with vertex
set V (T) = Sx,y,z ∪ {w}, where w ∈ W \ Sx,y,z, is of standard structure if w is adjacent to every
vertex in Sx,y,z ∩ (U ∪V). Similarly, every vertex in Sx,y,z ∩W has degree 1. A tree T in A2 with

6

vertex set V (T) = Sx,y,z ∪ {u, v}, where u /∈ Sx,y,z, v /∈ Sx,y,z and u, v belong to distinct parts,
is of standard structure if u is adjacent to v and every vertex in Sx,y,z is adjacent to exactly one
of u, v. We then denote the set of trees in A0, A1 and A2 with the standard structure by A0,
A1 and A2, respectively. Clearly, A0 = A0.

Lemma 3.2 Let A be a maximum set of internally disjoint trees connecting Sx,y,z, A ⊂ A0 ∪
A1 ∪ A2. Then we can always find a set A′′ of internally disjoint trees connecting Sx,y,z, such
that | A |=| A′′ | and A′′ ⊂ A0 ∪ A1 ∪ A2.

Proof. Let A = {T1, T2, . . . , Tp}. Suppose that there is a tree Tj in A such that Tj ∈ A1, but
Tj /∈ A1. Let V (Tj) = Sx,y,z ∪ {u}, where u ∈ U \ Sx,y,z. Note that the case u ∈ V \ Sx,y,z and
the case u ∈ W \ Sx,y,z are similar. Since Tj /∈ A1, there are some vertices in Sx,y,z ∩ (V ∪W),
say v′1, . . . , v

′
s, w

′
1, . . . , w

′
t, not adjacent to u. Then we can connect v′1 to u by a new edge. It will

produce a unique cycle. Delete the other edge incident with v′1 on the cycle. The graph remains
a tree. Do the same operation on v′2, . . . , v

′
s, w

′
1, . . . , w

′
t in turn. Finally we get a tree T ′j whose

vertex set is Sx,y,z ∪ {u} and u is adjacent to every vertex in Sx,y,z ∩ (V ∪W), that is, T ′j is of
standard structure. For each tree Tr ∈ A \ {Tj}, clearly Tr does not contain u nor the edges
incident with u. So V (T ′j)∩ V (Tr) = Sx,y,z and E(T ′j)∩E(Tr) = ∅. Suppose that there is a tree
Tj in A such that Tj ∈ A2, but Tj /∈ A2. Let V (Tj) = Sx,y,z∪{u, v}, where u, v /∈ Sx,y,z and they
belong to distinct parts. Without loss of generality, suppose that u ∈ U \Sx,y,z and v ∈ V \Sx,y,z.
If u and v are not adjacent, connect u and v by the edge uv. It will produce a unique cycle.
Delete the other edge incident with u on the cycle. Then for every vertex w ∈ Sx,y,z, if w is
adjacent to neither u nor v, connect w with an edge to one of them which is in the different
part from w. It will produce a unique cycle. Delete the other edge incident with w on the cycle.
The graph remains a tree, denoted by T ′j . By our operation, T ′j is a tree in A2. For each tree
Tr ∈ A\{Tj}, V (T ′j)∩V (Tr) = Sx,y,z and E(T ′j)∩E(Tr) = ∅. Replacing each Tj /∈ A0∪A1∪A2

by T ′j , we finally get the set A′′ ⊂ A0 ∪ A1 ∪ A2 which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting Sx,y,z is
contained in A0 ∪ A1 ∪ A2. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by V (A) and the
union of the edge sets of all trees in set A by E(A). Let A0 := A ∩ A0, A1 := A ∩ A1 and
A2 := A ∩ A2. Then A = A0 ∪A1 ∪A2.

Lemma 3.3 Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees connecting
Sx,y,z. Then at most one of U \ V (A), V \ V (A) and W \ V (A) is nonempty.

Proof. If at least two of U \ V (A), V \ V (A) and W \ V (A) are nonempty, without loss of
generality, let u ∈ U \ V (A) and v ∈ V \ V (A). Then the tree T ′ ∈ A2 with vertex set
V (T ′) = Sx,y,z ∪ {u, v} and edge set E(T ′) = {u1v, . . . , uxv, v1u, . . . , vyu,w1u, . . . , wzu, uv} is a
tree that connects Sx,y,z. Moreover, V (T ′)∩V (A) = Sx,y,z and since all edges of T ′ are incident
with u or v, T ′ and T are edge-disjoint for any tree T ∈ A. So, A∪{T ′} is also a set of internally
disjoint trees connecting Sx,y,z, contradicting to the maximality of A.

Lemma 3.4 Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees connecting
Sx,y,z, and A = A0 ∪ A1 ∪ A2. If V (A) 6= V (G) and A0 6= ∅, then we can find a maximum
set A′ = A′0 ∪ A′1 ∪ A′2 of internally disjoint trees connecting Sx,y,z, such that |A′0| = |A0| − 1,
|A′1| = |A1|+ 1, and A′2 = A2.

