ON A RELATION BETWEEN SZEGED AND WIENER INDICES
OF BIPARTITE GRAPHS
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ABSTRACT. Hansen et. al., using the AutoGraphiX software package, conjectured that the
Szeged index Sz(G) and the Wiener index W(G) of a connected bipartite graph G with n > 4
vertices and m > n edges, obeys the relation Sz(G) — W(G) > 4n — 8. Moreover, this bound
would be the best possible. This paper offers a proof to this conjecture.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the
readers to [3] for terminology and notation. Let G be a connected graph with vertex set
V(G) and edge set E(G). For u,v € V(G), d(u,v) denotes the distance between u and v.
If the graph G is connected, then its Wiener index is defined as

WG = Y duv).
{uv}CV(G)
This topological index has been extensively studied in the mathematical literature; see,

e.g., [4,6,9,10]. Let e = uv be an edge of G. Define three sets as follows:
Ny(e) = {weV(Q):du,w)<dv,w)}
Ny(e) = {weV(G):dv,w) < d(u,w)}
No(e) = {weV(Q):d(u,w) =d(v,w)} .

Thus, {Ny(e), Ny(e), No(e)} is a partition of the vertex set of G with regard to e € E(G).
The number of elements of N,(e), N,(e), and Ny(e) will be denoted by n,(e), n,(e),
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and ng(e), respectively. Evidently, if n is the number of vertices of the graph G, then
nu(e) + ny(e) + no(e) = n.

If G is bipartite, then the equality ng(e) = 0 holds for all e € E(G). Therefore, for
any edge e of a a bipartite graph, n,(e) + n,(e) = n.

A long time known property of the Wiener index is the formula [4,11,20]:

W(G) = Y nule)ny(e) (1)

e=uveE
which is applicable for trees. Motivated by the above formula, one of the present authors

[7] introduced a graph invariant, named as the Szeged index, defined by

S2(G) = Y nule)nyle) .

e=uvel
where GG is any graph, not necessarily connected. Evidently, the Szeged index is defined

as a proper extension of the formula (1) for the Wiener index of trees.

Details of the theory of the Szeged index can be found in [8] and in the recent papers
1,2,5,13,13-18,21].

In [12] Hansen et. al. used the AutoGraphiX software package and made the following

conjecture:

Conjecture 1. Let G be a connected bipartite graph with n > 4 vertices and m > n edges.
Then

Sz(G)—W(G)>4n -8 .
Moreover the bound is best possible as shown by the graph composed of a cycle Cy on 4

vertices and a tree T on n — 3 vertices sharing a single vertex.

This paper offers a confirmative proof to this conjecture.

2. Main results

In [19], another expression for the Szeged index was put forward, namely
SAG) = D mle)n(e)= Yo Hayle) (2)
e=weE(Q) e=w€E(Q) {z,y}CV(G)
where p, ,(e), interpreted as the contribution of the vertex pair z and y to the product
ny(e) ny(e), is defined as:
d(z,u) < d(z,v) and d(y,v) < d(y,u)

1 if < or

fhay(€) = d(z,v) < d(x,u) and d(y,u) < d(y,v)

0 otherwise.



We first show that for a 2-connected bipartite graph Conjecture 1 is true.

Lemma 1. Let G be a 2-connected bipartite graph of order n > 4. Then
Sz(G) —W(G) >4n —38
with equality if and only if G = Cy .

Proof. From Eq. (2), we know that

{z.y}CV(G) ecE(G) {zy}CV(G)

- Z Z Mmy x,y)

{z,y}CV(G) |e€cE(G

Claim: For every pair {z,y} C V(G), we have

> ayle) —d(z,y) > 1.

e€E(Q)

In fact, if zy € E(G), that is d(x,y) = 1, then we can find a shortest cycle C' containing
x and y since G is 2-connected. Then, G[C] has no chord. Since G is bipartite, the length
of C'is even. There is an edge ¢’ which is the antipodal edge of ¢ = zy in C. It is easy to
check that ji, ,(€’) = p1.,(e) = 1. So the claim is true.

