ON A RELATION BETWEEN SZEGED AND WIENER INDICES OF BIPARTITE GRAPHS

LILY CHEN, XUELIANG LI,* MENGMENG LIU AND IVAN GUTMAN

Abstract

Hansen et. al., using the AutoGraphiX software package, conjectured that the Szeged index $S z(G)$ and the Wiener index $W(G)$ of a connected bipartite graph G with $n \geq 4$ vertices and $m \geq n$ edges, obeys the relation $S z(G)-W(G) \geq 4 n-8$. Moreover, this bound would be the best possible. This paper offers a proof to this conjecture.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [3] for terminology and notation. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G), d(u, v)$ denotes the distance between u and v. If the graph G is connected, then its Wiener index is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

This topological index has been extensively studied in the mathematical literature; see, e.g., $[4,6,9,10]$. Let $e=u v$ be an edge of G. Define three sets as follows:

$$
\begin{aligned}
& N_{u}(e)=\{w \in V(G): d(u, w)<d(v, w)\} \\
& N_{v}(e)=\{w \in V(G): d(v, w)<d(u, w)\} \\
& N_{0}(e)=\{w \in V(G): d(u, w)=d(v, w)\} .
\end{aligned}
$$

Thus, $\left\{N_{u}(e), N_{v}(e), N_{0}(e)\right\}$ is a partition of the vertex set of G with regard to $e \in E(G)$. The number of elements of $N_{u}(e), N_{v}(e)$, and $N_{0}(e)$ will be denoted by $n_{u}(e), n_{v}(e)$,

[^0]and $n_{0}(e)$, respectively. Evidently, if n is the number of vertices of the graph G, then $n_{u}(e)+n_{v}(e)+n_{0}(e)=n$.

If G is bipartite, then the equality $n_{0}(e)=0$ holds for all $e \in E(G)$. Therefore, for any edge e of a a bipartite graph, $n_{u}(e)+n_{v}(e)=n$.

A long time known property of the Wiener index is the formula [4, 11, 20]:

$$
\begin{equation*}
W(G)=\sum_{e=u v \in E} n_{u}(e) n_{v}(e) \tag{1}
\end{equation*}
$$

which is applicable for trees. Motivated by the above formula, one of the present authors [7] introduced a graph invariant, named as the Szeged index, defined by

$$
S z(G)=\sum_{e=u v \in E} n_{u}(e) n_{v}(e) .
$$

where G is any graph, not necessarily connected. Evidently, the Szeged index is defined as a proper extension of the formula (1) for the Wiener index of trees.

Details of the theory of the Szeged index can be found in [8] and in the recent papers [1, 2, 5, 13, 13-18, 21].

In [12] Hansen et. al. used the AutoGraphiX software package and made the following conjecture:

Conjecture 1. Let G be a connected bipartite graph with $n \geq 4$ vertices and $m \geq n$ edges. Then

$$
S z(G)-W(G) \geq 4 n-8
$$

Moreover the bound is best possible as shown by the graph composed of a cycle C_{4} on 4 vertices and a tree T on $n-3$ vertices sharing a single vertex.

This paper offers a confirmative proof to this conjecture.

2. Main results

In [19], another expression for the Szeged index was put forward, namely

$$
\begin{equation*}
S z(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)=\sum_{e=u v \in E(G)} \sum_{\{x, y\} \subseteq V(G)} \mu_{x, y}(e) \tag{2}
\end{equation*}
$$

where $\mu_{x, y}(e)$, interpreted as the contribution of the vertex pair x and y to the product $n_{u}(e) n_{v}(e)$, is defined as:

$$
\mu_{x, y}(e)= \begin{cases}1 & \text { if }\left\{\begin{array}{l}
d(x, u)<d(x, v) \text { and } d(y, v)<d(y, u) \\
\text { or } \\
d(x, v)<d(x, u) \text { and } d(y, u)<d(y, v)
\end{array}\right. \\
0 & \text { otherwise } .\end{cases}
$$

We first show that for a 2-connected bipartite graph Conjecture 1 is true.

