A NOTE ON CONNECTED CUBIC CAYLEY GRAPHS

HUA HAN AND ZAI PING LU

ABSTRACT. Let I' = Cay(G, S) be a connected cubic Cayley graph, and let X =
Autl’ be the automorphism group of I'. It is proved in this note that either G has
non-trivial core N, x G* in X, or the stabilizer X, of a vertex u of I" is non-abelian.

1. INTRODUCTION

All graphs are assumed to be finite, simple and undirected.

Let I' be a graph. We use V' I' and Aut!" to denote its vertex set and automorphism
group, respectively. An arc in [ is an ordered pair of adjacent vertices. The graph
I' is said to be arc-transitive if Autl’ is transitive on the set of arcs of I'.

Let G be a finite group and let S be a subset of G such that S = S™! := {a7! |
x € S} and S does not contain the identity of G. The Cayley graph of G with respect
to S, denoted by Cay(G, S), is the graph with vertex set G such that g, h € G are
adjacent if and only if hg™' € S. Then Cay(G, S) is a regular graph of valency |S)|
and Cay(G, S) is connected if and only if G = (S), that is, S is a generating set of G.

Let I' = Cay(G, S) be a Cayley graph. The underlying group G can be viewed as
a regular subgroup of Autl’, which acts on G by right multiplication. Clearly, Autl
contains the normal subgroup Coreaur(G) := NyeauerG®, which is called the core of
G in Autl’. If Corepyr(G) = 1 then I is said to be core-free with respect to G.

In [4] a classification was given for the core-free arc-transitive cubic Cayley graphs.
Let I' = Cay(G, S) be a connected arc-transitive cubic Cayley graph which is core-free
with respect to G. Employing a well-known result of Tutte (refer to [2, 18f]), it was
proved that Autl" is isomorphic to one of 14 non-abelian subgroups of the symmetric
group Sug, and that I' is isomorphic to one of 15 cubic Cayley graphs. This motivates
us to make an attempt towards classifying or characterizing the core-free cubic Cayley
graphs which are not arc-transitive.

The goal of this note is to point out the following fact about the vertex-stabilizers
of connected cubic Cayley graphs.

Theorem 1. Let I' = Cay(G, S) be a connected cubic Cayley graph and let G < X <
Autl’. Let H be the stabilizer in X of the vertex of I' corresponding to the identity of
G. If Corex(G) =1, then H is non-abelian.
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2. A TECHNICAL LEMMA

For a group X and a subgroup H < X, we denote by Cx(H) and Nx(H) the
centralizer and normalizer of H in X, respectively; for two groups N and H, we
denote by N:H a semi-direct product of N by H

For a nonempty set A, we denote by Sym(A) the symmetric group on A. Let X
be a subgroup of Sym(A). A subset A; of A is X-invariant if A7 = A; for all x € X.
For z € X and an X-invariant subset A; of A, we denote by 2! the restriction of x
to Ay. Write X1 := {21 | z € X}. Then X4 is a permutation group on A;.

The following lemma plays an important part in the proof of Theorem 1.
Lemma 2. Let A be a set of size 2" for an integer n > 2. Suppose that H is a regular
subgroup of Sym(A) such that H = 7Z%. Let P be a subgroup of index 2 in H. Then
H is normal in Ngyma)(P) and Ngyma)(P) = H:A for a subgroup A of Sym(A) with
A= 7NAut(Z57Y).

Proof. By the assumption, P = ZJ~! and P is semiregular on A. Then P has two
orbits on A, say A; and As. We fix an element h € H \ P. Then H = (h)xP and
A" = A,. Taking §; € A, and setting d, = 0, we have that

Aj=6"={8¢|yeP}i=1,2
Let H; = P% for i = 1,2. Then H; = P = 7Z7™ ', and H; is a regular subgroup of
Sym(4A;). Let A; be the point-stabilizer of ¢; in Ngym(a,)(H;). Then

Nsym(a,) (Hi) = Hi:A; and A; = Aut(H;) = Aut(Zy ),

refer to [3, Corollary 4.2B|.

