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Abstract

For a vertex set S with cardinality at least 2 in a graph G, we need a tree
in order to connect the set, where this tree is usually called a Steiner tree
connecting S (or an S-tree). Two S-trees T and T ′ are said to be internally
disjoint if V (T ) ∩ V (T ′) = S and E(T ) ∩ E(T ′) = ∅. Let κG(S) denote
the maximum number of internally disjoint Steiner trees connecting S in G.
The generalized k-connectivity κk(G) of a graph G, which was introduced
by Chartrand et al., is defined as minS⊆V (G),|S|=k κG(S). In this paper,
we get a sharp upper bound of generalized k-connectivity. Moreover, graphs
with order n and κ3(G) = n− 2, n− 3 are characterized.

Keywords: connectivity, Steiner tree, internally disjoint trees, generalized
connectivity, networks.

AMS subject classification 2010: 05C40, 05C05, 05C75.

1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to book [2]
for graph theoretical notation and terminology not described here. In the world,
there are numerous networks as, for example, transport networks, road networks,
electrical networks, telecommunication systems or networks of servers. All net-
works can be modeled by a graph or a digraph whose vertices and edges represent,
respectively, the processing elements (nodes of the network) and the communica-
tion links between them. Many attempts have been made to study reliability of
such a network. Several classical measures are the edge-connectivity, the vertex-
connectivity (or simply the connectivity) and super connectivity. Thousands of
∗Supported by NSFC No.11071130.
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articles on connectivity have been published, such as [1, 5, 6, 7, 8, 13, 15]. There
is another well measure, the generalized connectivity.

For a graph G = (V, E) and a set S ⊆ V (G) of at least two vertices, an
S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such sub-
graph T = (V ′, E′) of G that is a tree with S ⊆ V ′. Two Steiner trees T and
T ′ connecting S are said to be internally disjoint if E(T ) ∩ E(T ′) = ∅ and
V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2, the generalized local con-
nectivity κ(S) is the maximum number of internally disjoint trees connecting S
in G. Note that when |S| = 2 a Steiner tree connecting S is just a path connect-
ing the two vertices of S. For an integer k with 2 ≤ k ≤ n, the generalized
k-connectivity κk(G) of G, introduced by Chartrand et al. in [3], is defined as
κk(G) = min{κ(S) : S ⊆ V (G) and |S| = k}. Clearly, when |S| = 2, κ2(G)
is nothing new but the connectivity κ(G) of G, that is, κ2(G) = κ(G), which
is the reason why one addresses κk(G) as the generalized connectivity of G. So
the generalized k-connectivity is a natural and nice generalization of the concept
of vertex-connectivity. There have appeared many results on the generalized con-
nectivity (see [3, 4, 12, 9, 10, 13]).

In addition to being a natural combinatorial measure, the generalized connec-
tivity can be motivated by its interesting interpretation in practice. Suppose that
G represents a network. If one considers to connect a pair of vertices of G, then a
path is used to connect them. However, if one wants to connect a set S of vertices
of G with |S| ≥ 3, then a tree has to be used to connect them unless the vertices
of S lie on a common path. This kind of tree with minimum order for connecting
a set of vertices is usually called a Steiner tree, and popularly used in the phys-
ical design of Very Large Scale Integration (see [14]). For a set S of vertices,
usually the number of totally independent ways to connect S is a local measure
for the reliability of a network. Then the generalized k-connectivity can serve for
measuring the global capability of a network G to connect any k vertices in G.

Chartrand et al. in [4] obtained the following result.

Theorem 1. [4] For every two integers n and k with 2 ≤ k ≤ n, κk(Kn) =
n− dk/2e.

The following result was given by Li et al. in [10], which will be used later.

Theorem 2. [10] For any connected graph G, κ3(G) ≤ κ(G). Moreover, the
upper bound is sharp.

