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Abstract

The energy of a graph G is equal to the sum of the absolute values of the eigenvalues of G.

Recently, Gutman and Wagner proposed the concept of the matching energy (ME) and pointed

out that the chemical applications of ME go back to the 1970s. Let G be a simple graph of order

n and µ1, µ2, . . . , µn be the roots of its matching polynomial. The matching energy is defined as

the sum
∑n

i=0 |µi|. In this paper, we characterize the graphs with the extremal matching energy

among all bicyclic graphs, and completely determine the graphs with the minimal and maximal

matching energy in bicyclic graphs.

1 Introduction

In this paper, the graphs under our consideration are finite, connected, undirected and

simple. Let λ1, λ2, . . . , λn be the eigenvalues of a graph G. The energy of graph G [4] is

defined as

E(G) =
n∑

i=0

|λi| .

A matching in a graph G is a set of pairwise nonadjacent edges. A matching M is called

k-matching if the size of M is k. Let m(G, k) denote the number of k-matchings of G,
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where m(G, 1) = m, and m(G, k) = 0 for k > n
2
. In addition, m(G, 0) = 1. The matching

polynomial of the graph G is defined as

α(G) = α(G, λ) =
∑
k≥0

(−1)k m(G, λ)λ2k .

An important tool of graph energy is the Coulson integral formula [4] (with regard to G

be a tree T ):

E(G) =
2

π

∫ +∞

0

1

x2
ln

[∑
k≥0

m(T, k) x2k

]
dx . (1.1)

The theory of graph energy is well developed. Moreover, it has been rather widely con-

cerned by theoretical chemists and mathematicians. For details see the new book on

graph energy [18] and the reviews [8, 10].

Recently, Gutman and Wagner [13] proposed the matching–energy concept. (In ad-

dition, energy and matching energy are closely related, and they are two quantities of

relevance for chemical applications; for details see [1, 11,12].)

Definition 1.1 Let G be a graph of order n, and µ1, µ2, · · · , µn be the roots of its matching

polynomial. Then

ME(G) =
n∑

i=1

|µi| .

In view of Eq. (1.1), the matching energy also has a beautiful formula as follows.

Proposition 1.2 Let G be a graph of order n, and let m(G, k) be the number of its

k−matchings, k = 0, 1, 2, . . . , ⌊n/2⌋. The matching energy of G is the given by

ME = ME(G) =
2

π

∫ +∞

0

1

x2
ln

[∑
k≥0

m(G, k) x2k

]
dx . (1.2)

By Formula (1.2) and the monotony of the function logarithm, we can define a quasi-

order as follows: If two graphs G1 and G2 have the same order and size, then

m(G1, k) ≼ m(G2, k) for 1 ≤ k ≤ ⌊n/2⌋ ⇐⇒ ME(G1) ≤ ME(G2) .

We now introduce some elementary notations and terminologies that will be used in

the sequel. With regard to other notations, the readers are referred to the book [2]. Let

Un denote the set of all connected unicyclic graphs of order n. Let P ℓ
n be the graph

obtained by attaching a vertex of Cℓ and a pendent vertex of Pn−ℓ+1.



Denote by Bn the set of all connected bicyclic graphs of order n. We now define

two special classes graphs. Let P k,ℓ
n be the graph obtained by connecting two cycles Ck

and Cℓ with a path Pn−k−ℓ, and Cn(ℓ, r, t) be the graph obtained by fusing two triples

of pendent vertices of three paths Pℓ+1, Pr+1 and Pt+1 to two vertices. (Without loss

of generality, we set 1 ≤ r ≤ ℓ ≤ t.) The distance of C1 and C2 of the graph G is

defined as dG(C1, C2) = min{d(x, y)|x ∈ V (C1), y ∈ V (C2)}. (For simplicity, we write

dG), the corresponding path is marked by xTy. If C1 and C2 have a common vertex, then

dG(C1, C2) = 0. Let G be a graph in Bn . If G contains Cs(ℓ, r, t) or P
ℓ,r
s as its subgraph,

then we call them as a brace of G, respectively. By this way, bicyclic graphs can be

partitioned into two subsets B1
n and B2

n, where B1
n is the set of all bicyclic graphs which

includes Cs(ℓ, r, t) as its brace, and B2
n is the set of all bicyclic graph which contains P ℓ,r

s

as its brace.