7

Proof. Let u ∈ V (G) \ V (A) and T ∈ A0. Without loss of generality, suppose u ∈ U . Then
we can add the edge uv1 to T and get a tree T ′ ∈ A1. Using the method in Lemma 3.2, we
can transform T ′ into a tree T ′′ of standard structure. Then T ′′ ∈ A1. Since for Tj ∈ A \ {T},
Tj does not contain u nor the edges incident with u and E(Tj) ∩ E(T) = ∅, T ′′ and Tj are
edge-disjoint, and V (T ′′)∩ V (Tj) = Sx,y,z . Let A′0 := A0 \ {T}, A′1 := A1 ∪ {T ′′} and A′2 = A2.
It is easy to see that A′ = A′0 ∪ A′1 ∪ A′2 is a set of internally disjoint trees connecting Sx,y,z.
Since |A′0| = |A0| − 1, |A′1| = |A1|+ 1, and A′2 = A2, A′ is a maximum set of internally disjoint
trees connecting Sx,y,z we want to find.

So, we can assume that for the maximum set A of internally disjoint trees connecting Sx,y,z,
either V (A) = V (G) or A0 = ∅. Moreover, if A′ is a set of internally disjoint trees connecting
Sx,y,z which we find currently, V (A′) 6= V (G) and the edges in E(G[Sx,y,z]) \ E(A′) can form a
tree T in A0, then by Lemma 3.4 we will add to A′ a tree T ′′ ∈ A1 rather than a tree T ∈ A0

to form a larger set of internally disjoint trees connecting Sx,y,z. In a similar way, we can prove
the following lemma.

Lemma 3.5 Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees connecting
Sx,y,z, and A = A0∪A1∪A2. If V (A) 6= V (G), (V (G)\V (A)) ⊆ X and V (A1)\(Sx,y,z∪X) 6= ∅,
where X = U, V, or W , then we can find a maximum set A′ = A′0∪A′1∪A′2 of internally disjoint
trees connecting Sx,y,z, such that A′0 = A0, |A′1| = |A1| − 1, and |A′2| = |A2|+ 1.

Lemma 3.6 We can always find a maximum set A of internally disjoint trees connecting Sx,y,z,
such that V (A) = V (G).

Proof. Let A be the maximum set of internally disjoint trees connecting Sx,y,z we find. If
V (A) 6= V (G), by Lemmas 3.4 and 3.5, we can assume that A0 = ∅, (V (G) \ V (A)) ⊆ X and
(V (A1) \ Sx,y,z) ⊆ X, where X = U, V, or W . Since A0 = ∅, A1 6= ∅ by the maximality of A.

Case 1. X = U.

Since (V (G) \ V (A)) ⊆ U and (V (A1) \ Sx,y,z) ⊆ U , any vertex v ∈ (V ∪W) \ Sx,y,z is in
some tree T ∈ A2.

Claim: If there is a tree T ∈ A2 with vertex set Sx,y,z ∪ {v, w}, where v ∈ V \ Sx,y,z and
w ∈ W \ Sx,y,z, then |V (G) \ V (A)| = 1.

Proof. By contradiction, suppose that there are two vertices in V (G) \ V (A), say u′, u′′. Let
T1 and T2 be two trees in A2 with vertex sets Sx,y,z ∪ {v, u′} and Sx,y,z ∪ {u′′, w}, respectively.
Since for T ′ ∈ A \ {T}, T ′ does not contain u′, u′′, v, w nor the edges incident with them, Ti and
T ′ are edge-disjoint, and V (Ti) ∩ V (T ′) = Sx,y,z for i = 1, 2. Clearly, E(T1) ∩ E(T2) = ∅ and
V (T1)∩V (T2) = Sx,y,z. Let A′ = A\{T}∪{T1, T2}. It is easy to see that A′ is a set of internally
disjoint trees connecting Sx,y,z. But |A′| = |A|+ 1, contradicting to the maximality of A.

Since |W \ Sx,y,z| = b− z ≥ b− x = |U \ Sx,y,z| > |U \ V (A1)|, there must be a tree T ∈ A2

with vertex set Sx,y,z ∪ {v, w}, where v ∈ V \ Sx,y,z and w ∈ W \ Sx,y,z. So |V (G) \ V (A)| = 1.
Denote the vertex in V (G) \ V (A) by u′. Take a tree T1 ∈ A1 with vertex set Sx,y,z ∪ {u′′},
where u′′ ∈ U \ Sx,y,z. Let T2 and T3 be two trees in A2 with vertex sets Sx,y,z ∪ {v, u′} and
Sx,y,z ∪ {u′′, w}, respectively. Since for T ′ ∈ A \ {T, T1}, T ′ does not contain u′, u′′, v, w nor the
edges incident with them, Ti and T ′ are edge-disjoint, and V (Ti) ∩ V (T ′) = Sx,y,z for i = 2, 3.
Clearly, E(T3) ∩ E(T2) = ∅ and V (T3) ∩ V (T2) = Sx,y,z. Let A′ = A \ {T, T1} ∪ {T3, T2}. It is
easy to see that A′ is a set of internally disjoint trees connecting Sx,y,z. Since |A′| = |A|, A′ is a
maximum set of internally disjoint trees connecting Sx,y,z, such that V (A′) = V (G).

8

Case 2. X = V .

The proof is similar to that of Case 1.

Case 3. X = W .

