Further hardness results on the rainbow vertex-connection number of graphs*

Lily Chen, Xueliang Li, Huishu Lian
Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China
Email: lily60612@126.com, lxl@nankai.edu.cn, lhs6803@126.com

Abstract

A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in G are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection number of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In a previous paper we showed that it is NP-Complete to decide whether a given graph G has $\operatorname{rvc}(G)=2$. In this paper we show that for every integer $k \geq 2$, deciding whether $\operatorname{rvc}(G) \leq k$ is NP-Hard. We also show that for any fixed integer $k \geq 2$, this problem belongs to NP-class, and so it becomes NP-Complete.

Keywords: vertex-colored graph, rainbow vertex-connection number, NP-Hard, NP-Complete.

AMS subject classification 2010: 05C15, 05C40, 68Q17, 68Q25, 90 C 27.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Undefined terminology and notation can be found in [2].

Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow\{1,2, \cdots, k\}$, $k \in \mathbb{N}$, where adjacent edges may be colored the same. A path P of G is a rainbow path if no two edges of P are colored the same. The graph G is called rainbow-connected if for any pair of vertices u and v of G, there is a rainbow $u-v$ path. The minimum number of colors for which there is an edge-coloring of G such that G is rainbow connected is called the rainbow connection number, denoted by $r c(G)$. Clearly, if a graph is rainbow connected, then it is also connected. Conversely, any connected graph has a trivial edgecoloring that makes it rainbow connected, just assign each edge a distinct color. An easy

[^0]observation is that if G has n vertices then $r c(G) \leq n-1$, since one may color the edges of a spanning tree with distinct colors, and color the remaining edges with one of the colors already used. It is easy to see that if H is a connected spanning subgraph of G, then $r c(G) \leq r c(H)$. We note the trivial fact that $r c(G)=1$ if and only if G is a clique, the fact that $r c(G)=n-1$ if and only if G is a tree, and the easy observation that a cycle with $k \geq 4$ vertices has a rainbow connection number $\lceil k / 2\rceil$. Also notice that $r c(G) \geq \operatorname{diam}(G)$, where $\operatorname{diam}(G)$ is the diameter of G.

Similar to the concept of rainbow connection number, Krivelevich and Yuster [7] proposed the concept of rainbow vertex-connection. Let G be a nontrivial connected graph with a vertex-coloring $c: V(G) \rightarrow\{1,2, \cdots, k\}, k \in \mathbb{N}$. A path P of G is rainbow vertex-connected if its internal vertices have distinct colors. The graph G is rainbow vertex-connected if any pair of vertices are connected by a rainbow vertex-connected path. In particular, if k colors are used, then G is rainbow k-vertex-connected. The rainbow vertex-connection number of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. An easy observation is that if G is of order n then $\operatorname{rvc}(G) \leq n-2, \operatorname{rvc}(G)=0$ if and only if G is a complete graph, and $\operatorname{rvc}(G)=1$ if and only if $\operatorname{diam}(G)=2$. Notice that $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$ with equality if the diameter is 1 or 2 . For the rainbow connection number and the rainbow vertex-connection number, some examples were given to show that there is no upper bound for one of parameters in terms of the other in [7]. Krivelevich and Yuster [7] proved that if G is a graph with n vertices and minimum degree δ, then $\operatorname{rvc}(G)<11 n / \delta$. Li and Shi used a similar proof technique and greatly improved this bound, see [9].

The computational complexity of rainbow connection number has been studied extensively. In [3], Caro et al. conjectured that computing $r c(G)$ is an NP-Hard problem, and that even deciding whether a graph has $r c(G)=2$ is NP-Complete. Later, Chakraborty et al. confirmed this conjecture in [4]. They also conjectured that for every integer $k \geq 2$, to decide whether $r c(G) \leq k$ is NP-Hard. Recently, Ananth and Nasre confirmed the conjecture in [1]. Li and $\mathrm{Li}[8]$ showed that for any fixed integer $k \geq 2$, to decide whether $r c(G) \leq k$ is actually NP-Complete. For the rainbow vertex-connection number we got a similar complexity result in [6].

Theorem 1 [6] Given a graph G, deciding whether $\operatorname{rvc}(G)=2$ is NP-Complete. Thus, computing rvc (G) is NP-Hard.

As a generalization of the above result, in this paper we will show the following result:
Theorem 2 For every integer $k \geq 2$, to decide whether rvc $(G) \leq k$ is NP-Hard. Moreover, for any fixed integer $k \geq 2$, the problem belongs to NP-class, and therefore it is NP-Complete.

In order to prove this theorem, we first show that an intermediate problem called the k-subset rainbow vertex-connection problem is NP-Hard by giving a reduction from
the vertex-coloring problem. We then establish the polynomial-time equivalence of the k subset rainbow vertex-connection problem and the problem of deciding whether $\operatorname{rvc}(G) \leq$ k for a graph G.