As the research of extremal graph energy is an amusing work (for some newest lit-

erature see [14–17]), the study on extremal matching energy is also interesting. In [13],

the authors gave some elementary results on the matching energy and obtained that

ME(T ) = E(T ) for any tree T , and ME(S+
n ) ≤ ME(G) ≤ ME(Cn) for any unicyclic

graph G, where S+
n is the graph obtained by adding a new edge to the star Sn . In the

paper, we characterize the graphs with the extremal matching energy among all bicyclic

graphs, and completely determine the bicyclic graphs with minimal and the maximal

matching energy.

In the 1980s, Gutman determined the unicyclic [6], bicyclic [7], and tricyclic [9] graphs

with maximal matchings, i.e., graphs that are extremal with regard to the quasi-ordering

≼. From these results, using Eq. (1.2), the finding of unicyclic, bicyclic, and tricyclic

graphs with maximal matching energy is an elementary task. The results reported in the

present paper were obtained without knowledge of [6,7,9]. We learned about these papers

from the referee.

Theorem 1.3 Let G ∈ Bn with n ≥ 10 and n = 8. Then ME(S∗
n) ≤ ME(G) ≤

ME(P 4,n−4
n ), with equality if and only if G ∼= S∗

n and G ∼= P 4,n−4
n , where S∗

n denotes

the graph obtained by joining one pendent vertex of Sn to its other two pendent vertices,

respectively. Exceptionally, when n = 9, P 4,n−4
n and Cn(3, 1, n−3) are matching–equivalent

and thus both have maximal ME-values.



2 Preliminary

In [3, 5], we have two fundamental identities as the following proposition.

Proposition 2.1 Let G be a graph. Then, for any edge e=uv and N(u) = {v1(=

v), v2, . . . , vt}, we have the two identities:

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1) (2.1)

m(G, k) = m(G− u, k) +

|N(u)|∑
i=0

m(G− u− vi, k − 1) . (2.2)

Lemma 2.2 ( [4]) P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · · ≻ P3 ∪ Pn−3 > P1 ∪ Pn−1 .

In [13] it was demonstrated that Cn attains the maximal matching energy in unicyclic

graphs. The following lemma determined the unicyclic graph having the second-maximal

matching energy:

Lemma 2.3 Let G be a unicyclic graph of order n, other than Cn . Then ME(G) ≤

ME(P 4
n), the equality holds if and only if G ∼= P 4

n or P n−2
n .

Proof. Observe that the girth of a unicyclic graph G is no more than n− 1 which means

that G contains at least one pendent vertex. ( Since, Cn is not contained in unicyclic

graphs on condition.) In view of quasi-order, it is sufficient to show m(G, k) ≤ m(P 4
n , k)

for 1 ≤ k ≤ ⌊n/2⌋. By means of Proposition 2.1, we have

m(P 4
n , k) = m(Pn, k) +m(P2 ∪ Pn−4, k − 1) . (2.3)

For a unicyclic graph G, through choosing a proper edge uv = e, we get

m(G, k) = m(G− e, k) +m(G− u− v, k − 1)

≤ m(Pn, k) +m(P2 ∪ Pn−4, k − 1) .
(2.4)

The equality holds in Ineq. (2.4) if and only if m(G − e, k) = m(Pn, k) and m(G − u −

v, k − 1) = m(P2 ∪ Pn−4, k − 1), which means that G ∼= P i
n , (i = 4 or n− 2).

We next introduce an important result, which will be used in the proof of Theorem

3.3.

Lemma 2.4 P2 ∪ P 4
n−2 ≻ Pi ∪ P i+2

n−i , where 2i+ 2 < n (i.e., P i+2
n−i ̸∼= Cn−i) .



Proof. In terms of the quasi-order, it is sufficient to showm(P2∪P 4
n−2, k) ≥ m(Pi∪P i+2

n−i , k)

for all 1 ≤ k ≤ ⌊n/2⌋. In view of Eq. (2.1), we have

m(Pi ∪ P i+2
n−i , k) = m(Pi ∪ Pn−i, k) +m(Pi ∪ Pn−2i−2 ∪ Pi, k − 1)

≤ m(Pi ∪ Pn−i, k) +m(P2 ∪ Pn−i−4 ∪ Pi, k − 1)

< m(P2 ∪ Pn−2, k) +m(P2 ∪ Pn−6 ∪ P2, k − 1) = m(P2 ∪ P 4
n−2, k) .