In this case, since |W \ Sx,y,z| = b − z ≥ b − y ≥ b − x = |U \ Sx,y,z|, it seems that it is
possible that there is no tree T ∈ A2 with vertex set Sx,y,z ∪ {v, u}, where v ∈ V \ Sx,y,z and
u ∈ U \ Sx,y,z, and hence any vertex v ∈ (V ∪ U) \ Sx,y,z is in some tree T ∈ A2 with vertex
set Sx,y,z ∪ {v, w}, where w ∈ W \ V (A1). But actually this is impossible. This is because
it implies that b − x + b − y < b − z, namely, b + z < x + y. Since (V (A1) \ Sx,y,z) ⊆ W ,
|A1| = |V (A1) \Sx,y,z| < b− z < b+ z < x+ y and E(A)∩E(G[Ux ∪Vy]) = ∅. Now |A1| < x+ y
implies that for every vertex wi ∈ Sx,y,z, i = 1, . . . , z, there is at least one unused edge in
E(G[Sx,y,z]) incident with wi. These edges together with the edges in E(G[Ux ∪ Vy] will form
a tree in A0, which is internally disjoint with all trees in A, contradicting to the maximality of
A. So there must be a tree T ∈ A2 with vertex set Sx,y,z ∪ {v, u}, where v ∈ V \ Sx,y,z and
u ∈ U \ Sx,y,z. Similar to the proof of Case 1, we can transform A to A′, which is a maximum
set of internally disjoint trees connecting Sx,y,z, such that V (A′) = V (G).

So, we can assume that if A is a maximum set of internally disjoint trees connecting Sx,y,z,
then V (A) = V (G).

Lemma 3.7 Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees connecting
Sx,y,z, and A = A0 ∪ A1 ∪ A2. If A0 6= ∅ and A2 6= ∅, then we can find a maximum set
A′ = A′0 ∪ A′1 ∪ A′2 of internally disjoint trees connecting Sx,y,z, such that |A′0| = |A0| − 1,
|A′1| = |A1|+ 2, and |A′2| = |A2| − 1.

Proof. Let T be a tree in A2 with vertex set Sx,y,z∪{u, v}, where u ∈ U \Sx,y,z and v ∈ V \Sx,y,z.
Let T1 be a tree in A0. We want to transform T and T1 to two trees T2, T3 ∈ A1 with vertex
sets Sx,y,z ∪{u} and Sx,y,z ∪{v} respectively. In T2, every vertex in Ux must be incident with an
edge in E(T1). In T3, every vertex in Vy must be incident with an edge in E(T1). And all these
edges must be distinct. To do this, let the vertices in Wz be in Layer 0. Let the vertices having
distance i to Wz in T1 be in Layer i. Every vertex in Ux ∪ Vy is in some Layer i, 1 ≤ i ≤ k,
since T1 is connected. For each vertex u′ ∈ Ux ∪ Vy, assume that u′ is in Layer i. Take one edge
connecting u′ with some vertex in Layer i− 1. There must be such an edge by our construction.
According to our choices of edges, these edges are all distinct. So T2 and T3 are edge-disjoint
and V (T3) ∩ V (T2) = Sx,y,z. Since for T ′ ∈ A \ {T, T1}, T ′ does not contain u, v nor the edges
incident with them and T ′ does not contain the edges of T1, Ti and T ′ are edge-disjoint, and
V (Ti) ∩ V (T ′) = Sx,y,z for i = 2, 3. Let A′ = A \ {T, T1} ∪ {T3, T2}. It is easy to see that A′ is
a set of internally disjoint trees connecting Sx,y,z. Since |A′0| = |A0| − 1, |A′1| = |A1| + 2, and
|A′2| = |A2| − 1, |A′| = |A|. Thus A′ is a maximum set of internally disjoint trees connecting
Sx,y,z we want to find.

So, we can assume that if A is a maximum set of internally disjoint trees connecting Sx,y,z,
then either A0 or A2 is empty.

From the above lemmas, we can form our principle in finding the maximum set of internally
disjoint trees connecting Sx,y,z. First we find as many trees in A1 as possible. If V (A1) 6= V (G),
we then find as many trees in A2 as possible; else if V (A1) = V (G), we then find as many trees
in A0 as possible. So the final maximum set A of internally disjoint trees connecting Sx,y,z is of
the form A0∪A1 or A1∪A2. If A = A0∪A1, then every vertex v ∈ V (G) \Sx,y,z is contained in
some tree T ∈ A1 with vertex set Sx,y,z ∪ {v}. Since |V (G) \ Sx,y,z| = 3b− k, there are (3b− k)
trees in A1. So |A| ≥ 3b − k. If A = A1 ∪ A2, every tree in A must contain one vertex in

9

V (G) \ Sx,y,z and some trees may contain two such vertices. So |A| ≤ |V (G) \ Sx,y,z| = 3b− k.
Since κk(G) = min{κ(S)}, where the minimum is taken over all k-subsets S of V (G), for fixed
k, if there exists x = x1, y = y1 and z = z1 such that A = A1 ∪ A2, then we need not consider
other x = x2, y = y2 and z = z2 such that A = A0 ∪ A1. But for some k, A = A0 ∪ A1 holds
for any x, y, z such that x + y + z = k. Next we will give a necessary and sufficient condition to
A = A0 ∪A1.

Lemma 3.8 Let A be the final maximum set of internally disjoint trees connecting Sx,y,z we
find. Then A2 = ∅ if and only if x(b− x) + y(b− y) + z(b− z) ≤ xy + yz + zx.