2 Main results

For a graph G, let V (G), E(G), G be the set of vertices, the set of edges,
the complement of G, respectively. As usual, the union of two graphs G and
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H is the graph, denoted by G ∪ H , with vertex set V (G) ∪ V (H) and edge set
E(G)∪E(H). Let mH be the disjoint union of m copies of a graph H . A subset
M of E(G) is called a matching in G if no two edges in M are adjacent in G. A
matching M saturates a vertex v, or v is said to be M -saturated, if some edge of
M is incident with v; otherwise, v is M -unsaturated. M is a maximum matching
if G has no matching M ′ with |M ′| > |M |.

To start with, we give the bounds of κ3(G).

Proposition 1. For a connected graph G of order n (n ≥ 3), 1 ≤ κ3(G) ≤ n−2.
Moreover, the upper and lower bounds are sharp.

Proof. It is easy to see that κ3(G) ≤ κ3(Kn). From this together with Theorem
1, we have κ3(G) ≤ n− 2. Since G is connected, κ3(G) ≥ 1. The result holds.

It is easy to check that the complete graph Kn attains the upper bound and
the complete bipartite graph K1,n−1 attains the lower bound.

From Theorem 2, one may think that the monotone property of κk, namely,
κn ≤ κn−1 ≤ · · ·κ4 ≤ κ3 ≤ κ2 = κ is true for 2 ≤ k ≤ n. Unfortunately, some
counterexamples have been found to show that there exist some integers i, j such
that 2 ≤ i < j ≤ n but κi > κj .

Let us now introduce one such example. Let G1, G2 be two copies of the com-
plete graph Kr (r ≥ 4), and G be a graph obtained from G1, G2 by identifying
one vertex in each of them. Clearly, |V (G)| = 2r−1 and each Gi = Kr (i = 1, 2)
contains b r

2c edge-disjoint spanning trees, say Ti,1, Ti,2, · · · , Ti,b r
2 c. Then the

trees Tj = T1,j ∪ T2,j (1 ≤ j ≤ b r
2c) are b r

2c edge-disjoint spanning trees of G,
which are also b r

2c trees connecting S = V (G). Therefore, κ2r−1(G) ≥ b r
2c ≥

2. Since G has a cut vertex, it follows that κ2(G) = κ(G) = 1. So κ2r−1(G) >
κ2(G) = κ(G). In fact, Li et al. in [10, 11] already gave two such examples. One
of them is the graph G = Kt∨(Kb k−1

2 c∪Kd k−1
2 e) (k ≥ 7, t ≥ 1), which satisfies

that κk(G) = t + 1 but κ(G) = t. Clearly, κk(G) > κ2(G) = κ(G). Unlike the
above example, in this example it is not necessary that V (G) = S. Another ex-
ample is the graph G given in [10] (page 2154, Figure 9) that has κ(G) = 4k +2,
κ3(G) = 3k + 1 and later in [11] Li showed that κ4(G) = 3k + 2, and so
κ4(G) > κ3(G). But for every two integers i and j with i < j, examples are
needed to show that κi > κj . In any case, the monotone property cannot be
guaranteed.

Let S be a set of k vertices of a connected graph G and T be a set of internally
disjoint Steiner trees connecting S. A Steiner tree T connecting S is of type I if
V (T ) = S and T is of type II if V (T ) \ S 6= ∅. Then T = T1 ∪ T2, where the
trees of T1 are type I , and the trees of T2 are type II (Throughout this paper, T ,
T1, T2 are always defined as this).

The following lemma is immediate by the above definitions.
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Observation 1. Let k, n be two integers with 3 ≤ k ≤ n, and G be a connected
graph of order n, and S ⊆ V (G) with |S| = k. For each T ∈ T1, |E(T ) ∩
(E[S] ∪ E[S, S̄])| = k − 1; for T ∈ T2, |E(T ) ∩ (E[S] ∪ E[S, S̄])| ≥ k, where
S̄ = V (G) \ S.

As we all know, a graph with large connectivity must have good edge distribu-
tion (almost uniform distribution). Now, we show that generalized k-connectivity
has a similar property.

Theorem 3. For any graph G with order at least k,

κk(G) ≤ min
S⊆V (G),|S|=k

⌊ 1
k − 1

|E[S]|+ 1
k
|E[S, S̄]|

⌋
,

where S ⊆ V (G) with |S| = k, and S̄ = V (G) \ S. Moreover, the bound is
sharp.