For convenience, if x € Sym(A;) then we use the notation = to denote the element
of Sym(A) acting in the same way as z on A; and acting trivially on A\ A;. Set

H; = {; | y; € H;} and A; —{al]aZEA} where i = 1, 2. Then H; = H; and
—h
A A;. Tt is easily shown that H1 = Hg and A; = A2
For y € P, let y; = y®'. Then y = 319" = §:"91. Since E ~H >2px7y !
it follows that P = {ji;a" | y» € H,}. Let D = (aa" ] a € Ay). Then D = A; =
Aut(Z3 ). If a € Ay and y; € Hy, then y¢ € Hy and 7;* = y?, hence

(1) O e L T L T A
It follows that D lies in Ngyma)(P).
Let aa” € D N Cgym(a)(P), where a € A;. For every y; € Hy, by (1), we have that
~ ~ ~ ~hyaa" _ "o "
ylylh = (ylylh) = Y11
yielding 4, = y{. It follows that a € Ay N Cgyma,)(H1). Since Hy is a regular abelian
subgroup of Sym(A;), we have that Cgyma,)(H1) = Hy by [3, Theorem 4.2A]. Thus

a € A; N Hy =1, hence aa” = 1. It follows that D N Csym(a)(P) = 1. Thus, since
Csym(a)(P) is normal in Ngym(a)(P), we have that

NSym(A)<P) 2 <D7 CSym(A)(P)> = Csym(A)(P)D
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In particular, [Ngyma)(P)| is divisible by |Cgym(a)(P)||D].

Since the quotient group Ngyma)(P)/Csym(a)(P) is isomorphic to a subgroup
of Aut(P), we know that |Ngym(a)(P) : Csym(a)(P)| divides |Aut(P)|. Since D =
Aut(Zy") and P = Z5™", the order of Ngyma)(P) divides |Csym(a)(P)||D|. There-
fore, NSym(A) (P) = CSym(A)(P):D~

We now determine Cgyma)(P). Clearly, H < Cgyma)(P). Since P is a normal
subgroup of Cgym(a)(P), the P-orbits Ay and A, give a Cgym(a)(P)-invariant partition
of A. Let K be the set-wise stabilizer of Ay in Cgym(a)(P). Since h ¢ K we thus
have that |Csym(a)(P) : K| =2, and so Cgym(a)(P) = K:(h). Recall that H; = P21,

N N —~h

It is easily shown that H; < Cgyma)(P), hence H; < K, and so H; < K" = K.
~ "~

Thus H1XH1 < K.

For z € K, let z; = 2™, where i = 1, 2. Then z = 7125 and z; € Csym(Ai)(PAi).
Note that H; = P2 is a regular abelian subgroup of Sym(4;). By [3, Theorem 4.2A],

~ ~  ~ —~h
Csym(a,)(H;) = H;. It follows that z; € H;, and hence v = 217, € HixHy = HixH; .

—~  —~h —~ —~h
Therefore, K < H;xH, , and so K = HyxH; . Recalling that P = {gg" | y € H.},
it follows that K = Px Hy, and hence

CSym(A)<P) = K<h> = (Pxﬁ><h> = <P7 hvﬁ;> = <H7E>

For each y; € Hy, we have that ;> = 1 and 1”91 = 101" € P, hence
W = Gihgy = hh™'gihin = hin" i1 = b € H.
It follows that Hy normalizes H = (P, h), and hence that H is normal in Cgyp(a)(P) =
(H, H,), yielding Csym(a)(P) = H:H;. Thus Ngym(a)(P) = (H:H,):D.
For each a € Ay, since aa" = a"a, we have that (¢ '(a~1)")(aa") = 1. Hence
K" = ha~‘ha ‘hahah = h(a (@ ")")(a@") = h.
Since D = (aa" | a € A;), we know that D centralizes h. Then D normalizes

H = (P,h) as D normalizes P. Since H; normalizes H, we conclude that H is
normal in Ngyma)(P) = (H:H;):D. It is easily shown that D normalizes H;. Then

Nsym(a)(P) = (H:Hy):D = H:(Hy:D)

and Hy:D = 72 ":Aut(Z2"). Thus the lemma follows. O

3. PROOF OF THEOREM 1
Let I' = Cay(G, S) be a connected cubic Cayley graph. Assume that G < X <
Aut!l’. Since I is cubic, |G| > 4. Assume further that Corex(G) = 1. Then X # G.