2 Proof of Theorem 2

We first describe the problem of k-subset rainbow vertex-connection: given a graph G and a set of pairs $P \subseteq V(G) \times V(G)$, decide whether there is a vertex-coloring of G with k colors such that every pair of vertices $(u, v) \in P$ is rainbow vertex-connected. Recall that the k-vertex-coloring problem is as follows: given a graph G and an integer k, whether there exists an assignment of at most k colors to the vertices of G such that no pair of adjacent vertices are colored the same. It is known that this k-vertex-coloring problem is NP-Hard for $k \geq 3$. Now we reduce the k-vertex-coloring problem to the k-subset rainbow vertex-connection problem, which shows that the problem of k-subset rainbow vertex-connection is NP-Hard.

Lemma 1 The problem of k-vertex-coloring is polynomially reducible to the problem of k-subset rainbow vertex-connection.

Proof. Let $G=(V, E)$ be an instance of the k-vertex-coloring problem, we construct a graph $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), P\right\rangle$ as follows:

For every vertex $v \in V$ we introduce a new vertex x_{v}. We set

$$
V^{\prime}=V \cup\left\{x_{v}: v \in V\right\} \text { and } E^{\prime}=E \cup\left\{\left(v, x_{v}\right): v \in V\right\} .
$$

Now we define the set P as follows:

$$
P=\left\{\left(x_{u}, x_{v}\right):(u, v) \in E\right\}
$$

It remains to verify that G is vertex-colorable using $k(\geq 3)$ colors if and only if there is a vertex-coloring of G^{\prime} with k colors such that every pair of vertices $\left(x_{u}, x_{v}\right) \in P$ is rainbow vertex-connected.

Let c be the proper k-vertex-coloring of G. We define the vertex-coloring c^{\prime} of G^{\prime} by $c^{\prime}\left(x_{v}\right)=c^{\prime}(v)=c(v)$. If $\left(x_{u}, x_{v}\right) \in P$, then $(u, v) \in E, c(u) \neq c(v)$, and so $c^{\prime}(u) \neq c^{\prime}(v)$, $x_{u} u v x_{v}$ is a rainbow vertex-connected path between x_{u} and x_{v}.

In the other direction, assume that c^{\prime} is a k-vertex-coloring of G^{\prime} such that every pair of vertices $\left(x_{u}, x_{v}\right) \in P$ is rainbow vertex-connected. We define the vertex-coloring c of G by $c(v)=c^{\prime}(v)$. For every $(u, v) \in E,\left(x_{u}, x_{v}\right) \in P$, since the rainbow vertex-connected
path between x_{u} and x_{v} must go through u and $v, c^{\prime}(u) \neq c^{\prime}(v)$, and so $c(u) \neq c(v)$, thus c is the proper k-vertex-coloring of G.

In the following, we prove that the problem of deciding whether a graph is k-subset rainbow vertex-connection is polynomial-time equivalent to the problem of deciding whether $\operatorname{rvc}(G) \leq k$ for a graph G.

Lemma 2 The following problems are polynomial-time equivalent:

1. Given a graph G, decide whether $r v c(G) \leq k$.
2. Given a graph G and a set $P \subseteq V(G) \times V(G)$ of pairs of vertices, decide whether there is a vertex-coloring of G with k colors such that every pair of vertices $(u, v) \in P$ is rainbow vertex-connected.

Proof. It is sufficient to demonstrate a reduction from Problem 2 to Problem 1. Let $\langle G=(V, E), P\rangle$ be any instance of Problem 2. We construct a graph $G_{k}=\left(V_{k}, E_{k}\right)$ such that G is a subgraph of G_{k} and $\operatorname{rvc}\left(G_{k}\right) \leq k$ if and only if G is k-subset rainbow vertex-connected. We prove the correctness of the reduction by induction on k. For $k=2$ and $k=3$, we give explicit constructions and show that the reduction is valid. Then we show our inductive step to get G_{k} and prove the correctness of the reduction.

Construction of G_{2} : Let $G_{2}=\left(V_{2}, E_{2}\right)$ where the vertex set V_{2} is defined as follows:

$$
\begin{aligned}
V_{2} & =\{u\} \cup V_{2}^{(0)} \cup V_{2}^{(2)} \\
V_{2}^{(0)} & =\left\{v_{i, 0}^{(1)}, v_{i, 0}^{(2)}: i \in\{1,2, \cdots, n\}\right\} \cup\left\{w_{i, j}^{(1)}, w_{i, j}^{(2)}:\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
V_{2}^{(2)} & =\left\{v_{i, 2}: i \in\{1,2, \cdots n\}\right\}
\end{aligned}
$$

and the edge set E_{2} is defined as:

$$
\begin{aligned}
E_{2} & =E_{2}^{(1)} \cup E_{2}^{(2)} \cup E_{2}^{(3)} \cup E_{2}^{(4)} \cup E_{2}^{(5)} \cup E_{2}^{(6)} \\
E_{2}^{(1)} & =\left\{(u, x): x \in V_{2}^{(0)}\right\} \\
E_{2}^{(2)} & =\left\{\left(v_{i, 0}^{(1)}, v_{i, 0}^{(2)}\right): i \in\{1,2, \cdots, n\}\right\} \\
E_{2}^{(3)} & =\left\{\left(w_{i, j}^{(1)}, w_{i, j}^{(2)}\right):\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
E_{2}^{(4)} & =\left\{\left(v_{i, 2}, v_{i, 0}^{(1)}\right),\left(v_{i, 2}, v_{i, 0}^{(2)}\right): i \in\{1,2, \cdots, n\}\right\} \\
E_{2}^{(5)} & =\left\{\left(v_{i, 2}, w_{i, j}^{(1)}\right),\left(v_{j, 2}, w_{i, j}^{(2)}\right):\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
E_{2}^{(6)} & =\left\{\left(v_{i, 2}, v_{j, 2}\right):\left(v_{i}, v_{j}\right) \in E(G)\right\}
\end{aligned}
$$

Denote $H_{2}=G_{2}\left[\left\{v_{i, 2}: i \in\{1,2, \ldots, n\}\right\}\right]$. Let $P_{2}=\left\{\left(v_{i, 2}, v_{j, 2}\right):\left(v_{i}, v_{j}\right) \in P\right\}$. The graph G_{2} satisfies the property that for all $\left(v_{i, 2}, v_{j, 2}\right) \in P_{2}$ there is no path of length ≤ 3 between $v_{i, 2}$ and $v_{j, 2}$ in $G_{2} \backslash E\left(H_{2}\right)$ and also for all $\left(v_{i, 2}, v_{j, 2}\right) \notin P_{2}$ the length of the shortest path between $v_{i, 2}$ and $v_{j, 2}$ in $G_{2} \backslash E\left(H_{2}\right)$ is 3 .

Let $c: V \rightarrow\{1,2\}$ be a 2-vertex-coloring of G such that every pair of vertices in P is rainbow vertex-connected. Define the vertex-coloring c_{2} of G_{2} as follows:

- $c_{2}(u)=1$.
- $c_{2}\left(v_{i, 0}^{(1)}\right)=1$ and $c_{2}\left(v_{i, 0}^{(2)}\right)=2$ for $i \in\{1,2, \cdots, n\}$.

$$
c_{2}\left(w_{i, j}^{(1)}\right)=1 \text { and } c_{2}\left(w_{i, j}^{(2)}\right)=2, \text { for all } w_{i, j}^{(\alpha)} \in V_{2}^{(0)}, \alpha \in\{1,2\} .
$$

- $c_{2}\left(v_{i, 2}\right)=c\left(v_{i}\right)$, for $i \in\{1,2, \cdots, n\}$.

It can be easily verified that $\operatorname{rvc}\left(G_{2}\right) \leq 2$ if and only if G is 2 -subset rainbow vertexconnected.

Construction of G_{3} : Let $G_{3}=\left(V_{3}, E_{3}\right)$ where the vertex set V_{3} is defined as follows:

$$
\begin{aligned}
V_{3} & =V_{3}^{(0)} \cup V_{3}^{(1)} \cup V_{3}^{(3)} \\
V_{3}^{(0)} & =\left\{v_{i, 0}^{(1)}, v_{i, 0}^{(2)}: i \in\{1,2, \cdots, n\}\right\} \cup\left\{u_{i, j}^{(1)}, u_{i, j}^{(2)}:\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
V_{3}^{(1)} & =\left\{v_{i, 1}^{(1)}, v_{i, 1}^{(2)}: i \in\{1,2, \cdots, n\}\right\} \cup\left\{w_{i, j}^{(1)}, w_{i, j}^{(2)}:\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
V_{3}^{(3)} & =\left\{v_{i, 3}: i \in\{1,2, \cdots, n\}\right\}
\end{aligned}
$$

and the edge set E_{3} is defined as:

$$
\begin{aligned}
E_{3} & =E_{3}^{(1)} \cup E_{3}^{(2)} \cup E_{3}^{(3)} \cup E_{3}^{(4)} \cup E_{3}^{(5)} \cup E_{3}^{(6)} \cup E_{3}^{(7)} \\
E_{3}^{(1)} & =\left\{(x, y): x, y \in V_{3}^{(0)}\right\} \\
E_{3}^{(2)} & =\left\{\left(v_{i, 0}^{(\alpha)}, v_{i, 1}^{(\beta)}\right): i \in\{1,2, \cdots, n\}, \alpha, \beta \in\{1,2\}\right\} \\
E_{3}^{(3)} & =\left\{\left(u_{i, j}^{(\alpha)}, w_{i, j}^{(\beta)}\right):\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P, \alpha, \beta \in\{1,2\}\right\} \\
E_{3}^{(4)} & =\left\{\left(v_{i, 1}^{(1)}, v_{i, 1}^{(2)}\right): i \in\{1,2, \cdots, n\}\right\} \\
E_{3}^{(5)} & =\left\{\left(v_{i, 3}, v_{i, 1}^{(1)}\right),\left(v_{i, 3}, v_{i, 1}^{(2)}\right): i \in\{1,2, \cdots, n\}\right\} \\
E_{3}^{(6)} & =\left\{\left(v_{i, 3}, w_{i, j}^{(1)}\right),\left(v_{j, 3}, w_{i, j}^{(2)}\right):\left(v_{i}, v_{j}\right) \in(V \times V) \backslash P\right\} \\
E_{3}^{(7)} & =\left\{\left(v_{i, 3}, v_{j, 3}\right):\left(v_{i}, v_{j}\right) \in E(G)\right\}
\end{aligned}
$$

Denote $H_{3}=G_{3}\left[\left\{v_{i, 3}: i \in\{1,2, \ldots, n\}\right\}\right]$. Let $P_{3}=\left\{\left(v_{i, 3}, v_{j, 3}\right):\left(v_{i}, v_{j}\right) \in P\right\}$. The graph G_{3} satisfies the property that for all $\left(v_{i, 3}, v_{j, 3}\right) \in P_{3}$ there is no path of length ≤ 4 between $v_{i, 3}$ and $v_{j, 3}$ in $G_{3} \backslash E\left(H_{3}\right)$ and also for all $\left(v_{i, 3}, v_{j, 3}\right) \notin P_{3}$ the length of the shortest path between $v_{i, 3}$ and $v_{j, 3}$ in $G_{3} \backslash E\left(H_{3}\right)$ is 4 .

Let $c: V \rightarrow\{1,2,3\}$ be a 3 -vertex-coloring of G such that every pair of vertices in P is rainbow vertex-connected. Define the vertex-coloring c_{3} of G_{3} as follows:

- $c_{3}\left(v_{i, 0}^{(1)}\right)=1$ and $c_{3}\left(v_{i, 0}^{(2)}\right)=2$, for $i \in\{1,2, \cdots, n\}$, $c_{3}\left(u_{i, j}^{(1)}\right)=1$ and $c_{3}\left(u_{i, j}^{(2)}\right)=2$, for $u_{i, j}^{(1)}, u_{i, j}^{(2)} \in V_{3}^{(0)}$.
- $c_{3}\left(v_{i, 1}^{(1)}\right)=2$ and $c_{3}\left(v_{i, 1}^{(2)}\right)=3$, for $i \in\{1,2, \cdots, n\}$, $c_{3}\left(w_{i, j}^{(1)}\right)=2$ and $c_{3}\left(w_{i, j}^{(2)}\right)=3$, for $w_{i, j}^{(1)}, w_{i, j}^{(2)} \in V_{3}^{(1)}$.
- $c_{3}\left(v_{i, 3}\right)=c\left(v_{i}\right)$, for $i \in\{1,2, \cdots, n\}$.

It can be easily verified that $\operatorname{rvc}\left(G_{3}\right) \leq 3$ if and only if G is 3 -subset rainbow vertexconnected.

Inductive construction of G_{k} : Assuming that we have constructed $G_{k-2}=\left(V_{k-2}, E_{k-2}\right)$, the graph $G_{k}=\left(V_{k}, E_{k}\right)$ is then constructed as follows: Each base vertex $v_{i, k-2}$ in V_{k-2} is split into the vertices $v_{i, k-2}^{(1)}, v_{i, k-2}^{(2)}$ and edges are added between them. Any edge of the form $\left(x, v_{i, k-2}\right)$ is replaced by $\left(x, v_{i, k-2}^{(1)}\right),\left(x, v_{i, k-2}^{(2)}\right)$. After doing this, we add the vertices $v_{i, k}$ and edges $\left(v_{i, k}, v_{i, k-2}^{(1)}\right),\left(v_{i, k}, v_{i, k-2}^{(2)}\right)$ for $i \in\{1,2, \cdots, n\}$. Formally the graph G_{k} is defined as follows:

When k is even: $V_{k}=\{u\} \cup V_{k}^{(0)} \cup V_{k}^{(2)} \cup \cdots \cup V_{k}^{(k)}$, where

$$
\begin{aligned}
V_{k}^{(i)} & =V_{k-2}^{(i)}, \quad \text { for } \quad i=0,2, \cdots, k-4 ; \\
V_{k}^{(k-2)} & =\left\{v_{i, k-2}^{(1)}, v_{i, k-2}^{(2)}: i \in\{1,2, \cdots, n\}\right\} ; \\
V_{k}^{(k)} & =\left\{v_{i, k}: i \in\{1,2, \cdots, n\}\right\} .
\end{aligned}
$$