Proof. It suffices to show that |T1| + |T2| ≤ 1
k−1 |E[S]| + 1

k |E[S, S̄]|. From
Observation 1, |E(T ) ∩ (E[S] ∪ E[S, S̄])| = k − 1 for each T ∈ T1. Thus,
(k − 1)|T1| ≤ |E[S]|, that is, |T1| ≤ |E[S]|

k−1 .

For T ∈ T2, |E(T ) ∩ (E[S] ∪ E[S, S̄])| ≥ k by Observation 1. On the one
hand, ΣT∈T |E[T ] ∩ (E[S] ∪ E[S, S̄])| = ΣT∈T1 |E[T ] ∩ (E[S] ∪ E[S, S̄])| +
ΣT∈T2 |E[T ] ∩ (E[S] ∪ E[S, S̄])| ≥ (k − 1)|T1| + k|T2|. On the other hand,
ΣT∈T |E[T ]∩(E[S]∪E[S, S̄])| = ΣT∈T1 |E[T ]∩(E[S]∪E[S, S̄])|+ΣT∈T2 |E[T ]∩
(E[S] ∪ E[S, S̄])| ≤ |E[S]| + |E[S, S̄]|. Thus, (k − 1)|T1| + k|T2| ≤ |E[S]| +
|E[S, S̄]|. Combining this with |T1| ≤ |E[S]|

k−1 , we have |T1|+ |T2| ≤ 1
k−1 |E[S]|+

1
k |E[S, S̄]|.

K̄k

u1

uk1

u2

uk1+j

vi

v1

vj
vk2

Kk

Figure 1: The edges of a tree are shown by the same type of lines.

To show sharp the sharpness of the bound, we consider the graph G = Kk ∨
K̄k. Let V (Kk) = {v1, v2, · · · , vk} and V (K̄k) = {u1, u2, · · · , uk}. From
this theorem, set S = V (K̄k), we have κk(G) ≤ 1

k−1 |E[S]| + 1
k |E[S, S̄]| =

1
k−1 · 0 + 1

k · k2 = k. It suffices to show that κk(G) ≥ k. Without loss of
generality, let S = {u1, u2, · · · , vk1 , v1, v2, · · · , vk2} where k1 + k2 = k. Then
the trees Ti = u1vi∪u2vi∪· · ·∪uk1vi∪v1vi∪v2vi∪· · ·∪vk2vi(k2+1 ≤ i ≤ k)
and Tj = uk1+jv1 ∪ uk1+jv2 ∪ · · · ∪ uk1+jvk2 ∪ u1vj ∪ u2vj ∪ · · · ∪ uk1vj(1 ≤
j ≤ k2) form k pairwise internally disjoint S-trees (see Figure 1), which implies
that κk(G) = k. So the bound of this theorem is sharp.
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Remark 1. For a regular graph G, if G contains a clique of order k, then
it must has small generalized k-connectivity by Theorem 3. Thus, in a sense, to
obtain large generalized k-connectivity, a graph G must have almost uniform edge
distribution.

Theorem 4. For a connected graph G of order n, κ3(G) = n − 2 if and only if
G = Kn or G = Kn \ e.

Proof. Sufficiency. If G = Kn, then we have κ3(G) = n − 2 by Theorem 1.
If G = Kn \ e, then κ3(G) ≤ n − 2 by Proposition 1. We will show that
κ3(G) ≥ n − 2. It suffices to show that for any S ⊆ V (G) such that |S| = 3,
there exist n− 2 internally disjoint S-trees in G.

