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a b s t r a c t

Recently, Sagan and Savage introduced the notion of Eulerian pairs. In this note, we find
Eulerian pairs on Fibonacci words based on Foata’s first transformation or Han’s bijection
and a map in the spirit of a bijection of Steingrímsson.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by the notion of Eulerian pairs introduced by Sagan and Savage [6] in their study of Mahonian
pairs. Let P be the set of positive integers and let P∗ be the set of words on P. For two finite subsets S, T ⊂ P∗, the pair
(S, T ) is called a Mahonian pair if the distribution of the major index over S is the same as the distribution of the inversion
number over T . Similarly, (S, T ) is said to be an Eulerian pair if the distribution of the descent number over S is the same as
the distribution of the excedance number over T .

Thewell-known theoremofMacMahon [5] can be rephrased as the fact that (Sn, Sn) is aMahonian pair, where Sn is the set
of permutations on [n] = {1, 2, . . . , n}. Foata [3] found a combinatorial proof of this fact by establishing a correspondence
which has been called the second fundamental transformation, denoted as Φ2. With the aid of the map Φ2, Sagan and
Savage found Mahonian pairs (S, Φ2(S)), where S is a set of ballot sequences or a set of Fibonacci words. By a Fibonacci
word we mean a word on {1, 2} containing no consecutive 1s. Dokos et al. [1] studied Mahonian pairs on permutations
avoiding some patterns. In this paper, we find Eulerian pairs on Fibonacci words based on bijections of Foata [2], Han [4]
and Steingrímsson [7].

We adopt some common notation on words. For a word ω = a1a2 · · · an, the descent number des(ω), the inversion
number inv(ω) and the major index maj(ω) are defined by

des(ω) = #{i|ai > ai+1, 1 ≤ i ≤ n − 1},

inv(ω) = #{(i, j)|ai > aj, 1 ≤ i < j ≤ n},

maj(ω) =


ai>ai+1,

1≤i≤n−1

i,
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where # indicates the cardinality of a set. Writing ω in the two-line form

ω =


x1 x2 · · · xn
a1 a2 · · · an


, (1.1)

where x1, x2, . . . , xn is the nondecreasing rearrangement of a1a2 · · · an, one can define the excedance number exc(ω) as
follows:

exc(ω) = #{i|ai > xi, 1 ≤ i ≤ n}.

Usually, we say that (ai, ai+1) is a descent in ω if ai > ai+1 and (ai, xi) is an excedance if ai > xi.

2. Eulerian pairs derived from Φ−1
1

In this section, we construct Eulerian pairs on Fibonacci words by using Foata’s first fundamental transformation [2]. It
is worth mentioning that Foata’s first fundamental transformation Φ1 coincides with Han’s bijection [4] when restricted to
words on {1, 2}. From now on, we shall still use Φ1 to denote Foata’s first fundamental transformation (or Han’s bijection)
when restricted to {1, 2}∗.

Throughout this paper, by a binary word we mean a word on {1, 2}. Let {1, 2}∗n denote the set of binary words of length
n. Clearly, a word ω ∈ {1, 2}∗ with d descents can be uniquely written as

ω = 1m02n01m12n1 · · · 1md2nd , (2.1)

wherem0, nd ≥ 0, andmi, nj > 0 for 1 ≤ i ≤ d and 0 ≤ j ≤ d− 1. It can be easily checked that Φ−1
1 (ω) takes the following

form:

Φ−1
1 (ω) = 1m021m1−12 · · · 21md−12n0−112n1−1

· · · 2nd−1−112nd . (2.2)

The expression (2.2) enables us to describe the Eulerian pairs (S, Φ−1
1 (S)) when S = Fn and S = F ′

n, where Fn is the set of
Fibonacci words of length n and F ′

n is the set of Fibonacci words of length n ending with 1. We shall use the correspondence
between binary words and integer partitions analogously to the description of the Mahonian pairs obtained by Sagan and
Savage [6]. For convenience, we let λ(ω) be the partition corresponding to the binarywordω. Making use of this connection,
Φ−1

