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Abstract

A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in
G are connected by a path whose internal vertices have distinct colors, which was
introduced by Krivelevich and Yuster. The rainbow vertex-connection number of
a connected graph G, denoted by rvc(G), is the smallest number of colors that
are needed in order to make G rainbow vertex-connected. In a previous paper we
showed that it is NP-Complete to decide whether a given graph G has rvc(G) = 2.
In this paper we show that for every integer k > 2, deciding whether rvc(G) < k is
NP-Hard. We also show that for any fixed integer k > 2, this problem belongs to
NP-class, and so it becomes NP-Complete.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Undefined ter-
minology and notation can be found in [2].

Let G be a nontrivial connected graph with an edge-coloring ¢ : E(G) — {1,2,--- , k},
k € N, where adjacent edges may be colored the same. A path P of G is a rainbow path
if no two edges of P are colored the same. The graph G is called rainbow-connected if for
any pair of vertices u and v of GG, there is a rainbow u — v path. The minimum number
of colors for which there is an edge-coloring of G such that G is rainbow connected is
called the rainbow connection number, denoted by rc¢(G). Clearly, if a graph is rainbow
connected, then it is also connected. Conversely, any connected graph has a trivial edge-
coloring that makes it rainbow connected, just assign each edge a distinct color. An easy
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observation is that if G has n vertices then rc¢(G) < n — 1, since one may color the edges
of a spanning tree with distinct colors, and color the remaining edges with one of the
colors already used. It is easy to see that if H is a connected spanning subgraph of G,
then r¢(G) < rc(H). We note the trivial fact that re(G) = 1 if and only if G is a clique,
the fact that r¢(G) = n — 1 if and only if G is a tree, and the easy observation that
a cycle with k > 4 vertices has a rainbow connection number [k/2]. Also notice that
re(G) > diam(G), where diam(G) is the diameter of G.

Similar to the concept of rainbow connection number, Krivelevich and Yuster [7] pro-
posed the concept of rainbow vertex-connection. Let GG be a nontrivial connected graph
with a vertex-coloring ¢ : V(G) — {1,2,--- k},k € N. A path P of G is rainbow
vertex-connected if its internal vertices have distinct colors. The graph G is rainbow
vertex-connected if any pair of vertices are connected by a rainbow vertex-connected path.
In particular, if & colors are used, then G is rainbow k-vertex-connected. The rainbow
vertez-connection number of a connected graph G, denoted by rvc(G), is the smallest
number of colors that are needed in order to make G rainbow vertex-connected. An
easy observation is that if G is of order n then rve(G) < n — 2, rve(G) = 0 if and only
if G is a complete graph, and rvc(G) = 1 if and only if diam(G) = 2. Notice that
rve(G) > diam(G) — 1 with equality if the diameter is 1 or 2. For the rainbow connection
number and the rainbow vertex-connection number, some examples were given to show
that there is no upper bound for one of parameters in terms of the other in [7]. Krivelevich
and Yuster [7] proved that if G is a graph with n vertices and minimum degree §, then
rve(G) < 11n/d. 1i and Shi used a similar proof technique and greatly improved this
bound, see [9].

The computational complexity of rainbow connection number has been studied exten-
sively. In [3], Caro et al. conjectured that computing r¢(G) is an NP-Hard problem, and
that even deciding whether a graph has rc¢(G) = 2 is NP-Complete. Later, Chakraborty
et al. confirmed this conjecture in [4]. They also conjectured that for every integer k > 2,
to decide whether r¢(G) < k is NP-Hard. Recently, Ananth and Nasre confirmed the
conjecture in [1]. Li and Li [8] showed that for any fixed integer k > 2, to decide whether
re(G) < k is actually NP-Complete. For the rainbow vertex-connection number we got a
similar complexity result in [6].

Theorem 1 [6/ Given a graph G, deciding whether rve(G) = 2 is NP-Complete. Thus,
computing rve(G) is NP-Hard.