Lemma 1. Let G be a 2-connected bipartite graph of order $n \geq 4$. Then

$$
S z(G)-W(G) \geq 4 n-8
$$

with equality if and only if $G=C_{4}$.

Proof. From Eq. (2), we know that

$$
\begin{aligned}
S z(G)-W(G) & =\sum_{\{x, y\} \subseteq V(G)} \sum_{e \in E(G)} \mu_{x, y}(e)-\sum_{\{x, y\} \subseteq V(G)} d(x, y) \\
& =\sum_{\{x, y\} \subseteq V(G)}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right]
\end{aligned}
$$

Claim: For every pair $\{x, y\} \subseteq V(G)$, we have

$$
\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq 1
$$

In fact, if $x y \in E(G)$, that is $d(x, y)=1$, then we can find a shortest cycle C containing x and y since G is 2-connected. Then, $G[C]$ has no chord. Since G is bipartite, the length of C is even. There is an edge e^{\prime} which is the antipodal edge of $e=x y$ in C. It is easy to check that $\mu_{x, y}\left(e^{\prime}\right)=\mu_{x, y}(e)=1$. So the claim is true.

If $d(x, y) \geq 2$, let P_{1} be a shortest path from x to y and P_{2} be a second-shortest path from x to y, that is, $P_{2} \neq P_{1}$ and $\left|P_{2}\right|=\min \left\{|P| \mid P\right.$ is a path from x to y and $\left.P \neq P_{1}\right\}$. Since G is 2 -connected, P_{2} always exists. If there is more than one path satisfying the condition, we choose P_{2} as a one having the greatest number of common vertices with P_{1}.

If $E\left(P_{1}\right) \bigcap E\left(P_{2}\right)=\emptyset$, let $P_{1} \bigcup P_{2}=C$, and then $\left|E\left(P_{2}\right)\right| \geq\left|E\left(P_{1}\right)\right|$ and all the antipodal edges of P_{1} in C make $\mu_{x, y}(e)=1$. We also know that $\mu_{x, y}(e)=1$ for all $e \in E\left(P_{1}\right)$. Hence, $\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq d(x, y)>1$.

If $E\left(P_{1}\right) \bigcap E\left(P_{2}\right) \neq \emptyset$, then $P_{1} \triangle P_{2}=C$, where C is a cycle. Let $P_{i}^{\prime}=P_{i} \cap C=x^{\prime} P_{i} y^{\prime}$. It is easy to see that $\left|E\left(P_{2}^{\prime}\right)\right| \geq\left|E\left(P_{1}^{\prime}\right)\right|$, and the shortest path from x (or y) to the vertex v in P_{2}^{\prime} is $x P_{2} x^{\prime}$ (or $y P_{2} y^{\prime}$) together with the shortest path from x^{\prime} (or y^{\prime}) to v in C. So, all the antipodal edges of P_{1}^{\prime} in C make $\mu_{x, y}(e)=1$. We also know that $\mu_{x, y}(e)=1$ for all $e \in E\left(P_{1}\right)$. Hence, $\sum_{e \in E(G)} \mu_{x, y}(e)=\left|E\left(P_{1}\right)\right|+d\left(x^{\prime}, y^{\prime}\right) \geq d(x, y)+1$, which proves the claim.

Now, let $C=v_{1} v_{2} \ldots v_{p} v_{1}$ be a shortest cycle in G, where p is even and $p \geq 4$. Actually, for every $e \in E(C)$ we have that $\mu_{v_{i}, v_{p / 2+i}}(e)=1$ for $i=1,2, \ldots, \frac{p}{2}$. Then $\sum_{e \in E(G)} \mu_{v_{i}, v_{p / 2+i}}(e)=|C|=p$, that is, $\sum_{e \in E(G)} \mu_{v_{i}, v_{p / 2+i}}(e)-d\left(v_{i}, v_{p / 2+i}\right)=p / 2 \geq 2$. Combining this with the claim, we have that

$$
S z(G)-W(G) \geq\binom{ n}{2}+\frac{p}{2}\left(\frac{p}{2}-1\right) \geq\binom{ n}{2}+2 \geq 4 n-8 .
$$

The last two equalities hold if and only if $p=4, n=4$ or 5 . If $n=4, p=4$, then $G \cong C_{4}$. If $n=5, p=4$, then $G \cong K_{2,3}$, and in this case we can easily calculate that $S z(G)-W(G)>12$. Thus, the equality holds if and only if $G \cong C_{4}$.