When k is odd: $V_{k}=V_{k}^{(0)} \cup V_{k}^{(1)} \cup V_{k}^{(3)} \cup \cdots \cup V_{k}^{(k)}$, where

$$
\begin{aligned}
V_{k}^{(i)} & =V_{k-2}^{(i)}, \quad \text { for } \quad i=0,1,3, \cdots, k-4 \\
V_{k}^{(k-2)} & =\left\{v_{i, k-2}^{(1)}, v_{i, k-2}^{(2)}: i \in\{1,2, \cdots, n\}\right\} \\
V_{k}^{(k)} & =\left\{v_{i, k}: i \in\{1,2, \cdots, n\}\right\} .
\end{aligned}
$$

For all $k \geq 4, E_{k}$ is defined as follows:

$$
\begin{aligned}
E_{k}= & E_{k-2} \backslash\left(E_{k-2}\left(V_{k-2}^{(k-4)}, V_{k-2}^{(k-2)}\right) \cup E\left(H_{k-2}\right)\right) \\
& \cup\left\{\left(v_{i, k-2}^{(\alpha)}, x\right):\left(v_{i, k-2}, x\right) \in E_{k-2}\left(V_{k-2}^{(k-4)}, V_{k-2}^{(k-2)}\right), i \in\{1,2, \cdots n\}, \alpha \in\{1,2\}\right\} \\
& \cup\left\{\left(v_{i, k-2}^{(1)}, v_{i, k-2}^{(2)}\right): i \in\{1,2, \cdots, n\}\right\} \\
& \cup\left\{\left(v_{i, k}, v_{i, k-2}^{(\alpha)}\right): i \in\{1,2, \cdots, n\}, \alpha \in\{1,2\}\right\} \cup E\left(H_{k}\right)
\end{aligned}
$$

where $E\left(H_{l}\right)=\left\{\left(v_{i, l}, v_{j, l}\right):\left(v_{i}, v_{j}\right) \in E(G)\right\}$ and $E_{k-2}\left(V_{k-2}^{(k-4)}, V_{k-2}^{(k-2)}\right)=\{(u, v): u \in$ $\left.V_{k-2}^{(k-4)}, v \in V_{k-2}^{(k-2)}\right\}$.

Let $P_{k}=\left\{\left(v_{i, k}, v_{j, k}\right):\left(v_{i}, v_{j}\right) \in P\right\}$. Then we show that the graph G_{k} satisfies the following properties as claims:

Claim 1 For any $\left(v_{i, k}, v_{j, k}\right) \in P_{k}$, there is no path of length less than $k+2$ between $v_{i, k}$ and $v_{j, k}$ in $G_{k} \backslash E\left(H_{k}\right)$.

Proof. It has been shown that the assertion is true for G_{2} and G_{3}. Assume that the assertion is true for G_{k-2}. Let $\left(v_{i}, v_{j}\right) \in P$, then $\left(v_{i, k-2}, v_{j, k-2}\right) \in P_{k-2}$, and hence by
induction, there is no path of length less than k between $v_{i, k-2}$ and $v_{j, k-2}$ in $G_{k-2} \backslash E\left(H_{k-2}\right)$. By the construction of G_{k}, we do not shorten the paths between any two vertices, so the paths from $v_{i, k-2}^{(\alpha)}$ to $v_{j, k-2}^{(\beta)}$ will still be of length at least k for $\alpha, \beta \in\{1,2\}$. Consider the graph $G_{k} \backslash E\left(H_{k}\right)$. Since the neighbors of the vertex $v_{i, k}$ are only $v_{i, k}^{(1)}, v_{i, k}^{(2)}$, the path between $v_{i, k}$ and $v_{j, k}$ must be $v_{i, k} v_{i, k-2}^{(\alpha)} \ldots v_{j, k-2}^{(\beta)} v_{j, k}$ for $\alpha=1$ or $2, \beta=1$ or 2 , thus their lengths are at least $k+2$.

Claim 2 For any $\left(v_{i, k}, v_{j, k}\right) \notin P_{k}$, the shortest path between $v_{i, k}$ and $v_{j, k}$ is of length $k+1$ in $G_{k} \backslash E\left(H_{k}\right)$.