As a generalization of the above result, in this paper we will show the following result:

Theorem 2 For every integer k > 2, to decide whether rve(G) < k is NP-Hard. More-
over, for any fixed integer k > 2, the problem belongs to NP-class, and therefore it is
NP-Complete.

In order to prove this theorem, we first show that an intermediate problem called
the k-subset rainbow vertex-connection problem is NP-Hard by giving a reduction from



the vertex-coloring problem. We then establish the polynomial-time equivalence of the k-
subset rainbow vertex-connection problem and the problem of deciding whether rvc(G) <
k for a graph G.

2 Proof of Theorem 2

We first describe the problem of k-subset rainbow vertex-connection: given a graph G
and a set of pairs P C V(G) x V(G), decide whether there is a vertex-coloring of G with k
colors such that every pair of vertices (u,v) € P is rainbow vertex-connected. Recall that
the k-vertex-coloring problem is as follows: given a graph G and an integer k, whether
there exists an assignment of at most k£ colors to the vertices of G such that no pair of
adjacent vertices are colored the same. It is known that this k-vertex-coloring problem
is NP-Hard for £ > 3. Now we reduce the k-vertex-coloring problem to the k-subset
rainbow vertex-connection problem, which shows that the problem of k-subset rainbow
vertex-connection is NP-Hard.

Lemma 1 The problem of k-vertex-coloring is polynomially reducible to the problem of
k-subset rainbow vertex-connection.

Proof. Let G = (V, E) be an instance of the k-vertex-coloring problem, we construct a
graph (G' = (V' E'), P) as follows:

For every vertex v € V' we introduce a new vertex x,. We set

V=VU{z,: veV}and E'=EU{(v,2,): veV}.

Now we define the set P as follows:

P ={(zy,x,) : (u,v) € E}.

It remains to verify that G is vertex-colorable using k(> 3) colors if and only if there
is a vertex-coloring of G’ with k colors such that every pair of vertices (z,,z,) € P is
rainbow vertex-connected.

Let ¢ be the proper k-vertex-coloring of G. We define the vertex-coloring ¢’ of G’ by
d(xz,) = d(v) = c(v). If (xy,2,) € P, then (u,v) € E, c¢(u) # c(v), and so ' (u) # '(v),
T,uvT, is a rainbow vertex-connected path between x, and z,.

In the other direction, assume that ¢ is a k-vertex-coloring of G’ such that every pair
of vertices (x,,x,) € P is rainbow vertex-connected. We define the vertex-coloring ¢ of
G by c(v) = ¢ (v). For every (u,v) € E, (x,,,) € P, since the rainbow vertex-connected



path between z, and z, must go through u and v, ¢(u) # ¢/(v), and so c¢(u) # ¢(v), thus
¢ is the proper k-vertex-coloring of G. |

In the following, we prove that the problem of deciding whether a graph is k-subset
rainbow vertex-connection is polynomial-time equivalent to the problem of deciding whether
rve(G) < k for a graph G.

Lemma 2 The following problems are polynomial-time equivalent:

1. Given a graph G, decide whether rvc(G) < k.

2. Given a graph G and a set P C V(G) x V(G) of pairs of vertices, decide whether
there is a vertez-coloring of G with k colors such that every pair of vertices (u,v) € P is
rainbow vertex-connected.

Proof. 1t is sufficient to demonstrate a reduction from Problem 2 to Problem 1. Let
(G = (V,E), P) be any instance of Problem 2. We construct a graph Gy = (Vj, Ex)
such that G is a subgraph of Gy and rvc(Gy) < k if and only if G is k-subset rainbow
vertex-connected. We prove the correctness of the reduction by induction on k. For k = 2
and k = 3, we give explicit constructions and show that the reduction is valid. Then we
show our inductive step to get GGy and prove the correctness of the reduction.