Proof. If A2 = ∅, then every vertex v ∈ V (G) \ Sx,y,z is contained in some tree T ∈ A1

with vertex set Sx,y,z ∪ {v}. There are (b − x) trees in A1 with vertex set Sx,y,z ∪ {u}, where
u ∈ U \ Sx,y,z. We denote the trees by T U = {TU

1 , . . . , TU
b−x}. In TU

i , every vertex in Ux is
incident with an edge in E(G[Sx,y,z]) and these edges must be distinct. So TU

i contains x edges
in E(G[Sx,y,z]). TU

1 , . . . , TU
b−x contain altogether x(b−x) edges in E(G[Sx,y,z]). Similarly, There

are (b − y) trees in A1 with vertex set Sx,y,z ∪ {v}, where v ∈ V \ Sx,y,z. We denote the trees
by T V = {T V

1 , . . . , T V
b−y}. These trees contain altogether y(b − y) edges in E(G[Sx,y,z]). There

are (b− z) trees in A1 with vertex set Sx,y,z ∪ {w}, where w ∈ W \ Sx,y,z. We denote the trees
by T W = {TW

1 , . . . , TW
b−z}. These trees contain altogether z(b− z) edges in E(G[Sx,y,z]). Since

these trees are edge-disjoint, x(b− x) + y(b− y) + z(b− z) ≤ |E(G[Sx,y,z])| = xy + yz + zx.

If x(b − x) + y(b − y) + z(b − z) ≤ xy + yz + zx, we want to prove that A2 = ∅. Let
dS(v) denote the number of unused edges incident with vertex v in E(G[Sx,y,z]) currently. Let
dX,Y (v) denote the number of unused edges incident with vertex v in E(G[X ∪ Y]) currently,
where X, Y ∈ {Ux, Vy,Wz}. If we replace the vertex v by a set Q in above notation, then
dS(Q) =

∑
v∈Q dS(v), and other notation is similar. Then we can find (b−x) trees TU

1 , . . . , TU
b−x

with vertex set Sx,y,z ∪{u}, where u ∈ U \Sx,y,z if and only if for every vertex ui with 1 ≤ i ≤ x,
dS(ui) ≥ b − x, and we can find b − y trees T V

1 , . . . , T V
b−y with vertex set Sx,y,z ∪ {v}, where

v ∈ V \ Sx,y,z if and only if for every vertex vi with 1 ≤ i ≤ y, dS(vi) ≥ b− y, and we also can
find b− z trees TW

1 , . . . , TW
b−z with vertex set Sx,y,z ∪{w}, where w ∈ W \Sx,y,z if and only if for

every vertex wi with 1 ≤ i ≤ z, dS(wi) ≥ b−z. Since x(b−x)+y(b−y)+z(b−z) ≤ xy+yz+zx,
at least one of x(b − x) ≤ xy, y(b − y) ≤ yz and z(b − z) ≤ zx must hold. We distinct three
cases.

Case 1. y(b− y) ≤ yz.

Since y(b−y) ≤ yz, b−y ≤ z. So b ≤ y+z ≤ x+z ≤ x+y, and hence b−x ≤ y and b−z ≤ x
hold. Since dUx,Wz(wi) = x ≥ b−z, we can find b−z trees TW

1 , . . . , TW
b−z with vertex sets Sx,y,z∪

{wz+1}, Sx,y,z ∪ {wz+2}, . . . , Sx,y,z ∪ {wb}, respectively. Let the neighbors of w1 in TW
1 , . . . , TW

b−z

be u1, . . . , ub−z, respectively. Let the neighbors of w2 in TW
1 , . . . , TW

b−z be ub−z+1, . . . , u2(b−z)

respectively. Let the neighbors of wi in TW
1 , . . . , TW

b−z be u(i−1)(b−z)+1, . . . , ui(b−z), respectively,
and so on and so forth. Here and in what follows, the subscript j of uj ∈ Ux is expressed
modulo x as one of 1, 2, . . . , x. Now, since dVy ,Wz(vi) = z ≥ b − y, we can find b − y trees
T V

1 , . . . , T V
b−y with vertex sets Sx,y,z ∪ {vy+1}, Sx,y,z ∪ {vy+2}, . . . , Sx,y,z ∪ {vb}, respectively. Let

the neighbors of v1 in T V
1 , . . . , T V

b−y be w1, . . . , wb−y, respectively. Let the neighbors of v2 in
T V

1 , . . . , T V
b−y be wb−y+1, . . . , w2(b−y), respectively. Let the neighbors of vi in T V

1 , . . . , T V
b−y be

w(i−1)(b−y)+1, . . . , wi(b−y), respectively, and so on and so forth. Here and in what follows, the
subscript j of wj ∈ Wz is expressed modulo z as one of 1, 2, . . . , z. Now, since dUx,Vy(ui) = y ≥ b−
x, we can find b−x trees TU

1 , . . . , TU
b−x with vertex sets Sx,y,z∪{ux+1}, Sx,y,z∪{ux+2}, . . . , Sx,y,z∪

{ub}, respectively. Let the neighbors of u1 in TU
1 , . . . , TU

b−x be v1, . . . , vb−x, respectively. Let the

10

neighbors of u2 in TU
1 , . . . , TU

b−x be vb−x+1, . . . , v2(b−x), respectively. Let the neighbors of ui in
TU

1 , . . . , TU
b−x be v(i−1)(b−x)+1, . . . , vi(b−x), respectively, and so on and so forth. Here and in what

follows, the subscript j of vj ∈ Vy is expressed modulo y as one of 1, 2, . . . , y. Now we have
found 3b − k trees in A1, and thus every vertex in V (G) \ Sx,y,z is contained in a tree in A1.
Thus, V (A1) = V (G), and so A2 = ∅.