Proof. It has been shown that the assertion is true for G_{2} and G_{3}. Suppose that the assertion is true for G_{k-2}. Let $\left(v_{i}, v_{j}\right) \notin P$, then $\left(v_{i, k-2}, v_{j, k-2}\right) \notin P$, and hence by induction, the shortest path between $v_{i, k-2}$ and $v_{j, k-2}$ is of length $k-1$ in $G_{k-2} \backslash E\left(H_{k-2}\right)$. By the construction of G_{k}, we do not shorten the paths between any two vertices, so the shortest path between $v_{i, k-2}^{(\alpha)}$ and $v_{j, k-2}^{(\beta)}$ will still be of length $k-1$ for $\alpha, \beta \in\{1,2\}$. Consider the graph $G_{k} \backslash E\left(H_{k}\right)$. Since the neighbors of the vertex $v_{i, k}$ are only $v_{i, k}^{(1)}, v_{i, k}^{(2)}$, the shortest path between $v_{i, k}$ and $v_{i, k}$ must be $v_{i, k} v_{i, k-2}^{(\alpha)} \cdots v_{j, k-2}^{(\beta)} v_{j, k-2}$ for $\alpha=1$ or $2, \beta=$ 1 or 2 , thus the length of the path is $k+1$.

Claim $3 G$ is k-subset rainbow vertex-connected if and only if G_{k} is k-rainbow vertexconnected.

Proof. Denote $H_{k}=G_{k}\left[\left\{v_{i, k}: i \in\{1,2, \cdots, n\}\right\}\right]$. It can be seen that H_{k} is isomorphic to G.

If G_{k} is k-rainbow vertex-connected, let $c_{k}: V\left(G_{k}\right) \rightarrow\{1,2, \cdots, k\}$ be a vertexcoloring of G_{k} with k colors such that every pair of vertices in G_{k} is rainbow vertexconnected. We define the vertex-coloring c of G as follows: $c\left(v_{i}\right)=c_{k}\left(v_{i, k}\right)$ for $i \in$ $\{1,2, \cdots, n\}$. If $\left(v_{i}, v_{j}\right) \in P$, then $\left(v_{i, k}, v_{j, k}\right) \in P_{k}$. By Claim 1, there is no path between $v_{i, k}$ and $v_{j, k}$ with length less than $k+2$ in $G_{k} \backslash E\left(H_{k}\right)$. Hence the entire rainbow vertexconnected path between $v_{i, k}$ and $v_{j, k}$ must lie in H_{k} itself. Correspondingly, there is a rainbow vertex-connected path between v_{i} and v_{j} in G. Thus, G is k-subset rainbow vertex-connected.

In the other direction, if G is k-subset rainbow vertex-connected, let $c: V(G) \rightarrow$ $\{1,2, \cdots, k\}$ be a vertex-coloring of G with k colors such that every pair of vertices in P is rainbow vertex-connected. We define the vertex-coloring c_{k} of G_{k} by induction. We have given the vertex-colorings c_{2}, c_{3} of G_{2}, G_{3}. Assume that $c_{k-2}: V\left(G_{k-2}\right) \rightarrow\{1,2, \cdots, k-2\}$ is a vertex-coloring of G_{k-2} such that G_{k-2} is rainbow vertex-connected. We define the vertex-coloring c_{k} of G_{k} as follows:

When k is even:

- $c_{k}(u)=k-1$.
- $c_{k}(v)=c_{k-2}(v)$, for $v \in V_{k}^{(0)} \cup V_{k}^{(2)} \cup \cdots \cup V_{k}^{(k-4)}$.
- $c_{k}\left(v_{i, k-2}^{(1)}\right)=k-1, c_{k}\left(v_{i, k-2}^{(2)}\right)=k$, for $i \in\{1,2, \cdots, n\}$.
- $c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right)$, for $i \in\{1,2, \cdots, n\}$.

When k is odd:

- $c_{k}\left(v_{i, 0}^{(1)}\right)=c_{k-2}\left(v_{i, 0}^{(1)}\right), c_{k}\left(v_{i, 0}^{(2)}\right)=k-1$, for $i \in\{1,2, \cdots, n\}$. $c_{k}\left(u_{i, j}^{(1)}\right)=c_{k-2}\left(u_{i, j}^{(1)}\right), c_{k}\left(u_{i, j}^{(2)}\right)=k-1$ for $u_{i, j}^{(1)}, u_{i, j}^{(2)} \in V_{k}^{(0)}$.
- $c_{k}(v)=c_{k-2}(v)$, for $v \in V_{k}^{(1)} \cup V_{k}^{(3)} \cup \cdots \cup V_{k}^{(k-4)}$.
- $c_{k}\left(v_{i, k-2}^{(1)}\right)=k-1, c_{k}\left(v_{i, k-2}^{(2)}\right)=k$, for $i \in\{1,2, \cdots, n\}$.
- $c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right)$, for $i \in\{1,2, \cdots, n\}$.

Proposition 1 The vertex-coloring c_{k} of G_{k} defined above makes G_{k} rainbow vertexconnected.

Proof. Let $v, w \in V_{k}$, we now show that v, w are rainbow vertex-connected in G_{k}.
Case 1. k is even.
By the vertex-coloring c_{k}, we have $c_{k}\left(v_{i, j}^{(1)}\right)=j+1, c_{k}\left(v_{i, j}^{(2)}\right)=j+2, c_{k}(u)=k-1$ and $c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right)$ for $i \in\{1,2, \cdots, n\}, j \in\{0,2, \cdots, k-2\}$.