Construction of Gy: Let Gy = (13, Ey) where the vertex set V5 is defined as follows:

V, = {u}U VQ(O) U VQ(Q)
VY = {uighofd i e {120 ndy u{wl ) : (ve) € (V X V)\P)
Vi = {uipiie{1,2,--n}}
and the edge set E5 is defined as:
E, = EVUEPUEP UEY UEP UEY
{(u,2): 2 € 1"}
{@kﬁhzeuz n}}
(w w) : (vi,v;) € (V x V)\P}
@QZ{@sz@mf&ZGﬂ%“w}}
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EY = {(vig,wl)), (W2, 0®) : (vi,v;) € (V x V)\P}

,L?-]
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Denote Hy = Go[{vip i € {1,2,...,n}}]. Let P, = {(vi2,vj2) : (v;,v;) € P}. The
graph G satisfies the property that for all (v;2,v,2) € P, there is no path of length < 3
between v; » and v; 5 in G2\ E(H>) and also for all (v;2,v,2) ¢ P» the length of the shortest
path between v; 5 and v;2 in Go \ E(H») is 3.

Let ¢: V' — {1,2} be a 2-vertex-coloring of G such that every pair of vertices in P is
rainbow vertex-connected . Define the vertex-coloring ¢y of G5 as follows:
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o oo(u) =
. CQ(UZ(IO))—land ca(vld)) =2 fori e {1,2,--- ,n}.

62(w )) =1 and cy(w )) = 2, for all wm eV ae{1,2}.
o ¢o(vi2) =c(vy), fori e {1,2,--- ,n}.

It can be easily verified that rve(Ge) < 2 if and only if G is 2-subset rainbow vertex-
connected.

Construction of G3: Let G5 = (V3, E3) where the vertex set V3 is defined as follows:

V, = V(O)Uvg(l)u%(fi)
Vi = fuldolf e {12, n}} u{ul), Ei’ (v 05) € (VX V)P
v o= e i {12, nyy u{wD w?  (v,0) € (V x V)\P)
‘/3(3) = {vig:ie{1,2,--- ,n}}

and the edge set Fs is defined as:

By = BEVUEPUEY UEY UEY UEY UEY

EY = {(xy):z,yeVi¥}

EY = {Q,vf)ie{l,2,- ,n}, a8 € {1,2}}
B = {(@®,w?): (vi,v;) € (VX V)\P, o, 8 € {1,2}}
B = {@,v})ie{1,2,-- n}}

EY = {(vlg,m (vig,v7) 1 € {1,2,-- ,n}}

E§6) = {(vi3, W ) (ng,,w@)) s (vi,v5) € (V x V)\P}
E§7) = {(vig,v; 3) : (vi,v;) € E(G)}

Denote Hy = Gs[{v;3 : i € {1,2,...,n}}]. Let Py = {(vi3,v;3) : (v;,v;) € P}. The
graph G5 satisfies the property that for all (v;3,v;3) € Ps there is no path of length < 4
between v; 3 and v, 3 in G3\ E(H3) and also for all (v; 3,v;3) ¢ Ps the length of the shortest
path between v; 3 and v, 3 in G \ E(H3) is 4.

Let ¢: V — {1,2,3} be a 3-vertex-coloring of G such that every pair of vertices in P
is rainbow vertex-connected. Define the vertex-coloring c3 of G3 as follows:

o Cg(’l)i(’lo)) =1 and cg(v( )) =2, forie{1,2,--- n},
c;;(uf}) =1 and c;;(ug?j)) = 2, for ug ]), 52]) € V3( :

o 63(v§711)) = 2 and c3(v, (2 )) =3, forie{1,2,--- n},
Cg('ll);lj)) =2 and c3(w, (2 )) = 3, for wl(]), V(1



o c3(v;3) = c(vy), fori € {1,2,--- ,n}.

It can be easily verified that rvc(G3) < 3 if and only if G is 3-subset rainbow vertex-
connected.