Let e = uv, and W = V (G)\{u, v} = {w1, w2, · · · , wn−2}. Clearly, G[W ]
is a complete graph of order n− 2. If |{u, v}∩S| = 1 (see Figure 2 (a)), without
loss of generality, let S = {u,w1, w2}, then the trees Ti = wiu ∪ wiw1 ∪ wiw2

together with T1 = uw1 ∪ w1w2, T2 = uw2 ∪ vw2 ∪ vw1 form n − 2 pairwise
internally disjoint S-trees, where i = 3, · · · , n − 2. If |{u, v} ∩ S| = 2 (see
Figure 2 (b)), without loss of generality, let S = {u, v, w1}, then the trees Ti =
wiu ∪ wiv ∪ wiw1 together with T1 = uw1 ∪ w1v for n − 2 pairwise internally
disjoint S-trees, where i = 2, · · · , n − 2. Otherwise, suppose S ⊆ W (see
Figure 2 (c)). Without loss of generality, let S = {w1, w2, w3}. The trees Ti =
wiw1∪wiw2∪wiw3 (i = 4, 5, · · · , n−2) together with T1 = w2w1∪w2w3 and
T2 = uw1∪uw2∪uw3 and T3 = vw1∪vw2∪vw3 form n−2 pairwise internally
disjoint S-trees. From the arguments above, we conclude that κ3(Kn\e) ≥ n−2.
From this together with Proposition 1, κ(Kn \ e) = n− 2.

(a) (c)(b)

w1

w2

v

u

W

wi

w1

v

u

W
wi

w1

w3

v
u

wi

w2

W

Figure 2: The edges of a tree are by the same type of lines.

Necessity. Next we show that if G 6= Kn,Kn \e, then κ3(G) ≤ n−3, where
G is a connected graph. Actually, we only need to show that κ3(G) ≤ n − 3 for
a graph G obtained from the complete graph Kn by deleting any two edges. Let
G = Kn \ {e1, e2}, where e1, e2 ∈ E(Kn). It is easy to see that e1 and e2 form
a path of order 3 (see Figure 3 (a)), or e1 and e2 are two independent edges (see
Figure 3 (b)). First, we consider the former case. Let P3 = xyz, S = {x, y, z}.
Then |E(G[S]) ∪ EG[S, S̄]| = 3(n − 3) + 1. Since xy, yz /∈ E(G), there exists
no tree of type I . So each tree connecting S must belong to type II . From
Observation 1, each tree of type II uses at least 3 edges in E(G[S]) ∪ EG[S, S̄].
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So 3(n − 3) + 1 edges form at most 3(n−3)+1
3 trees. Thus κ3(G) ≤ |T | =

|T1|+ |T2| = 0 + |T2| ≤ 3(n−3)+1
3 and κ3(G) ≤ n− 3 since κ3(G) is an integer.

(a)

x z

w1

y

S̄

(b)

x z

w1

y

S̄wn−3 wn−3

u2

(f)

v2

v4v1

v3

S̄

(g)

v2 w1

v1 v3
S̄u2

w2

u1

u1

w1

(d)

v2 v4

v1

v3

S̄

(e)

v2

v4

v1

v3

S̄v5 v5

x

y z

H1
H2

(c)

Figure 3: Graphs for Theorem 4 and 5.

Next, we consider the latter case. Set e1 = xw1, e2 = yz, S = {x, y, z}. So
w1 ∈ S̄ and |E(G[S]) ∪ EG[S, S̄]| = 3(n − 3) + 1. If xy and xz form a tree
of type I , then the tree use two edges in E(G[S]) ∪ EG[S, S̄] and the remaining
3(n − 3) − 1 edges in E(G[S]) ∪ EG[S, S̄] form at most 3(n−3)−1

3 trees of type
II . So |T | = |T1| + |T2| ≤ 1 + 3(n−3)−1

3 and κ3(G) ≤ |T | ≤ n − 3 since
κ3(G) is an integer. If xy and xz do not form a tree in T1, then all the edges of
E(G[S]) ∪ EG[S, S̄] can only form trees of type II . From Observation 1, each
tree of type II uses at least 3 edges in E(G[S])∪EG[S, S̄]. Thus κ3(G) ≤ |T | =
|T2| ≤ 3(n−3)+1

3 and κ3(G) ≤ n− 3.

Li et al. obtained the following result in [10].

Lemma 1. [10] Let G be a connected graph with minimum degree δ. Then
κ3(G) ≤ δ. In particular, if there are two adjacent vertices of degree δ, then
κ3(G) ≤ δ − 1.