Subcase 1.1. $v \in V_{k}^{(p)}, w \in V_{k}^{(q)}$, where $p, q \in\{0,2, \cdots, k-2\}$.
If $v=v_{i, p}^{(\alpha)}, w=v_{j, q}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v v_{i, p-2}^{(1)} v_{i, p-4}^{(1)} \cdots v_{i, 0}^{(1)} u v_{j, 0}^{(2)} \cdots v_{j, q-2}^{(2)} w$ is the rainbow vertex-connected path between v and w.

If $v=v_{i_{1}, p}^{(\alpha)}, w=w_{i, j}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v v_{i_{1}, p-2}^{(1)} v_{i_{1}, p-4}^{(1)} \cdots v_{i_{1}, 0}^{(1)} u w$ is the rainbow vertex-connected path between v and w.

If $v=w_{i_{1}, j_{1}}^{(\alpha)}, w=w_{i_{2}, j_{2}}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v u w$ is the rainbow vertex-connected path between v and w.

Subcase 1.2. $v=v_{i, k}, w \in V_{k}^{(q)}$, where $q \in\{0,2, \cdots, k-2\}$.
If $w=v_{j, q}^{(\alpha)}$ for $\alpha \in\{1,2\}$, then $v v_{i, k-2}^{(2)} v_{i, k-4}^{(1)} \cdots v_{i, 0}^{(1)} u v_{j, 0}^{(2)} \cdots v_{j, q-2}^{(2)} w$ is the rainbow vertex-connected path between v and w.

If $w=w_{i, j}^{(\alpha)}$ for $\alpha \in\{1,2\}$, then $v v_{i, k-2}^{(2)} v_{i, k-4}^{(1)} \cdots v_{i, 0}^{(1)} u w$ is the rainbow vertex-connected path between v and w.

Subcase 1.3. $v=v_{i, k}, w=v_{j, k}$.

If $\left(v_{i, k}, v_{j, k}\right) \in P_{k}$, then $\left(v_{i}, v_{j}\right) \in P$. By the vertex-coloring c of G, there is a rainbow vertex-connected path between v_{i} and v_{j} in G. Correspondingly, since $c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right)$, there is a rainbow vertex-connected path between $v_{i, k}$ and $v_{j, k}$ in G_{k}.

If $\left(v_{i, k}, v_{j, k}\right) \notin P_{k}$, then $v_{i, k} v_{i, k-2}^{(1)} v_{i, k-4}^{(1)} \cdots v_{i, 2}^{(1)} w_{i, j}^{(1)} w_{i, j}^{(2)} v_{j, 2}^{(2)} \cdots v_{j, k-2}^{(2)} v_{j, k}$ is the rainbow vertex-connected path between $v_{i, k}$ and $v_{j, k}$.

Case 2. k is odd.
By the vertex-coloring c_{k}, we have

$$
\begin{aligned}
& c_{k}\left(v_{i, j}^{(1)}\right)=j+1, c_{k}\left(v_{i, j}^{(2)}\right)=j+2, \text { for } j \in\{1,3, \cdots, k-2\}, \\
& c_{k}\left(v_{i, 0}^{(1)}\right)=1, c_{k}\left(v_{i, 0}^{(2)}\right)=k-1, \text { for } i \in\{1,2, \cdots, n\}, \\
& c_{k}\left(u_{i, j}^{(1)}\right)=1, c_{k}\left(u_{i, j}^{(2)}\right)=k-1, \text { for } u_{i, j}^{(1)}, u_{i, j}^{(2)} \in V_{k}^{(0)}, \\
& c_{k}\left(w_{i, j}^{(1)}\right)=2, c_{k}\left(w_{i, j}^{(2)}\right)=3, \text { for } w_{i, j}^{(1)}, w_{i, j}^{(2)} \in V_{k}^{(1)}, \\
& c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right), \text { for } i \in\{1,2, \cdots, n\} .
\end{aligned}
$$

Subcase 2.1. $v \in V_{k}^{(p)}, w \in V_{k}^{(q)}$, where $p, q \in\{1,3, \cdots, k-2\}$.
If $v=v_{i, p}^{(\alpha)}, w=v_{j, q}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v v_{i, p-2}^{(1)} v_{i, p-4}^{(1)} \cdots v_{i, 0}^{(1)} v_{j, 0}^{(2)} v_{j, 1}^{(2)} \cdots v_{j, q-2}^{(2)} w$ is the rainbow vertex-connected path between v and w.

If $v=v_{i, p}^{(\alpha)}, w=w_{i, j}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v v_{i, p-2}^{(1)} v_{i, p-4}^{(1)} \cdots v_{i, 0}^{(1)} u_{i, j}^{(2)} w$ is the rainbow vertex-connected path between v and w.