Inductive construction of Gy: Assuming that we have constructed Gy._o = (Vi_2, Ex_2),

the graph G = (Vj, E)) is then constructed as follows: Each base vertex v; ;_o in Vj_o

is split into the vertices vilk)_Q, v§?,2_2 and edges are added between them. Any edge of the

form (x,v; ;_2) is replaced by (z, UE},Q_Z), (x, vfk)_Q). After doing this, we add the vertices

v, and edges (vijk,vi(,lk)fz), (U,-7k,vi(,2k)72) for i € {1,2,---,n}. Formally the graph Gy is

defined as follows:
When k is even: Vi, = {u} U Vk(o) U Vk(Q) u--- U Vk(k), where
Vk(i) :Vk(i)w for i=0,2,--- k—4;
k—2 1 2 .
Vk( ) :{Uz‘(,k)—wvz‘(,k)—z S {1’2a"' 7n}};
VP —fvr i€ {1,2,-- ,n}}.

When k is odd: Vi, = V2 UuvP uvP u---uv?| where
vO =y o for i=0,1,3,--  k—4;
kT k-2 — Y Y ) )
k—2 1 2 .
‘/k( : :{Ui(,k)—Q’Uz(,k)—Q BEAAS {17 27 e 7n}}a
‘/;g(k) :{Ui,k: 1€ {L 27 ttt 7”}}

For all k > 4, Ej, is defined as follows:
By = \ (Bea (V5" Vi5Y) U B(H )
U050, ) ¢ (viga, @) € Bra (Vi3 Y VL) i € {1,2, -}, € {1,2})
U {(Uz(,lk)—27vi(,2k:)—2) AS {17 27 o 7”}}
U{(vie, 0§ 5) 11 € {1,2,-+ ,n}, 0 € {1,2}} U E(Hy)

. (k—4) 1,(k=2) .
where E(H;) = {(vig,vj1) @ (vi,v;) € E(G)} and Eyp_o(V,", 7/, V.00 7)) = {(u,v) : u €
VYo e ViYL

Let P, = {(vig,vk) : (vi,v;) € P}. Then we show that the graph Gy satisfies the

following properties as claims:

Claim 1 For any (vix,vjx) € Pi, there is no path of length less than k + 2 between v
and v, in G \ E(Hy).

Proof. 1t has been shown that the assertion is true for Gy and Gj3. Assume that the
assertion is true for Gy_o. Let (v;,v;) € P, then (v;;_2,v;k-2) € Py_2, and hence by
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induction, there is no path of length less than k between v; ;o and v, x_o in Gy_2\ E(Hy_2).
By the construction of Gy, we do not shorten the paths between any two vertices, so the
paths from vﬁ)_Q to /Ug(',i)—2 will still be of length at least k for o, € {1,2}. Consider
the graph Gy, \ E(Hj). Since the neighbors of the vertex v; are only vgk), vfk), the path
between v;; and v, must be vivkvﬁ)ﬂ .. .U.;,ﬂk.)72vj7k fora=1o0r 2,8 =1 or 2, thus their
lengths are at least k + 2. |

Claim 2 For any (vik, vji) ¢ Pk, the shortest path between v,y and v;y is of length k+1

Proof. Tt has been shown that the assertion is true for GGy and GG3. Suppose that the
assertion is true for Gjy_o. Let (v;,v;) ¢ P, then (v;,_2,v;5-2) ¢ P, and hence by
induction, the shortest path between v; ;_o and vj;_» is of length k—1 in Gj_o\ E(Hj_2).
By the construction of G, we do not shorten the paths between any two vertices, so
the shortest path between vﬁlQ and vﬁlQ will still be of length k — 1 for o, 8 € {1, 2}.

Consider the graph Gy \ E(Hj,). Since the neighbors of the vertex v;; are only vilk), U§,214)7

the shortest path between v; ;, and v; ;, must be vi,kvi(c,?_Q e v](.ﬁk)_ij’k_Q fora=1or2,8=

1 or 2, thus the length of the path is k& + 1. |

Claim 3 G is k-subset rainbow vertex-connected if and only if Gy is k-rainbow vertex-
connected.