By Lemma 2.2 , the proof is thus complete.

3 Extremal matching energy in bicyclic graphs

We first discuss the graph possessing minimal matching energy in Bn .

Theorem 3.1 Let G ∈ Bn with n ≥ 4. Then ME(G) ≥ ME(S∗
n) with equality if and

only if G ∼= S∗
n.

Proof. Note that m(S∗
n, 1) = n + 1, m(S∗

n, 2) = 2(n − 3), m(S∗
n, k) = 0 for k ≥ 3. For

any graph G ̸∼= S∗
n, m(G, 1) = m(S∗

n, 1). By the quasi-order, it is sufficient to show

that m(G, 2) > m(S∗
n, 2). We will prove this by induction on n. When n = 4, this case

is trivial. When n = 5, there are only five distinct graphs and it is easy to check the

correctness of the conclusion. We now assume that the result holds on |S∗
n| = |G| < n.

Suppose that |G| = n. Two cases should be discussed.

Case 1. G contains at least one pendent vertex.

Let u be a pendent vertex of G which just connects vertex v and u′ be a pendent

vertex of S∗
n. According to Eq. (2.2), we have

m(G, 2) = m(G− u, 2) +m(G− u− v, 1)

m(S∗
n, 2) = m(S∗

n − u′, 2) +m(P3, 1) .

Since G−u is a bicyclic graph with |G−u| < n, by the induction hypothesis, m(G−u, 2) >

m(S∗
n−1, 2). Moreover, we should consider the resulted graph G − u − v with order not

less than 4.

When v is not a cut vertex of the graph G− u, then G− u− v is a connected graph,

and contains P3 as its proper subgraph. So m(G− u− v, 1) ≥ 3 > m(P3, 1).

When v is a cut vertex of graph G − u, then G − u − v consists of some connected

components. Note that it includes at least one non-trivial component (trivial component

is referred to the graph with order 1.). Otherwise we can deduce that G is isomorphic to a

tree with diameter two which contradicts to the fact that G is bicyclic. If G−u−v contains



only one non-trivial component, set H1 . Then H1 includes cycle and with |H1| ≥ 3.

Hence, m(G − u − v, 1) ≥ m(H1, 1) ≥ 3 > m(P3, 1). If G − u − v possesses at least H2

and H3 as its non-trivial components, then the their sizes are not less than one. Thus,

m(G− u− v, 1) ≥ m(H2 ∪H3, 1) ≥ m(P3, 1).

Therefore, m(G, 2) > m(S∗
n, 2).

Case 2. G doesn’t contain any pendent vertex.

In terms of Eq. (2.1), selecting an edge e = uv in G and an edge e1 = u′v′ with

d(u′) = 3 and d(v′) = 2, we have

m(G, 2) = m(G− e, 2) +m(G− u− v, 1)

m(S∗
n, 2) = m(S∗

n − e1, 2) +m(Sn−2, 1) .

Note that S∗
n − e1 ∼= S+

n and G − e is a unicyclic graph. Combining a unicyclic result

in [13], we deduce that m(G− e, 2) ≥ m(S∗
n − e1, 2). In addition, it is not difficult to find

that m(G − u − v, 1) > m(G − u − v − e2, 1) ≥ m(Sn−2, 1), where G − u − v − e2 is an

acyclic connected spanning subgraph of G− u− v. Hence, m(G, 2) > m(S∗
n, 2).

Therefore, the proof is complete.

In the following, we consider the maximal matching energy in bicyclic graphs.

Theorem 3.2 If G0 ∈ B1
n, then ME(G0) ≤ ME(Cn(3, 1, n− 3)) for n ≥ 6.

Proof. According to Proposition 2.1, by choosing an e = uv edge with d(u) = 3 and e in

the path P3+1, we have that

m(Cn(3, 1, n− 3), k) = m(P n−2
n , k) +m(Pn−2, k − 1) .

Note that every graph G0 in B1
n has a brace as Cs(ℓ, r, t). We now discuss the value of r

in the brace Cs(ℓ, r, t), so the following two cases should be considered.