If d(xz,y) > 2, let P, be a shortest path from z to y and P, be a second-shortest path
from x to y, that is, P, # P, and |P,| = min {|P||P is a path from z to y and P # P, }.
Since G is 2-connected, P, always exists. If there is more than one path satisfying the
condition, we choose P, as a one having the greatest number of common vertices with P; .

If BE(P)NEPR) =0, let PLUP, = C, and then |E(P)| > |E(P)| and all the
antipodal edges of P, in C' make pu,,(e) = 1. We also know that pu,,(e) = 1 for all

e € E(P). Hence, >’ uxy( ) —d(z,y) > d(z,y) > 1.
ecE(G

If E(P)NE(P) # @ then P AP, = C, where C'is a cycle. Let P/ = P,(\C = 2'Py'.
It is easy to see that |E(Py)| > |E(P])|, and the shortest path from z (or y) to the vertex
vin Py is xPex’ (or yPay') together with the shortest path from 2’ (or ¢') to v in C. So,
all the antipodal edges of P in C' make i, ,(e) = 1. We also know that p,,(e) = 1 for

all e € E(Py). Hence, > jpu,(e) =|E(P)|+d(@,y') > d(x,y) + 1, which proves the
e€E(Q)
claim.



Now, let C' = v1v;...v,v; be a shortest cycle in G, where p is even and p > 4.

, 5. Then

> uvi7vp/2+i(e) = |C| =p, that is, > ,uvi,vp/m(e) — d(vs, Vpj21i) = p/2 > 2. Combin-
e€E(G) c€E(Q)

ing this with the claim, we have that

S2(G) — W(G) > (Z)+§(g—1> > (Z>+224n—8.

Actually, for every e € E(C) we have that p,.,,,(e) =1 for i = 1,2,...

The last two equalities hold if and only if p = 4, n = 4 or 5. If n = 4,p = 4, then
G=Cy. It n=2>5,p=4, then G = K3, and in this case we can easily calculate that
Sz(G) — W(G) > 12. Thus, the equality holds if and only if G = C}.

We now complete the proof of Conjecture 1 in the general case.

Theorem 2. Let GG be a connected bipartite graph with n > 4 vertices and m > n edges.
Then
Sz(G)—W(G) >4n -8 .

Equality holds if and only if G is composed of a cycle Cy on 4 vertices and a tree T on

n — 3 vertices sharing a single vertex.

Proof. We have proved that the conclusion is true for a 2-connected bipartite graph. Now
suppose that GG is a connected bipartite graph with blocks By, Bs, ..., By, where k > 2.
Let |B;| = n;. Then, ny+ngy+---+nx =n+k—1. Since m > n and G is bipartite, there
exists at least one block, say B, such that n; > 4. Consider a pair {z,y} C V. We have

the following four cases:

Case 1: z,y € B;, and n; > 4. Then for every e € B; , j # i we have p,,(e) = 0, which

combined with Lemma 1 yields

Z Z poy(e) —d(z,y)| = Z Z poy(e) —d(z,y)| >4n;, — 8 .

{z,y}CB; |ecE(G) {z,y}CB; |ecE(B;)

Case 2: x,y € B;, and n; = 2. In this case,

Z Z Pay(e) —d(x,y)| =0=4n, — 8.

{xﬂy}gBl BEE(G)



Case 3: x € By, y€ B;, i # 1. Let P be a shortest path from x to y, and let wy, w;
be the cut vertices in B; and B;, such that every path from a vertex in B; to B; must
go through wy,w;. By the proof of Lemma 1, we can find an edge ¢’ € E(By)\E(P),
such that p, ., (¢') = 1. Because every path from a vertex in B; to y must go through

wy, we have p,,(¢) = 1. We also know that p,,(e) = 1 for all e € E(P). Hence,
2, fayle) —d(z,y) > 1.

e€E(Q)