Recall that G denotes the complement of a graph G. Let us now give our
main result.

Theorem 5. Let G be a connected graph of order n (n ≥ 3). κ3(G) = n − 3 if
and only if G = P4 ∪ (n− 4)K1 or G = P3 ∪ iP2 ∪ (n− 2i− 3)K1 (i = 0, 1) or
G = C3∪iP2∪(n−2i−3)K1 (i = 0, 1) or G = rP2∪(n−2r)K1 (2 ≤ r ≤ bn

2 c).

Proof. Sufficiency. Assume that κ3(G) = n − 3. From Lemm 1, δ(G) ≥
κ3(G) = n − 3 and hence δ(G) ≤ n − 1 − δ(G) ≤ 2. So each component
of G is a path or a cycle. We will show that the following claims hold.
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Claim 1. G has at most one component of order larger than 2.
Proof of Claim 1. Suppose, to the contrary, that G has two components of order
larger than 2, denoted by H1 and H2 (see Figure 3 (c)). Let x, y ∈ V (H1) and
z ∈ V (H2) such that dH1(y) = dH2(z) = 2 and x is adjacent to y in H1. Pick
S = {x, y, z}. Clearly, dG(y) = n − 1 − dG(y) = n − 1 − dH1(y) = n − 3.
The same is true for z, that is, dG(z) = n − 3. This implies that δ(G) ≤ n − 3.
Since all components of G are paths or cycles, δ(G) ≥ n− 3. So δ(G) = n− 3
and dG(y) = dG(z) = δ(G). Since yz ∈ E(G), by Lemma 1 it follows that
κ3(G) ≤ δ(G)− 1 = n− 4, a contradiction.

Claim 2. If H is a component of G of order larger than three, then G =
P4 ∪ (n− 4)K1.
Proof of Claim 2. Assume, to the contrary, that H is a path or a cycle of order
larger than 4, or a cycle of order 4, or H is a path of order 4 and there exists
another nontrivial component in G.

Suppose that H is a path or a cycle of order larger than 4. We can pick
a P5 in H . Let P5 = v1, v2, v3, v4, v5, S = {v2, v3, v4} (see Figure 3 (d)).
Since v2v3, v3v4 /∈ E(G[S]), there exists no tree of type I connecting S. From
Observation 1, each tree of type II uses at least 3 edges. Since |E(G[S]) ∪
EG[S, S̄]| = 3(n − 3) − 1, we have |T2| ≤ 3(n−3)−1

3 and |T | = |T2| = n − 4
since κ3(G) is an integer. This contradicts to κ3(G) = n− 3.

Suppose that H is a cycle of order 4. Set H = v1, v2, v3, v4 be a cycle, and
S = {v2, v3, v4} (see Figure 3 (e)). Since v2v3, v3v4 /∈ E(G[S]), there exists
no tree of type I . Since each tree of type II uses at least 3 edges by Observation
1 and |E(G[S]) ∪ EG[S, S̄]| = 3(n − 3) − 1, we have |T2| ≤ 3(n−3)−1

3 and
|T | = |T2| = n− 4, which also contradicts to κ3(G) = n− 3.

From the above arguments, we assume that H = P4 = v1v2v3v4 is a path
of order 4 and there exists at least one edge in G, say e = u1u2. Choose S =
{v2, v3, u1} (see Figure 3 (f)). We claim that there exists one tree of type I .
Otherwise, all trees are trees of type II . Since each tree of type II uses at least 3
edges by Observation 1, |E(G[S]) ∪ EG[S, S̄]| = 3(n − 3) − 1, we have |T | =
|T2| ≤ 3(n−3)−1

3 . Then κ3(G) ≤ n− 4, a contradiction. So T1 = v2u1 ∪ v3u1 is
a tree of type I . Since κ3(G) = n− 3, there are n− 4 trees of type II connecting
S. Set G1 = G \E(T1). Then dG1(v2) = dG1(v3) = dG1(u1) = n− 4 and each
edge incident to v2 or v3 or u1 must belong to a tree of type II . By the definition
of internally disjoint trees, each tree of type II uses at least one vertex of S̄. One
can see that there exist at most n−6 trees such that each tree uses exact one vertex
of S̄. Then each remaining tree uses at least two vertices of S̄. So there exist at
most n− 5 trees connecting S, a contradiction.