Case 2. y(b − y) > yz, z(b − z) ≤ zx, and Case 3. y(b − y) > yz, z(b − z) > zx and
x(b− x) ≤ xy can be dealt with similarly. The details are omitted.

Now we know that if x(b−x)+y(b−y)+z(b−z) ≤ xy+yz+zx, then A2 = ∅. It is clear that
x(b−x)+y(b−y)+z(b−z) ≤ xy+yz+zx ⇔ (x+y+z)b ≤ x2 +y2 +z2 +xy+yz+zx ⇔ 2kb ≤
(x + y)2 + (y + z)2 + (z + x)2 ⇔ 2kb ≤ (k− z)2 + (k− x)2 + (k− y)2 ⇔ 2kb− k2 ≤ x2 + y2 + z2.

Since x + y + z = k, x2 + y2 + z2 ≥ k2

3 . If k2

3 ≥ 2kb− k2, A = A0 ∪A1 holds for any x, y, z such
that x + y + z = k. Since k2

3 ≥ 2kb− k2 ⇔ k ≥ 3b
2 , then when k ≥ 3b

2 , A = A0 ∪A1.

If A = A0 ∪A1, |A1| = 3b− k. Next we will consider |A0|.

Lemma 3.9 When k ≥ 3b
2 , we can find b (xy+yz+zx)−[x(b−x)+y(b−y)+z(b−z)]

k−1 c trees in A0 and 3b−k
trees in A1.

Proof. For convenience, denote b (xy+yz+zx)−[x(b−x)+y(b−y)+z(b−z)]
k−1 c = a. Similar to the proof of

Lemma 3.8, we will distinct three cases to prove this lemma. Since a ≤ bxy+yz+zx
k−1 c, we can find

a trees in A0 using the method in the proof of Theorem 2.1. If z + y ≤ z + x < b ≤ y + x, then
a < bxy−x(b−x)

k−1 c. Namely, we can use The List Method to find a edge-disjoint spanning trees
of Ky,x, such that dUx,Vy(ui) ≥ b − x for 1 ≤ i ≤ x. So we can find b − x trees TU

1 , . . . , TU
b−x

with vertex sets Sx,y,z ∪{ux+1}, Sx,y,z ∪{ux+2}, . . . , Sx,y,z ∪{ub}, respectively, without using the
edges in E(G[Ux∪Wz]). According to The List Method, for every pair of vertices vi and vj with
1 ≤ i, j ≤ y, the difference between the number of unused edges incident with vi and the number
of unused edges incident with vj is at most 1. For simplicity, we refer Vy to satisfy property P .
Then for every spanning tree of Ky,x, we can connect each wi to some vj to form a spanning
tree of Kx,y,z and keep Vy satisfying property P . Now the number of unused edges incident with
each wi is x + y − a. Since x + y − a > b− z, we can find b− z trees TW

1 , . . . , TW
b−z with vertex

sets Sx,y,z ∪ {wz+1}, Sx,y,z ∪ {wz+2}, . . . , Sx,y,z ∪ {wb}, respectively. Since x < b − z, all edges
in E(G[Ux ∪Wz]) are used. So all unused edges are incident with Vy. Since the number of all
unused edges is at least y(b− y) and Vy satisfies property P , dS(vi) ≥ b− y for 1 ≤ i ≤ y. So we
can find b−y trees T V

1 , . . . , T V
b−y with vertex sets Sx,y,z∪{vy+1}, Sx,y,z∪{vy+2}, . . . , Sx,y,z∪{vb},

respectively. So we can find altogether b− x + b− y + b− z = 3b− k trees in A1. The proofs for
the other two cases are similar.

Now we know that, when k ≥ 3b
2 ,

κ(Sx,y,z) = b(xy + yz + zx)− [x(b− x) + y(b− y) + z(b− z)]
k − 1

c+ 3b− k.

Next, we will calculate κk(K3
b) for k ≥ 3b

2 .

Lemma 3.10 When k ≥ 3b
2 , κk(K3

b) = b d
k2

3
e+k2−2kb

2(k−1) c+ 3b− k.

11

Proof. Since κ(Sx,y,z) = b (xy+yz+zx)−[x(b−x)+y(b−y)+z(b−z)]
k−1 c+3b−k, k−1 and 3b−k are constants,

all we have to do is to calculate min{(xy + yz + zx)− [x(b− x) + y(b− y) + z(b− z)]}. Since

(xy + yz + zx)− [x(b− x) + y(b− y) + z(b− z)]

=
(x + y)2 + (y + z)2 + (z + x)2 − 2kb

2

=
(k − z)2 + (k − x)2 + (k − y)2 − 2kb

2

=
x2 + y2 + z2 − 2kb + k2

2
,

then

min{(xy + yz + zx)− [x(b− x) + y(b− y) + z(b− z)]}

=min{x2 + y2 + z2 − 2kb + k2

2
}

=
min{x2 + y2 + z2}

2
− kb +

k2

2
.

