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Abstract. Hansen et. al., using the AutoGraphiX software package, conjectured that the
Szeged index Sz(G) and the Wiener index W (G) of a connected bipartite graph G with n ≥ 4
vertices and m ≥ n edges, obeys the relation Sz(G) −W (G) ≥ 4n − 8. Moreover, this bound
would be the best possible. This paper offers a proof to this conjecture.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the

readers to [3] for terminology and notation. Let G be a connected graph with vertex set

V (G) and edge set E(G). For u, v ∈ V (G), d(u, v) denotes the distance between u and v.

If the graph G is connected, then its Wiener index is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v) .

This topological index has been extensively studied in the mathematical literature; see,

e.g., [4, 6, 9, 10]. Let e = uv be an edge of G. Define three sets as follows:

Nu(e) = {w ∈ V (G) : d(u,w) < d(v, w)}
Nv(e) = {w ∈ V (G) : d(v, w) < d(u,w)}
N0(e) = {w ∈ V (G) : d(u,w) = d(v, w)} .

Thus, {Nu(e), Nv(e), N0(e)} is a partition of the vertex set of G with regard to e ∈ E(G).

The number of elements of Nu(e), Nv(e), and N0(e) will be denoted by nu(e), nv(e),
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and n0(e), respectively. Evidently, if n is the number of vertices of the graph G, then

nu(e) + nv(e) + n0(e) = n.

If G is bipartite, then the equality n0(e) = 0 holds for all e ∈ E(G). Therefore, for

any edge e of a a bipartite graph, nu(e) + nv(e) = n.

A long time known property of the Wiener index is the formula [4, 11,20]:

W (G) =
∑

e=uv∈E

nu(e) nv(e) (1)

which is applicable for trees. Motivated by the above formula, one of the present authors

[7] introduced a graph invariant, named as the Szeged index, defined by

Sz(G) =
∑

e=uv∈E

nu(e) nv(e) .

where G is any graph, not necessarily connected. Evidently, the Szeged index is defined

as a proper extension of the formula (1) for the Wiener index of trees.

Details of the theory of the Szeged index can be found in [8] and in the recent papers

[1, 2, 5, 13, 13–18,21].

In [12] Hansen et. al. used the AutoGraphiX software package and made the following

conjecture:

Conjecture 1. Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n edges.

Then

Sz(G)−W (G) ≥ 4n− 8 .

Moreover the bound is best possible as shown by the graph composed of a cycle C4 on 4

vertices and a tree T on n− 3 vertices sharing a single vertex.

This paper offers a confirmative proof to this conjecture.

2. Main results

In [19], another expression for the Szeged index was put forward, namely

Sz(G) =
∑

e=uv∈E(G)

nu(e) nv(e) =
∑

e=uv∈E(G)

∑

{x,y}⊆V (G)

µx,y(e) (2)

where µx,y(e), interpreted as the contribution of the vertex pair x and y to the product

nu(e) nv(e), is defined as:

µx,y(e) =





1 if





d(x, u) < d(x, v) and d(y, v) < d(y, u)
or
d(x, v) < d(x, u) and d(y, u) < d(y, v)

0 otherwise.



We first show that for a 2-connected bipartite graph Conjecture 1 is true.

Lemma 1. Let G be a 2-connected bipartite graph of order n ≥ 4. Then

Sz(G)−W (G) ≥ 4n− 8

with equality if and only if G = C4 .

Proof. From Eq. (2), we know that

Sz(G)−W (G) =
∑

{x,y}⊆V (G)

∑

e∈E(G)

µx,y(e)−
∑

{x,y}⊆V (G)

d(x, y)

=
∑

{x,y}⊆V (G)


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 .

Claim: For every pair {x, y} ⊆ V (G), we have

∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 1 .

In fact, if xy ∈ E(G), that is d(x, y) = 1, then we can find a shortest cycle C containing

x and y since G is 2-connected. Then, G[C] has no chord. Since G is bipartite, the length

of C is even. There is an edge e′ which is the antipodal edge of e = xy in C. It is easy to

check that µx,y(e
′) = µx,y(e) = 1. So the claim is true.

If d(x, y) ≥ 2, let P1 be a shortest path from x to y and P2 be a second-shortest path

from x to y, that is, P2 6= P1 and |P2| = min {|P ||P is a path from x to y and P 6= P1}.
Since G is 2-connected, P2 always exists. If there is more than one path satisfying the

condition, we choose P2 as a one having the greatest number of common vertices with P1 .