We are now in the position to show that for all y € B;\{w;}, we can find a vertex z €

Bi\{w:} such that > p,,(e)—d(z,y) > 2. Since By is 2-connected with n; > 4, there
e€E(Q)
is a cycle containing w;. Let C' be a shortest cycle containing wy, say C' = v1vs... 0,01,

where v; = w; and p is even. Set z = v,/241. By the proof of Lemma 1, we have that

> e (e) —d(z,wr1) > p/2 > 2. It follows that there are two edges €, e”, that are
eEE Bl)

not in the shortest path from z to wy, such that g, (¢') = 1 and p, 4, (¢”) = 1. Thus,

poy(€) =1and p,,(e") =1. Hence, > p.,(e)—d(z,y) > 2.
e€E(Q)

If we fix B;, we obtain that

> D tayle zy) | = (n—1)(ni — 1)+ (n; — 1) = na(n; — 1) .
z€B1\{w1} | e€E(G)
yeB;\{w;}

Case 4: v € B, , ye B;, i > 2,5 > 2,1+ j. Let P be a shortest path between x
and y. If P passes through a block B, with ny > 4, and |B,() P| > 2, then we have that

Z s y(€) — d(x,y) > 1. Otherwise, Z .y () —d(z,y) > 0. So,

e€E(G e€E(Q)

> Z pay(€) —d(z,y)) | 2 0.

IEBi\{wi} BEE
yeB;\{w;}

Equality holds if and only if P passes through a block B, with n, = 2 or ny, > 4, and
|B,(P| = 1.

From the above four cases it follows that

S:G) -W(@) = Y Z (€ > dxy)

{zy}CV(G) ecE(G {zy}CV(G)

= Z Z ,umy xy)

{zy}CV(G) [ecE(G



i=1 {z,y}CB; | e€E(G J=2 zeB1\{w1} | e€E(G
yeB;\{w;}

k

+ % Z Z Z oz y(€) — d(x,y) 224nz—8)+nlz(n —1)

i#j  z€B\{w;} |e€cE(G) Jj=2
27’517J7’51y€B]\{w]}

= 4dn+k—-1)—8k+n(n—mny) =4n —4k —4+n(n —ny) .

Since ny +no+---+ny=n+k—1,n >4, n; > 2, for 2 <i < k, we have that
4<mi<n—k+1l,and2<k<n-3.
If k> 5, then ny(n —ny) > 4(n —4). Thus,

dn—4k —44+n(n—ny) >8n —4k—20>8n—4(n—3)—20=4n—38 .

Equality holds if and only if ny =4, no =n3=---=n, 3=21ie., if By, Bs,..., B, 3
form a tree T on n — 3 vertices, that shares a single vertex with Bj .

If2<k<4 thenniy(n—mny) > (n—k+1)(k—1).

If k=2, thendn — 4k —4+ (n —k+1)(k—1) = 5n — 13 > 4n — 8. Equality holds if
and only if n = 5, GG is a graph composed of a cycle on 4 vertices and a pendant edge.

If k=3, then4dn — 4k —4+ (n —k+1)(k—1) = 6n — 20 > 4n — 8. Equality holds if
and only if n = 6, G is a graph composed of a cycle on 4 vertices and a tree on 3 vertices
sharing a single vertex.

If k=4, thendn — 4k —4+ (n—k+1)(k—1) = Tn — 29 > 4n — 8. Equality holds if
and only if n = 7, G is a graph composed of a cycle on 4 vertices and a tree on 4 vertices
sharing a single vertex.

By this, the proof of Theorem 2 is completed. O]

Remark 3. The method used in the proof of Theorem 2 is not applicable to non-bipartite
graphs. This is because given a 2-connected non-bipartite graph G, for any two vertices
z,y € V(G), if C is an odd cycle, where C is defined as in Lemma 1, we cannot get

> payle) —d(x,y) > 1. Hence, for non-bipartite graphs we do not have an auziliary

e€E(G)
result like Lemma 1.
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