Claim 3. If H is a component of G of order 3, then G = C3 ∪ iP2 ∪ (n −
2i− 3)K1 (i = 0, 1) or G = P3 ∪ iP2 ∪ (n− 2i− 3)K1 (i = 0, 1).

We only consider the case that H = P3. If H = P3 = v1v2v3, then each
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of the other components are independent edges. We claim that G contains at
most 2 independent edges except H , say e1 = u1u2 and e2 = w1w2. Choose
S = {v2, u1, w1} (see Figure 3 (g)). Similar to the proof of Claim 2, there
exists one tree of type I , say T1. If T1 = v2u1 ∪ v2w1, then dG1(v2) = n − 5
where G1 = G \ E(T1) and there exist at most n − 5 trees connecting S in G1,
which implies that κ3(G) ≤ n − 4, a contradiction. So T1 = w1u1 ∪ v2w1 or
T2 = v2u1 ∪ u1w1. Without loss of generality, let T1 = w1u1 ∪ v2w1. Set
G2 = G \ E(T1). Then dG2(w1) = dG2(v2) = n − 4 and each edge incident to
w1 or v2 must belong to a tree of type II . By the definition of internally disjoint
trees, each tree of type II uses at least one vertex of S. One can see that there
exists at most n − 7 trees such that each tree uses exact one vertex of S. Then
each remaining tree uses at least two vertices of S. So there exist at most n − 5
trees connecting S, which contradicts to κ3(G) = n− 3.

From the above arguments, we can conclude that G = P4 ∪ (n − 4)K1 or
G = P3∪ iP2∪(n−2i−3)K1 (i = 0, 1) or G = C3∪ iP2∪(n−2i−3)K1 (i =
0, 1) or G = rP2 ∪ (n− 2r)K1 (2 ≤ r ≤ bn

2 c).
Necessity. We show that κ3(G) ≥ n − 3 if G is a graph such that G =

P4 ∪ (n− 4)K1 or G = P3 ∪ iP2 ∪ (n− 2i− 3)K1 (i = 0, 1) or G = C3 ∪ iP2 ∪
(n − 2i − 3)K1 (i = 0, 1) or G = rP2 ∪ (n − 2r)K1 (2 ≤ r ≤ bn

2 c). We have
the following cases to consider.

Case 1. G = rP2 ∪ (n− 2r)K1 (2 ≤ r ≤ bn
2 c).

We can regard the graph G as a graph obtained from the complete graph Kn

by deleting an edge set M , where M is a matching of Kn. We only need to prove
that κ3(G) ≥ n− 3 when M is a maximum matching of Kn. Let S = {x, y, z}.
Since |S| = 3, S contains at most a pair of adjacent vertices under M .

If S contains a pair of adjacent vertices x and y under M , then the trees
Ti = wix∪wiy∪wiz together with Tn−3 = xy∪yz form n−3 pairwise internally
disjoint trees connecting S, where {w1, w2, · · · , wn−4} = V (G) \ {x, y, z, z′}
such that z′ is the adjacent vertex of z under M if z is M -saturated, or z′ is any
vertex in V (G) \ {x, y, z} if z is M -unsaturated. If S contains no pair of adjacent
vertices under M , then the trees Ti = wix∪wiy∪wiz together with Tn−5 = yx∪
xy′∪y′z and Tn−4 = yx′∪zx′∪zx and Tn−3 = zy∪yz′∪z′x form n−3 pairwise
edge-disjoint S-trees, where {w1, w2, · · · , wn−6} = V (G) \ {x, y, z, x′, y′, z′},
x′, y′, z′ are the adjacent vertices of x, y, z under M , respectively, if x, y, z are all
M -saturated, or x′, y′ are the adjacent vertices of x, y under M , respectively, and
z′ is any vertex in V (G) \ {x, y, z, x′, y′} if z is M -unsaturated.