1 (Fn) and Φ−1
1 (F ′

n) can be described in terms of statistics on integer partitions.
The following theorem gives Eulerian pairs involving Fn and F ′

n, where we use Nω(1) to denote the number of 1s in a
wordω. For any partition λ, we denote by l(λ) the number of parts of λ. Recall that the Durfee square D(λ) of λ is the square
partition (dd), where d is the largest integer i ≤ l(λ) such that λ1 ≥ i, . . . , λi ≥ i. Denote by d(λ) the size d of D(λ), and let
B(λ) = (λd+1, . . . , λk).

Theorem 2.1. Let

Rn = {ω ∈ {1, 2}∗n | λ = λ(ω), Nω(1) − 1 ≤ d(λ) ≤ Nω(1), B(λ) = ∅},

and let

R′

n = {ω ∈ {1, 2}∗n | λ = λ(ω), λ1 = n − Nω(1),Nω(1) − 1 ≤ d(λ) ≤ Nω(1), B(λ) = ∅}.

Then (Fn, Rn) and (F ′
n, R

′
n) are Eulerian pairs.

Proof. Keep in mind that Φ1 is a bijection on words which maps the excedance number to the descent number; for more
details, see [2]. Thus for any set S, (S, Φ−1

1 (S)) is an Eulerian pair. So it suffices to show that Rn = Φ−1
1 (Fn) and R′

n = Φ−1
1 (F ′

n).
Suppose that ω = 1m02n01m1 · · · 2nd ∈ Fn, wherem0 = 0 or 1. Notice that d = Nω(1) − m0. From (2.2) it follows that

Φ−1
1 (ω) = 1m02d+n0−112n1−1

· · · 12nd−2−112nd−1−112nd . (2.3)

Let λ = λ(Φ−1
1 (ω)). From the correspondence between binary words and partitions, we see that λ has exactly d parts.

Moreover, we have

λd = d + n0 − 1 ≥ d.

Hence B(λ) = ∅ and D(λ) = (dd). It follows from (2.3) that the size of the Durfee square of λ is given by

d(λ) =


Nω(1) − 1, ifm0 = 1;
Nω(1), ifm0 = 0.

So we see that Φ−1
1 (ω) ∈ Rn, which yields that Φ−1

1 (Fn) ⊆ Rn.
Conversely, let σ = a1a2 · · · an ∈ Rn. We wish to show that there is a word ρ ∈ Fn such that Φ−1

1 (ρ) = σ . Let k = Nσ (1)
and µ = λ(σ). By the definition of Rn, we have k− 1 ≤ d(µ) ≤ k and B(µ) = ∅. By the construction of µ, we see that there
exists some nonnegative integer t such that µ1 = n − k − t . In fact, t is the largest integer i such that σ ends with 2i. If
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d(µ) = k, then we have µk ≥ k and l(µ) = k. Hence σ takes the form 2kak+1 · · · an−t−112t . Since n− t − k = µ1 ≥ µk ≥ k,
there exists a sequence of k positive integers n0, n1, . . . , nk−1 such that σ has the form 2k+n0−112n1−1

· · · 2nk−1−112t . Let
ρ = 2n012n11 · · · 2nk−112t . Obviously, ρ ∈ Fn. In view of (2.2), we find that Φ−1

1 (ρ) = σ . For the case d(µ) = k − 1,
by a similar argument it can be shown that there exists a word ρ ′ in Fn such that Φ−1

1 (ρ ′) = σ . So we have shown that
Rn ⊆ Φ−1

1 (Fn). Consequently, we arrive at the conclusion that Rn = Φ−1
1 (Fn).

We now proceed to show that R′
n = Φ−1

1 (F ′
n). Letω be a binary word of length n. In view of (2.2), we see thatω ends with

1 if and only if Φ−1
1 (ω) ends with 1. So we deduce that

Φ−1
1 (F ′

n) = {ω ∈ Φ−1
1 (Fn) | ω ends with 1}.