Now the problem is reduced to the one of calculating min{x2 + y2 + z2}, where x + y + z = k
and x, y, z are integers. We know that, when x + y + z = k and x, y, z are real numbers, the
minimum value is k2

3 . If k = 0 (mod 3), obviously when x = y = z = k
3 , it attains the minimum

value. However, if k = 1 (mod 3) or k = 2 (mod 3), namely k2 = 1 (mod 3), it can not attain the
minimum value. But since x, y, z are integers, min{x2 + y2 + z2} should also be an integer, and
k2+2

3 = dk2

3 e should be the minimum value, when x, y, z are integers. If k = 1 (mod 3), when
x = k+2

3 , y = z = k−1
3 , it indeed attains k2+2

3 . If k = 2 (mod 3), when x = y = k+1
3 , z = k−2

3 , it
indeed attains k2+2

3 , too. So for z 6= 0,

min{κ(Sx,y,z)}

=min{b(xy + yz + zx)− [x(b− x) + y(b− y) + z(b− z)]
k − 1

c+ 3b− k}

=bd
k2

3 e+ k2 − 2kb

2(k − 1)
c+ 3b− k.

On the other hand, if z = 0,

min{κ(Sx,y,0)} = b + κk(Kb,b) =

{
2b− k

2 + b k2

4(k−1)c if k is even ;

2b− k−1
2 + b (k−1)2

4(k−1)c if k is odd .

Note that b ≥ x ≥ y ≥ z = 0, k = x + y ≤ 2b and k ≥ 3. If k is even, we have

[
dk2

3 e+ k2 − 2kb + 2(k − 1)(3b− k)
2(k − 1)

]− [
4(k − 1)(2b− k

2) + k2

4(k − 1)
]

≤[
k2+2

3 + k2 − 2kb + 2(k − 1)(3b− k)
2(k − 1)

]− [
4(k − 1)(2b− k

2) + k2

4(k − 1)
]

=
2k − 4b− k2

3 + 4
3

4(k − 1)
≤0,

12

and so

bd
k2

3 e+ k2 − 2kb + 2(k − 1)(3b− k)
2(k − 1)

c ≤ b4(k − 1)(2b− k
2) + k2

4(k − 1)
c,

namely,

bd
k2

3 e+ k2 − 2kb

2(k − 1)
c+ 3b− k ≤ 2b− k

2
+ b k2

4(k − 1)
c.

The proof for the case that k is odd is similar.

Thus min{κ(Sx,y,z)} ≤ min{κ(Sx,y,0)}, and for k ≥ 3b
2 ,

κk(K3
b) = bd

k2

3 e+ k2 − 2kb

2(k − 1)
c+ 3b− k.

Next, we will calculate κk(K3
b) for k < b. Notice that now x2 + y2 + z2 ≤ k2 < 2kb − k2,

namely, x(b− x) + y(b− y) + z(b− z) > xy + yz + zx for any x, y, z such that x + y + z = k. So
A = A1 ∪ A2, then not every vertex v ∈ V (G) \ Sx,y,z is contained in some tree T ∈ A1. Thus
the problem appears: which vertices should we choose to form trees in A1? We know that every
TU

i needs x edges in E(G[Sx,y,z]), every T V
i needs y edges in E(G[Sx,y,z]) and every TW

i needs
z edges in E(G[Sx,y,z]). Since x ≥ y ≥ z, a natural idea is that we first pick up as many trees
in T W as possible, then pick up as many trees in T V as possible, and finally pick up as many
trees in T U as possible. Since k < b, namely, x + y < b− z, we can pick up x + y trees in T W ,
and run out of all edges incident with Wz. Since x < b− y, we can pick up x trees in T V , and
now we run out of all edges in E(G[Sx,y,z]). So the rest of vertices can only form trees in A2.
Now there remain b− x vertices in U \ Sx,y,z, b− y − x vertices in V \ Sx,y,z and b− z − y − x
vertices in W \ Sx,y,z. If b− x ≤ b− y − x + b− z − y − x, namely, y ≤ b− k, we can pair up all
these vertices except for at most one vertex. In this case, we do not waste any vertices. So we
have found the maximum number of internally disjoint trees connecting Sx,y,z.

Lemma 3.11 If k < b and y ≤ b− k, then κ(Sx,y,z) = b3b+k−y−2z
2 c.

Proof. As the above statement, there are x + y + x trees in A1 and b b−x+b−x−y+b−x−y−z
2 c trees

in A2. So

κ(Sx,y,z) = b3b− 3x + 4x− 2y + 2y − z

2
c = b3b + k − y − 2z

2
c.

However, if b−x > b− y−x+ b− z− y−x, the thing is not so simple, because we may have
“wasted” vertices. How to avoid wasting ? We should pick up the trees more carefully. After
we have picked up x + y trees in T W , there remain b − k vertices in W \ Sx,y,z. Since we have
run out of all edges incident with Wz, these vertices can not form a tree in A1. Not to waste
them, we pair them up with b−k vertices in U \Sx,y,z. Now there remain b−x− (b−k) = k−x
vertices in U \Sx,y,z and b−y vertices in V \Sx,y,z. Now we pick up b−y−(k−x) = b−k+x−y
trees in T V , and there remain k− x vertices in both U \ Sx,y,z and V \ Sx,y,z. Since we can find
altogether at most x trees in T V and we have already picked up b−k+x−y of them, we can pick
up at most x− (b− k + x− y) = k− b + y more trees in T V . Since b− y > x, k− b + y < k− x.
If we pick up trees as in the case that y ≤ b − k, then with these k − x pairs of vertices in
U \ Sx,y,z and V \ Sx,y,z, we can find k − b + y trees in T V and k − x− (k − b + y) = b− x− y
trees in T U,V . There are altogether k − b + y + b − x − y = k − x trees and k − b + y vertices

13

in U \ Sx,y,z remaining unused. But we can simply find k − x trees in T U,V by pairing up these
k− x pairs of vertices without using any edges in E(G[Sx,y,z]). It means that we do not use the
edges efficiently. The most efficient way to use the edges is that we pick up as many pairs of
trees in T U and T V as possible and then pair up the remaining vertices. The following lemma
gives κ(Sx,y,z) for k < b and y ≥ b− k.