If E(P1)
⋂

E(P2) = ∅, let P1

⋃
P2 = C, and then |E(P2)| ≥ |E(P1)| and all the

antipodal edges of P1 in C make µx,y(e) = 1. We also know that µx,y(e) = 1 for all

e ∈ E(P1). Hence,
∑

e∈E(G)

µx,y(e)− d(x, y) ≥ d(x, y) > 1.

If E(P1)
⋂

E(P2) 6= ∅, then P14P2 = C, where C is a cycle. Let P ′
i = Pi

⋂
C = x′Piy

′.

It is easy to see that |E(P ′
2)| ≥ |E(P ′

1)|, and the shortest path from x (or y) to the vertex

v in P ′
2 is xP2x

′ (or yP2y
′) together with the shortest path from x′ (or y′) to v in C. So,

all the antipodal edges of P ′
1 in C make µx,y(e) = 1. We also know that µx,y(e) = 1 for

all e ∈ E(P1). Hence,
∑

e∈E(G)

µx,y(e) = |E(P1)| + d(x′, y′) ≥ d(x, y) + 1, which proves the

claim.



Now, let C = v1v2 . . . vpv1 be a shortest cycle in G, where p is even and p ≥ 4.

Actually, for every e ∈ E(C) we have that µvi,vp/2+i
(e) = 1 for i = 1, 2, . . . , p

2
. Then

∑
e∈E(G)

µvi,vp/2+i
(e) = |C| = p, that is,

∑
e∈E(G)

µvi,vp/2+i
(e)− d(vi, vp/2+i) = p/2 ≥ 2. Combin-

ing this with the claim, we have that

Sz(G)−W (G) ≥
(

n

2

)
+

p

2

(p

2
− 1

)
≥

(
n

2

)
+ 2 ≥ 4n− 8 .

The last two equalities hold if and only if p = 4, n = 4 or 5. If n = 4, p = 4, then

G ∼= C4 . If n = 5, p = 4, then G ∼= K2,3, and in this case we can easily calculate that

Sz(G)−W (G) > 12. Thus, the equality holds if and only if G ∼= C4 .

We now complete the proof of Conjecture 1 in the general case.

Theorem 2. Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n edges.

Then

Sz(G)−W (G) ≥ 4n− 8 .

Equality holds if and only if G is composed of a cycle C4 on 4 vertices and a tree T on

n− 3 vertices sharing a single vertex.

Proof. We have proved that the conclusion is true for a 2-connected bipartite graph. Now

suppose that G is a connected bipartite graph with blocks B1, B2, . . . , Bk , where k ≥ 2.

Let |Bi| = ni. Then, n1 +n2 + · · ·+nk = n+k−1. Since m ≥ n and G is bipartite, there

exists at least one block, say B1 , such that n1 ≥ 4. Consider a pair {x, y} ⊆ V . We have

the following four cases:

Case 1: x, y ∈ Bi , and ni ≥ 4. Then for every e ∈ Bj , j 6= i we have µx,y(e) = 0, which

combined with Lemma 1 yields

∑

{x,y}⊆Bi


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 =

∑

{x,y}⊆Bi


 ∑

e∈E(Bi)

µx,y(e)− d(x, y)


 ≥ 4ni − 8 .

Case 2: x, y ∈ Bi , and ni = 2. In this case,

∑

{x,y}⊆Bi


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 = 0 = 4ni − 8 .



Case 3: x ∈ B1 , y ∈ Bi , i 6= 1. Let P be a shortest path from x to y, and let w1, wi

be the cut vertices in B1 and Bi , such that every path from a vertex in B1 to Bi must

go through w1, wi . By the proof of Lemma 1, we can find an edge e′ ∈ E(B1)\E(P ) ,

such that µx,w1(e
′) = 1. Because every path from a vertex in B1 to y must go through

w1, we have µx,y(e
′) = 1. We also know that µx,y(e) = 1 for all e ∈ E(P ). Hence,

∑
e∈E(G)

µx,y(e)− d(x, y) ≥ 1.

We are now in the position to show that for all y ∈ Bi\{wi}, we can find a vertex z ∈
B1\{w1} such that

∑
e∈E(G)

µz,y(e)−d(z, y) ≥ 2. Since B1 is 2-connected with n1 ≥ 4, there

is a cycle containing w1. Let C be a shortest cycle containing w1, say C = v1v2 . . . vpv1,

where v1 = w1 and p is even. Set z = vp/2+1. By the proof of Lemma 1, we have that
∑

e∈E(B1)

µz,w1(e) − d(z, w1) ≥ p/2 ≥ 2. It follows that there are two edges e′, e′′, that are

not in the shortest path from z to w1 , such that µz,w1(e
′) = 1 and µz,w1(e

′′) = 1. Thus,

µz,y(e
′) = 1 and µz,y(e

′′) = 1. Hence,
∑

e∈E(G)

µz,y(e)− d(z, y) ≥ 2.

