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a b s t r a c t

Let Hn be the n-th harmonic number and let H(2)
n be the n-th generalized harmonic num-

ber of order two. Spieß proved that for a nonnegative integer m and for t = 1, 2, and 3,
the sum R(m, t) =

n
k=0 k

mH t
k can be represented as a polynomial in Hn with polynomial

coefficients in n plus H(2)
n multiplied by a polynomial in n. For t = 3, we show that the

coefficient of H(2)
n in Spieß’s formula equals Bm/2, where Bm is them-th Bernoulli number.

Spieß further conjectured for t ≥ 4 such a summation takes the same form as for t ≤ 3.
We find a counterexample for t = 4. However, we prove that the structure theorem of
Spieß holds for the sum

n
k=0 p(k)H

4
k when the polynomial p(k) satisfies a certain con-

dition. We also give a structure theorem for the sum
n

k=0 k
mHkH

(2)
k . Our proofs rely on

Abel’s lemma on summation by parts.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For a positive integer n and an integer r , the n-th generalized harmonic number of order r is defined by

H(r)
n =

n
k=1

1
kr

.

For convenience, we setH(r)
n = 0 for n ≤ 0. For r = 1,Hn = H(1)

n is the n-th harmonic number. Identities involving harmonic
numbers and the generalized harmonic numbers have been extensively studied in the literature; see, for example, [1–4].

Spieß [3] considered the following summation

R(m, t) =

n
k=0

kmH t
k,

wherem and t are nonnegative integers. He obtained the following structure theorem.

Theorem 1.1 ([3, Theorem 30]). Let p(k) be a polynomial in k of degree m. Then for t = 1, 2, or 3, there exist polynomials
q0(n), . . . , qt(n) and C(n) of degree at most m + 1 such that

n
k=0

p(k)H t
k =

t
i=0

qi(n)H i
n + C(n)H(2)

n , (1.1)

for all nonnegative integers n. Moreover, C(n) = 0 when t = 1, 2.
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Using the above structure theorem, we can establish identities by interpolation with the method of undetermined
coefficients; see [3, Section 5] for more details of this method. For example, we have

n
k=0

H2
k = (n + 1)H2

n − (2n + 1)Hn + 2n,

n
k=0

kH2
k =

n(n + 1)
2

H2
n −

n2
− n − 1
2

Hn +
n(n − 3)

4
.

For t = 3, we determine the polynomial C(n) in Theorem 1.2 in terms of the Bernoulli numbers.

Theorem 1.2. For nonnegative integers n and m, there exist polynomials q1(n), q2(n), and q3(n) of degree at most m + 1, such
that

n
k=0

kmH3
k = sm(n)H3

n + q1(n)H2
n + q2(n)Hn + q3(n) +

Bm

2
H(2)

n , (1.2)

where sm(n) =
n

k=0 k
m and Bm is the m-th Bernoulli number.

Spieß [3] conjectured that Theorem 1.1 holds for any positive integer t ≥ 4. We find a counterexample for R(0, t). More
precisely, by interpolation with the method of undetermined coefficients, we can show that the sum

R(0, 4) =

n
k=0

H4
k

cannot be represented by the form as conjectured by Spieß. However, the following theorem shows that the conjecture
holds for t = 4 when the polynomial p(k) satisfies a certain condition.

Theorem 1.3. Let p(k) =
m

i=0 aik
i be a polynomial in k of degree m such that the coefficients ai satisfy

m
i=0 aiBi = 0. Then

there exist polynomials Sm(n), q1(n), q2(n), q3(n) and q4(n) of degree at most m + 1, together with a constant C such that

n
k=0

p(k)H4
k = Sm(n)H4

n + q1(n)H3
n + q2(n)H2

n + q3(n)Hn + q4(n) + CH(2)
n . (1.3)

In particular, we have Sm(n) =
n

k=0 p(k) and

C = −

m
i=0

ai


2

i + 1

i
k=0


i + 1
k


Bk

i−k
j=0


i − k
j


Bj −

i
2
Bi−1


.

Moreover, we consider the summation
n

k=0 k
mHkH

(2)
k and obtain a similar structure theorem.

Theorem 1.4. Let n and m be nonnegative integers. There exist polynomials q1(n), q2(n) and q3(n) of degree at most m + 1,m
and m, respectively, such that

n
k=0

kmHkH
(2)
k = sm(n)HnH(2)

n + q1(n)H(2)
n + q2(n)Hn + q3(n) −

Bm

2
H2

n , (1.4)

where sm(n) =
n

k=0 k
m.

Our proofs of Theorems 1.2–1.4 rely on Abel’s lemma on summation by parts. In Section 2, we give a proof of Theorem1.2.
The proofs of Theorems 1.3 and 1.4 are similar to that of Theorem 1.2 and hence are omitted. We conclude this paper with
several examples.