If $v=w_{i_{1}, j_{1}}^{(\alpha)}, w=w_{i_{2}, j_{2}}^{(\beta)}$ for $\alpha, \beta \in\{1,2\}$, then $v u_{i_{1}, j_{1}}^{(1)} u_{i_{2}, j_{2}}^{(2)} w$ is the rainbow vertexconnected path between v and w.

Subcase 2.2. $v=v_{i, k}, w \in V_{k}^{(q)}$, where $q \in\{1,3, \cdots, k-2\}$.
If $w=v_{j, q}^{(\alpha)}$ for $\alpha \in\{1,2\}$, then $v v_{i, k-2}^{(2)} v_{i, k-4}^{(1)} \cdots v_{i, 1}^{(1)} v_{i, 0}^{(1)} v_{j, 0}^{(2)} v_{j, 2}^{(2)} \cdots v_{j, q-2}^{(2)} w$ is the rainbow vertex-connected path between v and w.

If $w=w_{i, j}^{(\alpha)}$ for $\alpha \in\{1,2\}$, then $v v_{i, k-2}^{(2)} v_{i, k-4}^{(1)} \cdots v_{i, 1}^{(1)} v_{i, 0}^{(1)} u_{i, j}^{(2)} w$ is the rainbow vertexconnected path between v and w.

Subcase 2.3. $v=v_{i, k}, w=v_{j, k}$.
If $\left(v_{i, k}, v_{j, k}\right) \in P_{k}$, then $\left(v_{i}, v_{j}\right) \in P$. By the vertex-coloring c of G, there is a rainbow vertex-connected path between v_{i} and v_{j} in G. Correspondingly, since $c_{k}\left(v_{i, k}\right)=c\left(v_{i}\right)$, there is a rainbow vertex-connected path between $v_{i, k}$ and $v_{j, k}$ in G_{k}.

If $\left(v_{i, k}, v_{j, k}\right) \notin P_{k}$, then $v_{i, k} v_{i, k-2}^{(1)} v_{i, k-4}^{(1)} \cdots v_{i, 3}^{(1)} w_{i, j}^{(1)} u_{i, j}^{(1)} w_{i, j}^{(2)} v_{j, 3}^{(2)} \cdots v_{j, k-2}^{(2)} v_{j, k}$ is the rainbow vertex-connected path between $v_{i, k}$ and $v_{j, k}$.

Proof of Theorem 2: From the above Lemmas 1 and 2, the first part of Theorem 2, the NP-Hardness, follows immediately.

In the following we will prove the second part of Theorem 2. Recall that a problem belongs to NP-class if given any instance of the problem whose answer is "yes", there is a certificate validating this fact which can be checked in polynomial time. For any fixed integer k, to prove the problem of deciding whether $r v c(G) \leq k$ is in NP-class, we can choose a rainbow k-vertex-coloring of G as a certificate. For checking a rainbow k-vertex-coloring, we only need to check that k colors are used and for any two vertices u and v of G, there exists a rainbow vertex-connected path between u and v. Notice that for any two vertices u and v of G, there are at most $n^{\ell-1} u-v$ paths of length ℓ, since if we let $P=u v_{1} v_{2} \cdots v_{\ell-1} v$, then there are less than n choices for each v_{i} $(i \in\{1,2, \ldots, \ell-1\})$. Therefore, G contains at most $\sum_{\ell=1}^{k+1} n^{\ell-1}=\frac{n^{k+1}-1}{n} \leq n^{k} u-v$ paths of length at most $k+1$. Then, check these paths in turn until one finds one path whose internal vertices have distinct colors. It follows that the time used for checking is at most $O\left(n^{k} \cdot n^{2} \cdot n^{2}\right)=O\left(n^{k+4}\right)$. Since k is a fixed integer, we conclude that the certificate can be checked in polynomial time, which implies that the problem of deciding whether $\operatorname{rvc}(G) \leq k$ belongs to NP-class, and therefore it is NP-Complete.

References

[1] P. Ananth, M. Nasre, New hardness results in rainbow connectivity, arXiv:1104.2074v1 [cs.CC] 2011.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron J. Combin. 15(2008), R57.
[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21(2011), 330-347.
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohemica 133(2008), 85-98.
[6] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of graphs, Theoretical Computer Science 412(2011), 4531-4535.
[7] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-191.
[8] S. Li, X. Li, Note on the complexity of deciding the rainbow connectedness for bipartite graphs, arXiv:1109.5534v1 [math.CO] 2011.
[9] X. Li, Y. Shi, On the rainbow vertex-connection, arXiv:1012.3504v1 [math.CO] 2010.
[10] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874(2009), 432-437.

[^0]: *Supported by the " 973 " project and NSFC No. 11071130.