On the other hand, by the construction of the correspondence between binary words and partitions, it can be checked that
ω ends with 1 if and only if λ1 = n − Nω(1), where λ = λ(ω). Since Rn = Φ−1

1 (Fn), we obtain that

Φ−1
1 (F ′

n) = {ω ∈ Rn | ωends with1}
= {ω ∈ Rn | λ = λ(ω), λ1 = n − Nω(1)},

that is, R′
n = Φ−1

1 (F ′
n). This completes the proof. �

3. An Eulerian pair derived from Γ

In this section, we extend the bijection of Steingrímsson φ [7] on permutations to amapΓ onwords.While the extended
map is not a bijection, it still transforms the descent number to the excedance number. As far as Fn is concerned, the map Γ

is not injective, but it turns out to be injective on F ′
n. Therefore, we obtain an Eulerian pair (F ′

n, Γ (F ′
n)).

We begin with an overview of Steingrímsson’s bijection φ on permutations. Let π = π1π2 · · · πn be a permutation of [n].
For notational convenience, let φ(π) = f (1)f (2) · · · f (n). Set π0 = 0 and πn+1 = n + 1. For 1 ≤ k ≤ n,

(1) If there exists an integerm such that k < m ≤ n and πm < πk, then we set f (πk+1) = πk.
(2) If πk > πm for k < m ≤ n, then we set f (πj+1) = πk, where j is the largest number such that πj < πk.

Steingrímsson proved that the map φ is a bijection which maps the descent number to the excedance number.

Proposition 3.1 ([7, Remark 4.7]). Let π be a permutation on [n]. Then for 1 ≤ k ≤ n, πk > πk+1 if and only if (πk, πk+1) is
an excedance in φ(π).

Steingrímsson’s bijection can be extended to amapΓ onwords. Recall that the standardization of awordω = a1a2 · · · an
can be expressed as π = βω(1)βω(2) · · · βω(n) on [n], where βω(i) is given by

βω(i) = #{j |1 ≤ j ≤ n, aj < ai} + #{j | j ≤ i, aj = ai}. (3.1)

Let ω = a1a2 · · · an be a word. The map Γ is defined as follows. Assume that π = βω(1)βω(2) · · · βω(n) is the standard-
ization of ω. Let φ(π) = f (1)f (2) · · · f (n). For 1 ≤ i ≤ n, there exists a unique integer ji such that βω(ji) = f (i). Then Γ (ω)
is defined to be the word aj1aj2 · · · ajn . For example, let ω = 132232131. Then the standardization of ω is π = 174586293
and φ(π) = 169748253. So we have Γ (ω) = 123323121.

The following theorem shows that the map Γ also transforms the descent number to the excedance number.

Theorem 3.2. For any word ω, we have

des(ω) = exc(Γ (ω)).

Proof. Assume that ω = a1a2 · · · an is a word. Let π = σ1σ2 · · · σn be the standardization of ω. It is obvious that (ai, ai+1)
is a descent in ω if and only if (σi, σi+1) is a descent in π . By Proposition 3.1, we see that (σi, σi+1) is a descent in π if and
only if (σi, σi+1) forms an excedance in φ(π). With the aid of the construction of Γ , it can be seen that (σi, σi+1) forms an
excedance in φ(π) if and only if (ai, ai+1) is an excedance in Γ (ω). Thus, we have des(ω) = exc(Γ (ω)). This completes the
proof. �

Next we consider the restriction of Γ to words on {1, 2}. In this case, it is easy to verify that Γ (ω2m) = Γ (ω)2m for
m ≥ 1. The following lemma shows how to compute Γ (ω1m) on the basis of Γ (ω).