Proof. Denote Hy, = Gi[{vi : i € {1,2,--- ,n}}]. It can be seen that Hj, is isomorphic
to G.

If Gy is k-rainbow vertex-connected, let ¢ : V(Gy) — {1,2,--- k} be a vertex-
coloring of G} with k colors such that every pair of vertices in G is rainbow vertex-
connected. We define the vertex-coloring ¢ of G as follows: c(v;) = cx(viy) for i €
{1,2,--- ,n}. If (v;,v;) € P, then (v;x,vj) € P;. By Claim 1, there is no path between
v and v;, with length less than k + 2 in G, \ E(Hy). Hence the entire rainbow vertex-
connected path between v;; and v;; must lie in Hy, itself. Correspondingly, there is a
rainbow vertex-connected path between v; and v; in G. Thus, G is k-subset rainbow
vertex-connected.

In the other direction, if G is k-subset rainbow vertex-connected, let ¢ : V(G) —
{1,2,--- ,k} be a vertex-coloring of G with k colors such that every pair of vertices in P
is rainbow vertex-connected. We define the vertex-coloring c; of G by induction. We have
given the vertex-colorings ¢y, c3 of Gy, G3. Assume that cx_o : V(Gi_2) — {1,2,--- | k—2}
is a vertex-coloring of (G_o such that GGj_5 is rainbow vertex-connected. We define the
vertex-coloring ¢, of Gy as follows:

When £ is even:

o cr(u)=Fk—1.



o (V) = cp_o(v), for v € Vk(O) U %(2) U---U Vk(kf4).
° ck(v§,1;3_2) =k— 1,Ck<U§?]3_2) =k, forie{1,2,--- ,n}.

o crp(vig) =c(v), forie {1,2,--- ,n}.
When £k is odd:

= Ck_2( 1(10))7Ck(1}(2)) =k— ]_ for ¢ € {]_ 2 e TL}
(1)) Ck—2(u('1-))>ck(u(2)) k—1 for vV ) ¢ V

2¥) 2V} 4,57 l]

[ ]
Q
S

—~
s@
=

~—
<

o
B
—~

=

o ¢, (v) = cp_2(v), for v € Vk(l) U Vk(?’) U-.-U Vk(k—4).
° Ck(vz(lk 2) k — 1,Ck(U§?;3_2) =k, forie {1’27 - ,n}.

o c(vig) = c(v), fori € {1,2,--- ,n}.

Proposition 1 The vertex-coloring c; of Gy defined above makes Gy rainbow vertex-
connected.

Proof. Let v, w € Vi, we now show that v, w are rainbow vertex-connected in Gj.
Case 1. k is even.

By the vertex-coloring ¢, we have ¢ (v, (1 )) = —|—1 cx (v (2 )) =j+2, c(u) =k—1and
Ck(”Lk) - C(vl) fOI' Z € {1727 . an}aj € {072a ) - 2}

Subcase 1.1. v € V(p) w E V(q) where p,q € {0,2,--- , k — 2}
@, .(2) (2)

If v = Ul(p), w = v; ) for o, 8 € {1,2}, then vvz(p) 21}2(2 47 Vg W v pw s the
rainbow Vertex-connected path between v and w.
Ifv= UZ(IL, w = w ) for , B € {1,2}, then le(l)p 2vz(1)p 4 vz(l)ouw is the rainbow

vertex-connected path between v and w.

z(f%p w = wff )JQ for a, 8 € {1,2}, then vuw is the rainbow vertex-connected

path between v and w.

If o =w

Subcase 1.2. v = v, w € Vk(Q) where ¢ € {0,2,--- , k —2}.

2 1) W, (2 ()

If w = v for a € {1,2}, then VU 9V hqt Vig uv](-’o _ow is the rainbow

Vertex—connected path between v and w.

Ifw= w for a € {1,2}, then vvz(k) 27}1(113 4 vl( Yuw is the rainbow vertex-connected

path between v and w.

Subcase 1.3. v = v; 1, W = V.