Lemma 3.12 If k < b and y ≥ b− k, then κ(Sx,y,z) = 2b− y − z + b (k−b)y+y2

k−z c.

Proof. As the above statement, we find x + y trees in T W and b − k trees in T U,W . Then we
find b− k + x− y trees in T V and there are xy − (b− k + x− y)y = (k − b + y)y unused edges
left. So we can find b (k−b+y)y

x+y c trees in T U and b (k−b+y)y
x+y c trees in T V . Finally, there remain

k− x−b (k−b+y)y
x+y c pairs of vertices unused, and so we can find k− x−b (k−b+y)y

x+y c trees in T U,V .
Thus

κ(Sx,y,z)

=x + y + b− k + b− k + x− y + 2b(k − b + y)y
x + y

c+ k − x− b(k − b + y)y
x + y

c

=2b− k + x + b(k − b + y)y
x + y

c

=2b− y − z + b(k − b)y + y2

k − z
c.

Next, we will calculate min{κ(Sx,y,z)} for k < b.

Lemma 3.13 For k < b and y ≤ b− k, we have

min{κ(Sx,y,z)} =

2k if k ≥ 3b
4 ;

b3b
2 c if k < 3b

4 and k = 0 (mod 3);
b3b+1

2 c if k < 3b
4 and k 6= 0 (mod 3).

Proof. To get min{κ(Sx,y,z)}, first let us consider the function f1(z, y) = 3b+k−y−2z
2 . We want

to find out the optimal solution of

min{f1(z, y)}
subject to
2y + z ≤ k,

z − y ≤ 0,

y ≤ b− k,

y, z are positive integers.

To this end, first let us ignore the integer restriction and consider

min{g1(z, y) = f1(z, y)}
subject to
2y + z ≤ k

z − y ≤ 0
y ≤ b− k.

14

Since ∂g1

∂y = −1
2 < 0 and ∂g1

∂z = −1 < 0, g1(z, y) is a decreasing function in y, and it is also a
decreasing function in z. Next we will illustrate it in two cases.

Case 1. b− k ≤ k
3 .

The feasible region of g1(z, y) is shown in Figure 4. Obviously, g1(z, y) attains the minimum
value at (b− k, b− k). Since b− k is a positive integer, (b− k, b− k) is also the optimal solution
of f1(z, y) in this case. So min{f1(z, y)} = f1(b− k, b− k) = 2k.

O z

y
y = z

y = k−z

2

(k

3
, k

3
)

y = b − k

Figure 4. The feasible zone of g1 for Case 1.

Case 2. b− k > k
3 .

The feasible region of g1(z, y) is shown in Figure 5. Obviously, g1(z, y) attains the minimum
value at some point on the segment y = k−z

2 , 3k − 2b ≤ z ≤ k
3 . When y = k−z

2 , g1(z, y) =
3b+k−y−2z

2 = 6b+k−3z
4 , which is decreasing in z. So g1(z, y) attains the minimum value at (k

3 , k
3).

If k = 0 (mod 3), (k
3 , k

3) is also the optimal solution of f1(z, y) in this case and min{f1(z, y)} =
f1(k

3 , k
3) = 3b

2 . If k = 1 (mod 3), f1(z, y) can attain the minimum value only at (k−1
3 , k−1

3) or
(k−4

3 , k+2
3). Since f1(k−4

3 , k+2
3)− f1(k−1

3 , k−1
3) = 1

2 > 0, min{f1(z, y)} = f1(k−1
3 , k−1

3) = 3b+1
2 . If

k = 2 (mod 3), f1(z, y) can attain the minimum value only at (k−2
3 , k+1

3). So min{f1(z, y)} =
f1(k−2

3 , k+1
3) = 3b+1

2 .

O z

y
y = z

y = k−z

2

(k

3
, k

3
)

y = b − k

Figure 5. The feasible zone of g1 for Case 2.

15

Thus, for k < b and y ≤ b− k, we have

min{κ(Sx,y,z)} = bmin{f1(z, y)}c =

2k if k ≥ 3b
4 ;

b3b
2 c if k < 3b

4 and k = 0 (mod 3);
b3b+1

2 c if k < 3b
4 and k 6= 0 (mod 3).

Similarly, we can get the next result.

Lemma 3.14 For k < b and y ≥ b− k, we have

min{κ(Sx,y,z)} =

3b− 2k if k ≤ 3b
4 ;

b3b
2 c if k > 3b

4 and k = 0 (mod 3);
b3bk+3b−k+1

2k+1 c if k > 3b
4 and k = 1 (mod 3);

b3b+1
2 c if k > 3b

4 and k = 2 (mod 3).

Combine Lemma 3.13 and Lemma 3.14, we can get the following result.

Lemma 3.15 When k < b,

κk(K3
b) =

b3b

2 c if k = 0 (mod 3);
b3bk+3b−k+1

2k+1 c if k > 3b
4 and k = 1 (mod 3);

b3b+1
2 c otherwise.