Let u be the vertex of I" corresponding to the identity element of G and let H = X,
be the stabilizer of w in X. Then X = GH, GNH =1and H # 1.



4 HAN AND LU

If X acts transitively on the arc set of I' then, by [4], X = Autl" and H is non-
abelian, and so the result follows.

Assume in the following that X is not transitive on the arc set of I'. Then H is
a non-trivial 2-group, and H has exactly two orbits, say {v;} and {vs,vs}, on the
neighborhood I'(u) of w in I'. Since X is transitive on VI, there exist z; € X with
u® = v;, where 1 = 1, 2. It is easily shown that

{ye X |w el'(u)} = H{z, 22} H C (21,2, H).

Recall that I" is connected. For each x € X denote by p(z) the distance between u
and v” in I". Now we show that x € (21, 2o, H) by induction on p(x). If p(z) = 0 then
u® = u, yielding x € H. Suppose that = € (21, 25, H) for x € X with p(z) =1 —1,
where [ > 1. Let x € X with p(x) = [. Take a vertex u¥ € I'(u) which is at distance
[ —1 from u®. Then y € H{z1,20}H C (21,29, H), and p(zy~™') = [ — 1. By the
induction hypothesis, zy™' € (21, 2o, H). It follows that = € (21, 2o, H). Therefore,

(2) X = (21,29, H).

Set P = X, N X,,. Then |H : P| = 2. We claim that
(3) 21 € Nx(H) and 25 € Nx(P).
Since H fixes vy, we have that
H=X,=X, =X =X'=H",
hence z; € Nx(H). Noting that I'(u) = {vq, v2,v3}, we have that
u € I'(vg) = I'(u™) = I'(u)* = {v?,v3%, v3?}.
If u=v7?, then
H=Xz=X2=X2= X = X,
hence H fixes vy, a contradiction. Thus u = v} for j =2 or 3. Since H is transitive

on {vy,v3}, there is some h € H with v; = v, Then

2o hz _.z2 _ , hz
u=v"=vy" and vy = u”? = u"?,

that is, hzy interchanges u and vy. This yields that hze normalizes P = X, N X,,.
Since P is normal in H as |H : P| = 2, we have that H < Nx(P). Thus 2z, € Nx(P).

Let N be a characteristic subgroup of both H and P. By the above (3), we conclude
that N** = N and N*2 = N. It follows that N is normal in (zy, 2o, H) = X, yielding
N =1 as N fixes u. This easy observation will be useful to our further argument.

Recall that H is a non-trivial 2-group. Suppose, by contradiction, that H is abelian.

Let K be the subgroup generated by all involutions in H. Then K # 1 and K is a
characteristic subgroup of H. Since H and P cannot have a non-trivial characteristic
subgroup in common, K £ P. This means that H contains an element h of order
2 with h ¢ P. Since |H : P| = 2 and H is abelian, H = (h, P) = (h)xP. Recall
that the Frattini subgroup of H is the smallest normal subgroup ®(H) with H/®(H)
being elementary abelian (refer to [1, (23.2)]). It is easily shown that ®(P) = ®(H).
Thus ®(H) is a common characteristic subgroup of H and P, and hence ®(H) = 1.
It follows that H = Z for some positive integer n.
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Let A := {Gh | h € H}. Recalling that X = GH, the set A consists of all right
cosets of G in X. Consider the action of X on A by right multiplication. Since
X =GH =HG and GNH =1, H acts regularly on A, and X5 = G for some § € A.
Moreover, the kernel of this action is Corex(G). Since Corex(G) = 1, this action
is faithful. Thus X can be viewed as a subgroup of Sym(A), while H is a regular
subgroup of X (acting on A). Recall that | Xs| = |G| > 4. Then X, as a permutation
group on A, has a point-stabilizer of order at least 4. It follows that |A| > 4. Thus
2" = |H| = |A| > 4, hence n > 2.

By Lemma 2, Nx(P) < Ngyma)(P) < Ngymay(H). Then, by (3), both z; and 2,
normalize H, and hence H is normal in (21, 29, H). Thus H is normal in X by (2).
Since H fixes the vertex u € V' I', it follows that H = 1, which contradicts |H| > 4.

Therefore, H is non-abelian. This completes the proof of Theorem 1.
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