2. The proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2 by using Abel’s lemma on summation by parts, which is stated as follows.

Lemma 2.1 (Abel’s Lemma). Let {ak} and {bk} be two sequences. Then we have

n−1
k=m

(ak+1 − ak)bk =

n−1
k=m

ak+1(bk − bk+1) + anbn − ambm. (2.1)
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Abel’s lemma can be used to prove identities on harmonic numbers; see, for example, Graham, Knuth and Patashnik [1].
For example, by taking ak = H(q)

k and bk = H(p)
k in (2.1), we are led to the following well-known formula

n
k=1

H(p)
k

kq
+

n
k=1

H(q)
k

kp
= H(p)

n H(q)
n + H(p+q)

n .

In particular, we have

n
k=1

Hk

k
=

H2
n + H(2)

n

2
. (2.2)

Proof of Theorem 1.2. Let sm(n) = 0m
+ 1m

+ · · · + nm, where 0m
= δ0,m. It is well-known that

sm(n) =
1

m + 1

m
i=0


m + 1

i


Bi(n + 1)m−i+1. (2.3)

Note that sm(k) can be written as

m+1
i=1

ai(k + 1)i

with a1 = Bm and a2 = mBm−1/2.
By Abel’s lemma, we find

n
k=0

kmH3
k =

n
k=0

(sm(k) − sm(k − 1))H3
k

= −

n
k=0

sm(k)(H3
k+1 − H3

k ) + sm(n)H3
n+1

= −

n−1
k=0

sm(k)


3H2
k

k + 1
+

3Hk

(k + 1)2
+

1
(k + 1)3


+ sm(n)H3

n . (2.4)

We proceed to compute the three sums on the right hand side of (2.4). First, we see that

n−1
k=0

sm(k)
3H2

k

k + 1

can be represented in the form as in (1.1) since

n−1
k=0

p(k)H t
k =

n
k=0

p(k)H t
k − p(n)H t

n.

Second, it is easily checked that

n−1
k=0

sm(k)
3Hk

(k + 1)2
=

n−1
k=0

3


m−1
i=0

ai(k + 1)i

Hk + 3Bm

n−1
k=0

Hk

k + 1
. (2.5)

Hence the first sum of the right hand side can also be represented in the form as in Theorem 1.1. According to (2.2), the
second sum on the right hand of (2.5) can be evaluated as follows

3Bm

n−1
k=0

Hk

k + 1
=

3Bm

2
(H2

n − H(2)
n ).

Finally, for the third sum on the right hand side of (2.4), we have

n−1
k=0

sm(k)
(k + 1)3

=

n−2
k=0


m−2
i=0

ai(k + 1)i


+ a2Hn + BmH(2)
n .

Summing up the three summations on the right hand side of (2.4), we find that the coefficient of H(2)
n equals Bm/2. This

completes the proof. �
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3. Examples

Applying interpolation with the method of undetermined coefficients, we conclude this paper by giving the following
examples from Theorems 1.2–1.4.

n
k=0

H3
k = (n + 1)H3

n −
3
2
(2n + 1)H2

n + 3(2n + 1)Hn − 6n +
1
2
H(2)

n ,

n
k=0

kH3
k =

n(n + 1)
2

H3
n −

3(n2
− n − 1)
4

H2
n +

3n2
− 9n − 5
4

Hn −
3n(n − 7)

8
−

1
4
H(2)

n ,

n
k=0

k2H3
k =

n(n + 1)(2n + 1)
6

H3
n −

4n3
− 3n2

− n + 3
12

H2
n +

8n3
− 15n2

+ 25n + 15
36

Hn

−
n(16n2

− 57n + 203)
216

+
1
12

H(2)
n ,

n
k=0

(2k + 1)H4
k = (n + 1)2H4

n − 2n(n + 1)H3
n + (3n2

+ 3n + 1)H2
n − (3n2

+ 3n + 1)Hn +
3n(n + 1)

2
,

n
k=0

(3k2 + k)H4
k = n(n + 1)2H4

n −
4
3
n(n − 1)(n + 1)H3

n +
1
3
n(4n + 1)(n − 1)H2

n

−
1
9
(8n3

− 15n2
+ 7n + 6)Hn +

1
54

n(16n2
− 57n + 95) −

1
3
H(2)

n ,

n
k=0

HkH
(2)
k = (n + 1)HnH(2)

n −
2n + 1

2
H(2)

n + Hn −
1
2
H2

n ,

n
k=0

kHkH
(2)
k =

n(n + 1)
2

HnH(2)
n +

1 + n − n2

4
H(2)

n −
2n + 3

4
Hn +

3
4
n +

1
4
H2

n .
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