Case 1. r ≥ 2. (It means that |Cℓ+r|, |Cr+t| ≥ 4.)

Case 1.1 |Cs(ℓ, r, t)| = n

In this case, graph G0(∼= Cn(ℓ, r, t)) doesn’t contain any pendent vertex. We now

choose an edge e = uv on Pr+1 with d(u) = 3. By Proposition 2.1, we get

m(Cn(ℓ, r, t), k) = m(Cn(ℓ, r, t)− uv, k) +m(Cn(ℓ, r, t)− u− v, k − 1)

≤ m(P n−2
n , k) +m(Pn−2, k − 1) = m(Cn(3, 1, n− 3), k) .

In view of the quasi-order, the result holds.

Case 1.2 |Cs(ℓ, r, t)| < n.



In this case, graph G0 has at least one pendent vertex. According to the quasi-order,

we chose an edge e = uv with d(u) = 3 in the brace Cs(ℓ, r, t) and v in Pℓ+1 such that

G0 − u− v is a forest. Then by Lemma 2.4,

m(G0, k) = m(G0 − uv, k) +m(G0 − u− v, k − 1)

≤ m(P n−2
n , k) +m(Pn−2, k − 1) = m(Cn(3, 1, n− 3), k) .

In the above inequalities, there exists at least a inequality which is strict for G0 ̸∼=
Cn(3, 1, n− 3).

Case 2. r = 1.

If G0 does not have any pendent vertex, then G0
∼= Cn(ℓ, 1, t). We choose an edge

e′ = u′v′ such that d(u′) = 3 and e′ belongs to the path Pℓ+1 . If G0 has at least one

pendent vertex, then the size of the brace Cs(ℓ, 1, t) is less than n. We choose an edge

e1 = u1v1 with d(u1) = 3 in brace Cs(ℓ, 1, t) and e′ in the path Pℓ+1. Using the analogous

method on case 1, it is not difficult to show that G0 ≺ Cn(3, 1, n−3). So the result holds.

This completes the proof.

Theorem 3.3 Let G be a graph in B2 with dG ≥ 2. Then ME(G) ≤ ME(P 4,4
n ). Equality

holds if and only if G ∼= P 4,4
n .

Proof. Notice that G ∈ B2 means that G has a subgraph of the form P ℓ,r
s . Two cases will

be discussed.

Case 1. G contains at least one pendent vertex. According to the definition of P ℓ,r
s , we

denote the path connecting the two cycles by T . By Eq. (2.1), we choose an edge e = uv

with vertex u being the end-vertex of the path T and v be a vertex in a cycle of G. By

this way, G− u− v is an union of a forest and an unicyclic graph. Then by Lemmas 2.4

and 2.3,

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1)

≤ m(P 4
n , k) +m(P2 ∪ P 4

n−4, k − 1) = m(P 4,4
n , k) .

Case 2. G does not have any pendent vertex, which means that G ∼= P ℓ,r
n .

By Eq. (2.1), choosing an edgee = uv such that d(u) = 3 and v belongs to the cycle

Cℓ, we obtain

m(G, k) = m(G− uv, k) +m(G− u− v)

= m(P r
n , k) +m(Pℓ−2 ∪ P r

n−ℓ, k − 1)

≤ m(P 4
n , k) +m(P2 ∪ P 4

n−4, k − 1) = m(P 4,4
n , k)

where Lemmas 2.3 and 2.4 have been used. Hence, the conclusion holds.



Theorem 3.4 For all graphs in B2 with d = 0, 1, the graph P 4,n−4
n has the maximal

matching energy.

Proof. Before giving a whole proof of the above assertion, we will verify the following

claim.

Claim 1. P2 ∪ Cn−4 ≻ Pi ∪ Cn−i−2 .

Proof. In terms of Proposition 2.1, we obtain

m(P2 ∪ Cn−4, k) = m(P2 ∪ Pn−4, k) +m(P2 ∪ Pn−6, k − 1)

m(Pi ∪ Cn−i−2, k) = m(Pi ∪ Pn−i−2, k) +m(Pi ∪ Pn−i−4, k − 1) .

By Lemma 2.2,

m(P2 ∪ Pn−4, k) ≽ m(Pi ∪ Pn−i−2, k)

m(P2 ∪ Pn−6, k − 1) ≽ m(Pi ∪ Pn−i−4, k − 1) .