If we fix Bi , we obtain that

∑

x∈B1\{w1}
y∈Bi\{wi}


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 ≥ (n1 − 1)(ni − 1) + (ni − 1) = n1(ni − 1) .

Case 4: x ∈ Bi , y ∈ Bj , i ≥ 2, j ≥ 2, i 6= j. Let P be a shortest path between x

and y. If P passes through a block B` with n` ≥ 4, and |B`

⋂
P | ≥ 2, then we have that

∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 1. Otherwise,
∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 0. So,

∑

x∈Bi\{wi}
y∈Bj\{wj}


 ∑

e∈E(G)

µx,y(e)− d(x, y))


 ≥ 0 .

Equality holds if and only if P passes through a block B` with n` = 2 or n` ≥ 4, and

|B`

⋂
P | = 1.

From the above four cases it follows that

Sz(G)−W (G) =
∑

{x,y}⊆V (G)

∑

e∈E(G)

µx,y(e)−
∑

{x,y}⊆V (G)

d(x, y)

=
∑

{x,y}⊆V (G)


 ∑

e∈E(G)

µx,y(e)− d(x, y)






=
k∑

i=1

∑

{x,y}⊆Bi


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 +

k∑
j=2

∑

x∈B1\{w1}
y∈Bj\{wj}


 ∑

e∈E(G)

µx,y(e)− d(x, y)




+
1

2

∑

i6=j
i6=1,j 6=1

∑

x∈Bi\{wi}
y∈Bj\{wj}


 ∑

e∈E(G)

µx,y(e)− d(x, y)


 ≥

k∑
i=1

(4ni − 8) + n1

k∑
j=2

(nj − 1)

= 4(n + k − 1)− 8k + n1(n− n1) = 4n− 4k − 4 + n1(n− n1) .

Since n1 + n2 + · · · + nk = n + k − 1, n1 ≥ 4 , ni ≥ 2, for 2 ≤ i ≤ k, we have that

4 ≤ n1 ≤ n− k + 1, and 2 ≤ k ≤ n− 3.

If k ≥ 5, then n1(n− n1) ≥ 4(n− 4). Thus,

4n− 4k − 4 + n1(n− n1) ≥ 8n− 4k − 20 ≥ 8n− 4(n− 3)− 20 = 4n− 8 .

Equality holds if and only if n1 = 4 , n2 = n3 = · · · = nn−3 = 2 i.e., if B2, B3, . . . , Bn−3

form a tree T on n− 3 vertices, that shares a single vertex with B1 .

If 2 ≤ k ≤ 4, then n1(n− n1) ≥ (n− k + 1)(k − 1).

If k = 2, then 4n− 4k − 4 + (n− k + 1)(k − 1) = 5n− 13 ≥ 4n− 8. Equality holds if

and only if n = 5, G is a graph composed of a cycle on 4 vertices and a pendant edge.

If k = 3, then 4n− 4k − 4 + (n− k + 1)(k − 1) = 6n− 20 ≥ 4n− 8. Equality holds if

and only if n = 6, G is a graph composed of a cycle on 4 vertices and a tree on 3 vertices

sharing a single vertex.

If k = 4, then 4n− 4k − 4 + (n− k + 1)(k − 1) = 7n− 29 ≥ 4n− 8. Equality holds if

and only if n = 7, G is a graph composed of a cycle on 4 vertices and a tree on 4 vertices

sharing a single vertex.

By this, the proof of Theorem 2 is completed.

Remark 3. The method used in the proof of Theorem 2 is not applicable to non-bipartite

graphs. This is because given a 2-connected non-bipartite graph G, for any two vertices

x, y ∈ V (G), if C is an odd cycle, where C is defined as in Lemma 1, we cannot get
∑

e∈E(G)

µx,y(e) − d(x, y) ≥ 1. Hence, for non-bipartite graphs we do not have an auxiliary

result like Lemma 1.
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[18] T. Pisanski and M. Randić, Use of the Szeged index and the revised Szeged index

for meauring network bipartivity, Discr. Appl. Math., 158 (2010), 1936–1944.
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