Lemma 3.3. Suppose that ω is a binary word of length n that contains k 1s. Let Γ (ω) = b1b2 · · · bn. Assume that t is the largest
integer i such that ω ends with 2i. Set U = b1b2 · · · bk and V = bk+1bk+2 · · · bn−t . Then we have the following recurrence
relations:

(1) If t = 0, then Γ (ω1) = U1V . In general, if t = 0, then Γ (ω1m) = U1mV for any m ≥ 1.
(2) If t > 0, then Γ (ω1) = U2V12t−1. In general, if t > 0, then we have Γ (ω1m) = U21m−1V12t−1 for any m ≥ 1.



Author's personal copy

2310 T.X.S. Li et al. / Discrete Mathematics 313 (2013) 2307–2311

Proof. Letω = a1a2 · · · an and an+1 = 1. Suppose thatΓ (ω1) = c1c2 · · · cn+1. To determineΓ (ω1), we consider occurrences
of 1s in Γ (ω1). Assume that as1 , as2 , . . . , ask are the 1s in ω, where s1 < s2 < · · · < sk. Let us define β(i) = βω(i) and
β ′(j) = βω1(j) for 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1. It can be seen that β ′(n + 1) = k + 1 and for i ≤ n,

β ′(i) =


β(i), if ai = 1;
β(i) + 1, otherwise.

Thus we have

{β ′(s1) < β ′(s2) < · · · < β ′(sk)} = {1, 2, . . . , k}

and

{β ′(i)|1 ≤ i ≤ n, ai = 2} = {k + 2, . . . , n + 1}.

By the construction of Γ , it is not hard to see that bβ(si+1) = as(i+1) = 1 and cβ ′(si+1) = as(i+1) = 1 for 0 ≤ i ≤ k − 1, where
s0 = 0. For 0 ≤ i ≤ k−1, it is clear that β ′(si+1) ≤ k if and only if β ′(si+1) = β(si+1). Thismeans that the 1s in c1c2 · · · ck
appear in the same positions as in U . Moreover, for the case β ′(si + 1) ≥ k + 2, we see that β ′(si + 1) = β(si + 1) + 1. In
other words, a 1 appearing in the jth position in V corresponds to a 1 in the jth position in ck+2ck+3 · · · cn−t+1.

Let us further consider the position of an+1 in Γ (ω1). Observe that sk = n − t . By the construction of Γ , we find that
cβ ′(n−t+1) = an+1 = 1. If t = 0, then ck+1 = cβ ′(n+1) = an+1, which means that an+1 is in the (k + 1)th position in Γ (ω1).
When t > 0, since β ′(n − t + 1) = n − t + 2, we find that cn−t+2 = cβ ′(n−t+1) = an+1. Thus an+1 is in the (n − t + 2)th
position in Γ (ω1). In summary, we deduce that

Γ (ω1) =


U1V , if t = 0;
U2V12t−1, if t > 0. (3.2)

So the lemma holds form = 1. By iterating the above process, it can be seen that the lemma holds form > 1. This completes
the proof. �

By Lemma 3.3, for any word ω in form (2.1), Γ (ω) is of the following form:

Γ (ω) = 1m021m1−1
· · · 21md−1−121md2n0−112n1−1

· · · 2nd−2−112nd−1−1+nd . (3.3)

The following theorem gives a description of Γ (F ′
n).

Theorem 3.4. Let

Tn = {ω ∈ {1, 2}∗n | λ = λ(ω), Nω(1) − 1 ≤ l(λ) = λl(λ) ≤ Nω(1)}.

Then we have Γ (F ′
n) = Tn. Moreover, (F ′

n, Tn) is an Eulerian pair.