We now complete the proof of Conjecture 1 in the general case.
Theorem 2. Let G be a connected bipartite graph with $n \geq 4$ vertices and $m \geq n$ edges. Then

$$
S z(G)-W(G) \geq 4 n-8
$$

Equality holds if and only if G is composed of a cycle C_{4} on 4 vertices and a tree T on $n-3$ vertices sharing a single vertex.

Proof. We have proved that the conclusion is true for a 2-connected bipartite graph. Now suppose that G is a connected bipartite graph with blocks $B_{1}, B_{2}, \ldots, B_{k}$, where $k \geq 2$. Let $\left|B_{i}\right|=n_{i}$. Then, $n_{1}+n_{2}+\cdots+n_{k}=n+k-1$. Since $m \geq n$ and G is bipartite, there exists at least one block, say B_{1}, such that $n_{1} \geq 4$. Consider a pair $\{x, y\} \subseteq V$. We have the following four cases:

Case 1: $x, y \in B_{i}$, and $n_{i} \geq 4$. Then for every $e \in B_{j}, j \neq i$ we have $\mu_{x, y}(e)=0$, which combined with Lemma 1 yields

$$
\sum_{\{x, y\} \subseteq B_{i}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right]=\sum_{\{x, y\} \subseteq B_{i}}\left[\sum_{e \in E\left(B_{i}\right)} \mu_{x, y}(e)-d(x, y)\right] \geq 4 n_{i}-8
$$

Case 2: $x, y \in B_{i}$, and $n_{i}=2$. In this case,

$$
\sum_{\{x, y\} \subseteq B_{i}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right]=0=4 n_{i}-8 .
$$

Case 3: $x \in B_{1}, y \in B_{i}, i \neq 1$. Let P be a shortest path from x to y, and let w_{1}, w_{i} be the cut vertices in B_{1} and B_{i}, such that every path from a vertex in B_{1} to B_{i} must go through w_{1}, w_{i}. By the proof of Lemma 1 , we can find an edge $e^{\prime} \in E\left(B_{1}\right) \backslash E(P)$, such that $\mu_{x, w_{1}}\left(e^{\prime}\right)=1$. Because every path from a vertex in B_{1} to y must go through w_{1}, we have $\mu_{x, y}\left(e^{\prime}\right)=1$. We also know that $\mu_{x, y}(e)=1$ for all $e \in E(P)$. Hence, $\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq 1$.

We are now in the position to show that for all $y \in B_{i} \backslash\left\{w_{i}\right\}$, we can find a vertex $z \in$ $B_{1} \backslash\left\{w_{1}\right\}$ such that $\sum_{e \in E(G)} \mu_{z, y}(e)-d(z, y) \geq 2$. Since B_{1} is 2-connected with $n_{1} \geq 4$, there is a cycle containing w_{1}. Let C be a shortest cycle containing w_{1}, say $C=v_{1} v_{2} \ldots v_{p} v_{1}$, where $v_{1}=w_{1}$ and p is even. Set $z=v_{p / 2+1}$. By the proof of Lemma 1 , we have that $\sum_{e \in E\left(B_{1}\right)} \mu_{z, w_{1}}(e)-d\left(z, w_{1}\right) \geq p / 2 \geq 2$. It follows that there are two edges $e^{\prime}, e^{\prime \prime}$, that are not in the shortest path from z to w_{1}, such that $\mu_{z, w_{1}}\left(e^{\prime}\right)=1$ and $\mu_{z, w_{1}}\left(e^{\prime \prime}\right)=1$. Thus, $\mu_{z, y}\left(e^{\prime}\right)=1$ and $\mu_{z, y}\left(e^{\prime \prime}\right)=1$. Hence, $\sum_{e \in E(G)} \mu_{z, y}(e)-d(z, y) \geq 2$.