Finally, we will calculate κk(K3
b) for b ≤ k < 3b

2 . First, we will calculate κ(Sx,y,z). Notice
that it suffices to calculate κ(Sx,y,z) such that x(b − x) + y(b − y) + z(b − z) > xy + yz + zx.
Namely, at least one of x(b−x) > xy, y(b−y) > yz and z(b−z) > zx must hold. Since b−x > y
and b− z > x both imply that b− z > y, b− z > y must hold and this will be used later.

Lemma 3.16 If b ≤ k < 3b
2 , then κ(Sx,y,z) = 2b− z − y + b (k−b)z+y2

k−z c.

Proof. The way we find trees is similar to that in the case k < b. Since b ≤ k = x + y + z,
b − z ≤ x + y and we can find b − z trees in T W and run out of all vertices in W \ Sx,y,z.
Then we find x − y trees in T V and there are b − x unused vertices left in both U \ Sx,y,z

and V \ Sx,y,z. Now we have used altogether (b − z)z + (x − y)y edges in E(G[Sx,y,z]) and
left xy + yz + zx − (b − z)z − (x − y)y = yz + zx + z2 + y2 − bz edges unused. So we can
find byz+zx+z2+y2−bz

x+y c trees in T U and byz+zx+z2+y2−bz
x+y c trees in T V . Finally, there remain

b− x− byz+zx+z2+y2−bz
x+y c pairs of vertices unused, and so we can find b− x− byz+zx+z2+y2−bz

x+y c
trees in T U,V . Thus,

κ(Sx,y,z)

=b− z + x− y + 2byz + zx + z2 + y2 − bz

x + y
c+ b− x− byz + zx + z2 + y2 − bz

x + y
c

=2b− z − y + byz + zx + z2 + y2 − bz

x + y
c

=2b− z − y + b(k − b)z + y2

k − z
c.

Similar to Lemmas 3.10 3.13, 3.14 and 3.15, we can get the next results.

16

Lemma 3.17 For b ≤ k < 3b
2 , we have

min{κ(Sx,y,z)} =

b3b

2 c if k = 0 (mod 3);
b3bk+3b−k+1

2k+1 c if k = 1 (mod 3);
b3bk+6b−2k+1

2k+2 c if k = 2 (mod 3).

Lemma 3.18 When b ≤ k < 3b
2 , we have

κk(K3
b) =

b3b

2 c if k = 0 (mod 3);
b3bk+3b−k+1

2k+1 c if k = 1 (mod 3);
b3bk+6b−2k+1

2k+2 c if k = 2 (mod 3).

Now we can give our main result.

Theorem 3.1 Given any positive integer b ≥ 2, let K3
b denote a complete 3-partite graph in

which every part contains exactly b vertices. Then we have

κk(K3
b) =

b d
k2

3
e+k2−2kb

2(k−1) c+ 3b− k if k ≥ 3b
2 ;

b3b
2 c if k < 3b

2 and k = 0 (mod 3);
b3bk+3b−k+1

2k+1 c if 3b
4 < k < 3b

2 and k = 1 (mod 3);
b3bk+6b−2k+1

2k+2 c if b ≤ k < 3b
2 and k = 2 (mod 3);

b3b+1
2 c otherwise.

Proof. The result follows directly from Lemmas 3.10, 3.15 and 3.18.

Remark: Note that
b3b

2
c ≤ b3bk + 3b− k + 1

2k + 1
c ≤ b3b + 1

2
c,

b3b

2
c ≤ b3bk + 6b− 2k + 1

2k + 2
c ≤ b3b + 1

2
c,

and
b3b + 1

2
c − b3b

2
c ≤ 1.

Also, note that when k = 3b
2 , κk(K3

b) = b3b
2 c. So, when k ≤ 3b

2 , the k-connectivity of K3
b is

almost the same. But κk(K3
b) is neither increasing nor decreasing on k.

Acknowledgement: The authors would like to thank the reviewers for their useful comments
and suggestions which helped to shorten the paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] Reinhard Diestel, Graph Theory, 3rd ed, GTM 173, Springer, 2008.

[3] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs,
Bull. Bombay Math. Colloq. 2(1984), 1-6.

[4] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10(1927), 95-115.

17

[5] C.St.J.A.Nash-Williams, Edge disjoint spanning trees of finite graphs. J. Lond. Math. Soc.
36(1961), 445-450.

[6] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond.
Math. Soc. 36(1961), 221-230.

[7] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity,
Networks 55(4)(2010), 360-367.

[8] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity κ3(G), Discrete Math.
310(2010), 2147-2163.

[9] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of
graphs, Amer. J. Math. 54(1932), 150-168.

[10] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optimization.
24(2012), 389–396.

[11] H. Li, X. Li, Y. Sun, The generalized 3-connectivity of Cartesian product graphs, Discrete
Math. Theor. Comput. Sci. 14(1)(2012).

[12] S. Li, X. Li, Y. Shi,The minimal size of a graph with generalized connectivity κ3 = 2,
Australasian J. Combin. 51(2011).

[13] E. Palmer, On the spanning tree packing number of a graph: a survey, Discrete Math.
230(2001), 13-21.

[14] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin.
104(2012), 65-79.

[15] X. Li, Y. Sun, On the strong rainbow connection of a graph, Bull. Malays. Math. Sci. Soc.
(2), accepted.

18