Proof. Using an argument similar to that in the proof of Theorem 2.1, it can be shown that Γ (F ′
n) = Tn. To prove that

(F ′
n, Tn) is an Eulerian pair, it suffices to verify that Γ is injective on F ′

n. Assume that ω = 1m02n012n1 · · · 12nd−212nd−11
and ω′

= 1m′
02n′

012n′
1 · · · 12n′

d′−212n′

d′−11 are two words in F ′
n such that Γ (ω) = Γ (ω′). It follows from (3.3) that Γ (ω) =

1m02d12n0−1
· · · 2nd−2−11 and Γ (ω′) = 1m′

02d′

12n′
0−1

· · · 2n′

d′−2
−11. So we have d = d′,m0 = m′

0 and ni = n′

i for any
0 ≤ i ≤ d − 1. This implies that ω = ω′. Hence Γ is injective on F ′

n. This completes the proof. �

It should be noted that Γ is neither surjective nor injective on Fn. For example, there is no ω satisfying Γ (ω) = 2121. On
the other hand, we have

Γ (221221231) = Γ (2212212212) = Γ (2212212122) = 231212122.

We conclude this section with a remark that Γ (Fn) = Γ (F ′
n). In fact, for any word ω = 1m02n012n1 · · · 12nd−112nd ∈ Fn,

let σ = 1m02n012n1 · · · 12nd−1+nd1 in F ′
n. Then we have Γ (ω) = Γ (σ ).

4. Concluding remarks

In this section, we make some remarks on Euler–Mahonian pairs on binary words, which are related to the bijections
Φ1, Φ2 and Γ .

For any word ω = 1m02n0 · · · 1md2nd , Sagan and Savage have shown that

Φ2(ω) = 1md−121md−1−12 · · · 1m1−121m02n0−112n1−11 · · · 2nd−1−112nd . (4.1)

It is clear from (4.1) that des(ω) = exc(Φ2(ω)). So we deduce that the Mahonian pairs (S, T ) given by Sagan and Savage [6]
are Euler–Mahonian pairs in the sense that

ω∈S

pdes(ω)qmaj(ω)
=


ω∈T

pexc(ω)qinv(ω).
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It should be noted that in general Φ2(Fn) ≠ Φ−1
1 (Fn), Φ2(F ′

n) ≠ Φ−1
1 (F ′

n) and Φ2(F ′
n) ≠ Γ (F ′

n). However, there exists
a set Gn such that (Gn, Φ−1

1 (Gn)), (Gn, Φ2(Gn)) and (Gn, Γ (Gn)) are the same Eulerian pairs. Meanwhile, we find a set H of
binary words for which Φ−1

1 = Φ2.

Theorem 4.1. Let Gn be the set of words in {1, 2}∗n with no consecutive 2s and let

H = {ω = 1m02n01m12n1 · · · 1md2nd | m0 = md − 1,mi = md−i for 1 ≤ i ≤ d − 1}.

Then we have Φ2(Gn) = Φ−1
1 (Gn) = Γ (Gn) and Φ−1

1 (ω) = Φ2(ω) for any ω ∈ H.

Proof. Given a word ω ∈ Gn with d descents, it can be written uniquely as

1m021m12 · · · 1md2nd ,

where m0 ≥ 0, nd = 0 or 1, and mi > 0 for 1 ≤ i ≤ d. By (2.2) and (3.3), we find that Φ−1
1 (ω) = Γ (ω) for all ω ∈ Gn.

Therefore, we have Φ−1
1 (Gn) = Γ (Gn). To show that Φ−1

1 (Gn) = Φ2(Gn), we define a map ϕ on binary words

ϕ(1m02n01m12n1 · · · 1md−12nd−11md2nd) = 1md−12n01md−12n1 · · · 2nd−21m12nd−11m0+12nd .

It is easy to check that ϕ is an involution on {1, 2}∗. Observing that ϕ(Gn) = Gn, by (4.1) and (2.2), we obtain that
Φ2(ω) = Φ−1

1 (ϕ(ω)) for any ω ∈ Gn. Thus we have Φ−1
1 (Gn) = Φ2(Gn).

By the definition of ϕ, we find that H = {ω ∈ {1, 2}∗ | ϕ(ω) = ω}. Since Φ2(ω) = Φ−1
1 (ϕ(ω)) for any binary word ω,

we conclude that Φ−1
1 (ω) = Φ2(ω) for any ω ∈ H . This completes the proof. �
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