If we fix B_{i}, we obtain that

$$
\sum_{\substack{x \in B_{1} \backslash\left\{w_{1}\right\} \\ y \in B_{i} \backslash\left\{w_{i}\right\}}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right] \geq\left(n_{1}-1\right)\left(n_{i}-1\right)+\left(n_{i}-1\right)=n_{1}\left(n_{i}-1\right) .
$$

Case 4: $x \in B_{i}, y \in B_{j}, i \geq 2, j \geq 2, i \neq j$. Let P be a shortest path between x and y. If P passes through a block B_{ℓ} with $n_{\ell} \geq 4$, and $\left|B_{\ell} \cap P\right| \geq 2$, then we have that

$$
\begin{aligned}
& \sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq 1 . \text { Otherwise, } \sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq 0 . \text { So, } \\
&\left.\sum_{\substack{x \in B_{i} \backslash\left\{w_{i}\right\} \\
y \in B_{j} \backslash\left\{w_{j}\right\}}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right)\right] \geq 0 .
\end{aligned}
$$

Equality holds if and only if P passes through a block B_{ℓ} with $n_{\ell}=2$ or $n_{\ell} \geq 4$, and $\left|B_{\ell} \bigcap P\right|=1$.

From the above four cases it follows that

$$
\begin{aligned}
& S z(G)-W(G)=\sum_{\{x, y\} \subseteq V(G)} \sum_{e \in E(G)} \mu_{x, y}(e)-\sum_{\{x, y\} \subseteq V(G)} d(x, y) \\
= & \sum_{\{x, y\} \subseteq V(G)}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{k} \sum_{\{x, y\} \subseteq B_{i}}\left[\sum_{\substack{ \\
\{\in E(G)}} \mu_{x, y}(e)-d(x, y)\right]+\sum_{j=2}^{k} \sum_{\substack{x \in B_{1} \backslash\left\{w_{1}\right\} \\
y \in B_{j} \backslash\left\{w_{j}\right\}}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right] \\
& +\frac{1}{2} \sum_{\substack{i \neq j \\
i \neq 1, j \neq 1}} \sum_{\substack{x \in B_{i} \backslash\left\{w_{i}\right\} \\
y \in B_{j} \backslash\left\{w_{j}\right\}}}\left[\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y)\right] \geq \sum_{i=1}^{k}\left(4 n_{i}-8\right)+n_{1} \sum_{j=2}^{k}\left(n_{j}-1\right) \\
& =4(n+k-1)-8 k+n_{1}\left(n-n_{1}\right)=4 n-4 k-4+n_{1}\left(n-n_{1}\right) .
\end{aligned}
$$

Since $n_{1}+n_{2}+\cdots+n_{k}=n+k-1, n_{1} \geq 4, n_{i} \geq 2$, for $2 \leq i \leq k$, we have that $4 \leq n_{1} \leq n-k+1$, and $2 \leq k \leq n-3$.

If $k \geq 5$, then $n_{1}\left(n-n_{1}\right) \geq 4(n-4)$. Thus,

$$
4 n-4 k-4+n_{1}\left(n-n_{1}\right) \geq 8 n-4 k-20 \geq 8 n-4(n-3)-20=4 n-8 .
$$

Equality holds if and only if $n_{1}=4, n_{2}=n_{3}=\cdots=n_{n-3}=2$ i.e., if $B_{2}, B_{3}, \ldots, B_{n-3}$ form a tree T on $n-3$ vertices, that shares a single vertex with B_{1}.

If $2 \leq k \leq 4$, then $n_{1}\left(n-n_{1}\right) \geq(n-k+1)(k-1)$.
If $k=2$, then $4 n-4 k-4+(n-k+1)(k-1)=5 n-13 \geq 4 n-8$. Equality holds if and only if $n=5, G$ is a graph composed of a cycle on 4 vertices and a pendant edge.