From the arguments above , we know that κ(S) ≥ n−3 for S ⊆ V (G). Thus
κ3(G) ≥ n−3. From this together with Theorem 4, we know that κ3(G) = n−3.

Case 2. G = C3 ∪ iP2 ∪ (n− 2i− 3)K1 (i = 0, 1) or G = P3 ∪ iP2 ∪ (n−
2i− 3)K1 (i = 0, 1).

We only need to check that κ3(G) ≥ n − 3 for G = C3 ∪ P2 ∪ (n − 5)K1.
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Let C3 = v1, v2, v3 and P2 = u1u2, and let S = {x, y, z} be a 3-subset of G.
If S = V (C3), then there exist n − 3 pairwise internally disjoint S-trees since
each vertex in S is adjacent to each vertex in G \ S. Suppose S 6= V (C3). If
|S ∩ V (C3)| = 2, without loss of generality, assume that x = v1 and y = v2.
When S ∩ V (P2) 6= ∅, say z = u1, the trees Ti = wix ∪ wiy ∪ wiz together
with Tn−4 = xz ∪ yz and Tn−3 = xu2 ∪ u2v3 ∪ zv3 ∪ u2y form n− 3 pairwise
internally disjoint trees connecting S, where {w1, w2, · · · , wn−5} = V (G) \
{x, y, z, u2, v3}. When S ∩ V (P2) = ∅, the trees Ti = wix∪wiy ∪wiz together
with Tn−3 = xz ∪ zy are n − 3 pairwise internally disjoint trees connecting S,
where {w1, w2, · · · , w4} = V (G) \ {x, y, z, v3}. If |S ∩ V (C3)| = 1, without
loss of generality, assume x = v1. When |S ∩ V (P2)| = 2, say y = u1 and
z = u2, the trees Ti = wix∪wiy∪wiz together with Tn−4 = xz∪v2z∪v2y and
Tn−3 = xy ∪ yv3 ∪ zv3 form n− 3 pairwise internally disjoint trees connecting
S, where {w1, w2, · · · , wn−5} = V (G)\{x, y, z, v2, v3}. When S∩V (P2) = 1,
say u1 = y, the trees Ti = wix ∪ wiy ∪ wiz together with Tn−5 = xz ∪ zy
and Tn−4 = xu2 ∪ u2v2 ∪ v2y ∪ v2z and Tn−3 = xy ∪ yv3 ∪ v3z are n − 3
pairwise internally disjoint trees connecting S, where {w1, w2, · · · , wn−6} =
V (G)\{x, y, z, v2, v3, u2}. When |S∩V (P2)| = ∅, the trees Ti = wix∪wiy∪wiz
together with Tn−4 = xz ∪ zy and Tn−3 = xy ∪ yv3 ∪ zv3 form n− 3 pairwise
internally disjoint S-trees, where {w1, w2, · · · , wn−5} = V (G)\{x, y, z, v2, v3}.
If S ∩ V (C3) = ∅, when |S ∩ V (P2)| = 0 or |S ∩ V (P2)| = 2, the trees
Ti = wix ∪ wiy ∪ wiz form n − 3 pairwise internally disjoint S-trees, where
{w1, w2, · · · , wn−3} = V (G)\{x, y, z}. When S ∩V (P2) = 1, say u1 = x, the
trees Ti = wix ∪ wiy ∪ wiz together with Tn−3 = xz ∪ zy form n− 3 pairwise
internally disjoint S-trees, where {w1, w2, · · · , wn−4} = V (G) \ {x, y, z, u2}.

From the above arguments, we conclude that κ(S) ≥ n − 3 for S ⊆ V (G).
Thus κ3(G) ≥ n− 3. From this together with Theorem 4, κ3(G) = n− 3.

Case 3. G = P4 ∪ (n− 4)K1.
This case can be proved by an argument similar to Cases 1 and 2.

Remark 2. In this paper, we characterize graphs with κ3(G) = n− 2, n− 3.
There exists an interesting problem: To characterize graphs with κ3(G) = 1.
Acknowledgement: The authors are very grateful to the referee’s comments and
suggestions, which helped us a lot to improve this paper.
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