If (vig,vjx) € Py, then (v;,v;) € P. By the vertex-coloring ¢ of G, there is a rainbow
vertex-connected path between v; and v; in G. Correspondingly, since ¢ (v;x) = c(v;),
there is a rainbow vertex-connected path between v;; and v, in Gy.

If (vig,vjr) ¢ P, then Ui’kv§71,€)_2v§’1,€) T vl(IQ)w(l)w( )U(2) --vj(.?k)_zvj7k is the rainbow

vertex-connected path between v;; and vj .
Case 2. k is odd.
By the vertex-coloring ¢, we have
() =+ 1, () =j+2 for j € 1,3,k -2},

Ck v;lo)) =1, ck(vg?o)) =k—1,forie{1,2,--- n},
)

Ck ul(lj)) =1, ck(ul(]) =k —1, for uz(J), @) ¢ V
wl(lj)) =2, ck(wgz)) = 3, for wfj), ) V

cx(vig) = c(vy), for i € {1,2,--- ,n}.
Subcase 2.1. v € V(p) w e V(q) where p,q € {1,3,---  k —2}.

Ifv= vfp), w = v for a, € {1,2}, then vvfp) 2112([)) e vgo)v](-?o)v](i) : 1(2(1) Jw is the

rainbow Vertex—connected path between v and w.

If v = vl(p), w = w ) for o, B € {1,2}, then vvl(p) 22}1(2 4 vz(lo)ug)w is the rainbow

vertex-connected path between v and w.

— (@) _ ® @ : :
Ifv=wj,w= wz2 o, for o, 8 € {1,2}, then vu,;, ; u,;,’;,w is the rainbow vertex-

connected path between v and w.
Subcase 2.2. v =v;;, w € V(q) where ¢ € {1,3,--- |k — 2}.

If w= v for a € {1,2}, then vvfk) 2@51,3 E vz( 1)1}@(0) ](20) ](2) vj(?;_Qw is the rainbow
vertex- connected path between v and w.

If w= w ) for o € {1,2}, then vvz@k) 21)1(1,3 L vf l)vz(lo)u@)w is the rainbow vertex-
connected path between v and w.

Subcase 2.3. v = v; 1, W = V.

If (vik,vjx) € Py, then (v;,v;) € P. By the vertex-coloring c of G, there is a rainbow
vertex-connected path between v; and v; in G. Correspondingly, since cx(vix) = c(v;),
there is a rainbow vertex-connected path between v;; and v;; in Gj.

If (vig,vjk) ¢ P, then v kvl(k) 21)@(1,3 T UZ( 3)w( D! )wg)vj(g) -vfk)_QvM is the rainbow

vertex-connected path between v;, and vj . [ |

Proof of Theorem 2: From the above Lemmas 1 and 2, the first part of Theorem 2,
the NP-Hardness, follows immediately.



In the following we will prove the second part of Theorem 2. Recall that a problem
belongs to NP-class if given any instance of the problem whose answer is “yes”, there
is a certificate validating this fact which can be checked in polynomial time. For any
fixed integer k, to prove the problem of deciding whether rve(G) < k is in NP-class,
we can choose a rainbow k-vertex-coloring of G as a certificate. For checking a rainbow
k-vertex-coloring, we only need to check that k colors are used and for any two vertices
u and v of (G, there exists a rainbow vertex-connected path between u and v. Notice

-1

that for any two vertices u and v of G, there are at most n*~" u — v paths of length

¢, since if we let P = wwvivy---vp_qv, then there are less than n choices for each v;
(i € {1,2,...,0 —1}). Therefore, G contains at most Z’;;l ntl = % <nfu-—w
paths of length at most £ + 1. Then, check these paths in turn until one finds one path
whose internal vertices have distinct colors. It follows that the time used for checking is at
most O(n*-n?-n?) = O(n***). Since k is a fixed integer, we conclude that the certificate
can be checked in polynomial time, which implies that the problem of deciding whether

rve(G) < k belongs to NP-class, and therefore it is NP-Complete. |
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