If all equalities holds in above relations, then i = 2 or i = n − 4 with Lemma 2.2.

According to the condition, i just equals to 2. In other words, equalities holds if and only

if Pi ∪ Cn−i−2
∼= P2 ∪ Cn−4.

Using the same method in the proof of Theorem 3.3, together with Claim 1, we can

verify that ME(G0) ≤ ME(P 4,n−4
n ) for G0 ∈ B2, and that equality holds if and only if

G0
∼= P 4,n−4

n .

We now introduce two important conclusions, and determine the graph possessing

maximal matching energy in Bn .

Theorem 3.5 ME(Cn(3, 1, n − 3)) < ME(P 4,n−4
n ) for n ≥ 10 and n = 8, exceptionally

ME(Cn(3, 1, n− 3)) < ME(P 4,n−4
n ) for n = 9.

Proof. For n ≥ 10 and n = 8, by choosing an edge uv = e with d(u) ( or d(v)) = 3, we get

m(Cn(3, 1, n− 3), k) = m(P 4
n , k) +m(Pn−2, k − 1)

= m(P 4
n , k) +m(P4 ∪ Pn−6, k − 1) +m(P3 ∪ Pn−7, k − 2)

≤ m(P 4
n , k) +m(P4 ∪ Pn−6, k − 1) +m(P2 ∪ Pn−6, k − 2)

= m(P 4
n , k) +m(C4 ∪ Pn−6, k − 1) = m(P 4,n−4

n , k)

from Lemma 2.2. Note that at least one of these inequalities is strict for some k.

In fact, the two numbers are equal on the two side of the third inequality for n = 9.

Since m(P3 ∪ Pn−7, k − 2) = m(P2 ∪ Pn−6, k − 2) with n = 9.

Therefore, the proof is complete.



Theorem 3.6 ME(P 4,4
n ) < ME(P 4,n−4

n ), where n ≥ 9.

Proof. For exhibiting the proceeding of the proof, we firstly show a claim.

Claim 2. m(2P1 ∪ Pn−6, k) +m(P2 ∪ Pn−8, k − 1) ≥ m(2P2 ∪ Pn−8, k) .

Proof. In view of Proposition 2.1, one can deduce that

m(2P1 ∪ Pn−6, k) +m(P2 ∪ Pn−8, k − 1)

= m(2P1 ∪ P2 ∪ Pn−8, k) +m(3P1 ∪ Pn−9, k − 1)

+ m(P2 ∪ Pn−8, k − 1)

≥ m(2P1 ∪ P2 ∪ Pn−8, k) +m(P2 ∪ Pn−8, k − 1) = m(2P2 ∪ Pn−8, k)

so that the Claim holds.

We now go back to the proceeding of the proof. By means of Proposition 2.1, by

choosing an edge e = uv with u be an end-vertex of T and v be a vertex in Cn−4, we have

m(P 4,n−4
n , k) = m(P 4

n , k) +m(C4 ∪ Pn−6, k − 1)

= m(P 4
n , k) +m(P4 ∪ Pn−6, k − 1) +m(P2 ∪ Pn−6, k − 2)

= m(P 4
n , k) +m(2P2 ∪ Pn−6, k − 1) +m(2P1 ∪ Pn−6, k − 2)

+ m(P2 ∪ Pn−6, k − 2)

= m(P 4
n , k) +m(2P2 ∪ Pn−6, k − 1) +m(2P1 ∪ Pn−6, k − 2)

+ m(P2 ∪ P1 ∪ Pn−7, k − 2) +m(P2 ∪ Pn−8, k − 3)

(by Claim 2) ≥ m(P 4
n , k) +m(2P2 ∪ Pn−6, k − 1) +m(2P2 ∪ Pn−8, k − 2)

+ m(P2 ∪ P1 ∪ Pn−7, k − 2)

= m(P 4
n , k) +m(P2 ∪ Pn−4, k − 1) +m(2P2 ∪ Pn−8, k − 2)

= m(P 4
n , k) +m(P2 ∪ P 4

n−4, k − 1) = m(P 4,4
n , k) .

Therefore, the proof is complete.

Combining Theorems 3.1, 3.5, and 3.6, we deduce the conclusion of Theorem 1.3.
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