If $k=3$, then $4 n-4 k-4+(n-k+1)(k-1)=6 n-20 \geq 4 n-8$. Equality holds if and only if $n=6, G$ is a graph composed of a cycle on 4 vertices and a tree on 3 vertices sharing a single vertex.

If $k=4$, then $4 n-4 k-4+(n-k+1)(k-1)=7 n-29 \geq 4 n-8$. Equality holds if and only if $n=7, G$ is a graph composed of a cycle on 4 vertices and a tree on 4 vertices sharing a single vertex.

By this, the proof of Theorem 2 is completed.

Remark 3. The method used in the proof of Theorem 2 is not applicable to non-bipartite graphs. This is because given a 2-connected non-bipartite graph G, for any two vertices $x, y \in V(G)$, if C is an odd cycle, where C is defined as in Lemma 1, we cannot get $\sum_{e \in E(G)} \mu_{x, y}(e)-d(x, y) \geq 1$. Hence, for non-bipartite graphs we do not have an auxiliary result like Lemma 1.

References

[1] M. Aouchiche and P. Hansen, On a conjecture about the Szeged index, Eur. J. Combin., 31 (2010), 1662-1666.
[2] M. Arezoomand and B. Taeri, Applications of generalized hierarchical product of graphs in computing the Szeged index of chemical graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 591-602.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[4] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211-249.
[5] A. Dolati, I. Motevalian, A. Ehyaee, Szeged index, edge Szeged index, and semi-star trees, Discr. Appl. Math., 158 (2010), 876-881.
[6] R. C. Entringer, Distance in graphs: Trees, J. Comb. Math. Comb. Comput., 24 (1997), 65-84.
[7] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York, 27 (1994), 9-15.
[8] I. Gutman and A.A. Dobrynin, The Szeged index - a success story, Graph Theory Notes New York, 34 (1998), 37-44.
[9] I. Gutman and B. Furtula (Eds.), Distance in Molecular Graphs - Theory, Univ. Kragujevac, Kragujevac, 2012.
[10] I. Gutman and B. Furtula (Eds.), Distance in Molecular Graphs - Applications, Univ. Kragujevac, Kragujevac, 2012.
[11] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[12] P. Hansen, Computers and conjectures in chemical graph theory, Plenanry talk at the International Conference on Mathematical Chemistry, August 4-7, 2010, Xiamen, China.
[13] H. Hua and S. Zhang, A unified approach to extremal trees with respect to geometricarithmetic, Szeged, and edge Szeged indices, MATCH Commun. Math. Comput. Chem., 65 (2011), 691-704.
[14] A. Ilić, Note on PI and Szeged indices, Comput. Math. Model., 52 (2010), 1570-1576.
[15] X. Li, X. Yang, G. Wang and R. Hu, The vertex PI and Szeged indices of chain graphs, MATCH Commun. Math. Comput. Chem., 68 (2012), 349-356.
[16] M.J. Nadjafi-Arani, H. Khodashenas and A.R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discr. Math., 311 (2011), 2233-2237.
[17] M.J. Nadjafi-Arani, H. Khodashenas and A.R. Ashrafi, Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Model., 55 (2012), 1644-1648.
[18] T. Pisanski and M. Randić, Use of the Szeged index and the revised Szeged index for meauring network bipartivity, Discr. Appl. Math., 158 (2010), 1936-1944.
[19] S. Simić, I. Gutman and V. Baltić, Some graphs with extremal Szeged index, Math. Slovaca, 50 (2000), 1-15.
[20] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20.
[21] B. Zhou, X. Cai and Z. Du, On Szeged indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem., 63 (2010), 113-132

Lili Chen, Xueliang Li, Mengmeng Liu
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China
Email: lily60612@126.com , lxl@nankai.edu.cn , liumm05@163.com

Ivan Gutman

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia Email: gutman@kg.ac.rs

[^0]: Supported by the " 973 " program and NSFC.
 MSC (2000): Primary: 05C12; Secondary: 05C90.
 Keywords: Distance (in graph), Wiener index, Szeged index.
 Received: 11 January 2013, Accepted:
 *Corresponding author.

