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Abstract. Let Γ = Cay(G,S) be a connected cubic Cayley graph, and let X =
AutΓ be the automorphism group of Γ . It is proved in this note that either G has
non-trivial core ∩x∈XGx in X, or the stabilizer Xu of a vertex u of Γ is non-abelian.

1. Introduction

All graphs are assumed to be finite, simple and undirected.

Let Γ be a graph. We use V Γ and AutΓ to denote its vertex set and automorphism
group, respectively. An arc in Γ is an ordered pair of adjacent vertices. The graph
Γ is said to be arc-transitive if AutΓ is transitive on the set of arcs of Γ .

Let G be a finite group and let S be a subset of G such that S = S−1 := {x−1 |
x ∈ S} and S does not contain the identity of G. The Cayley graph of G with respect
to S, denoted by Cay(G,S), is the graph with vertex set G such that g, h ∈ G are
adjacent if and only if hg−1 ∈ S. Then Cay(G,S) is a regular graph of valency |S|
and Cay(G,S) is connected if and only if G = 〈S〉, that is, S is a generating set of G.

Let Γ = Cay(G,S) be a Cayley graph. The underlying group G can be viewed as
a regular subgroup of AutΓ , which acts on G by right multiplication. Clearly, AutΓ
contains the normal subgroup CoreAutΓ (G) := ∩x∈AutΓGx, which is called the core of
G in AutΓ . If CoreAutΓ (G) = 1 then Γ is said to be core-free with respect to G.

In [4] a classification was given for the core-free arc-transitive cubic Cayley graphs.
Let Γ = Cay(G,S) be a connected arc-transitive cubic Cayley graph which is core-free
with respect to G. Employing a well-known result of Tutte (refer to [2, 18f]), it was
proved that AutΓ is isomorphic to one of 14 non-abelian subgroups of the symmetric
group S48, and that Γ is isomorphic to one of 15 cubic Cayley graphs. This motivates
us to make an attempt towards classifying or characterizing the core-free cubic Cayley
graphs which are not arc-transitive.

The goal of this note is to point out the following fact about the vertex-stabilizers
of connected cubic Cayley graphs.

Theorem 1. Let Γ = Cay(G,S) be a connected cubic Cayley graph and let G ≤ X ≤
AutΓ . Let H be the stabilizer in X of the vertex of Γ corresponding to the identity of
G. If CoreX(G) = 1, then H is non-abelian.
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2. A technical lemma

For a group X and a subgroup H ≤ X, we denote by CX(H) and NX(H) the
centralizer and normalizer of H in X, respectively; for two groups N and H, we
denote by N :H a semi-direct product of N by H.

For a nonempty set ∆, we denote by Sym(∆) the symmetric group on ∆. Let X
be a subgroup of Sym(∆). A subset ∆1 of ∆ is X-invariant if ∆x

1 = ∆1 for all x ∈ X.
For x ∈ X and an X-invariant subset ∆1 of ∆, we denote by x∆1 the restriction of x
to ∆1. Write X∆1 := {x∆1 | x ∈ X}. Then X∆1 is a permutation group on ∆1.

The following lemma plays an important part in the proof of Theorem 1.

Lemma 2. Let ∆ be a set of size 2n for an integer n ≥ 2. Suppose that H is a regular
subgroup of Sym(∆) such that H ∼= Zn2 . Let P be a subgroup of index 2 in H. Then
H is normal in NSym(∆)(P ) and NSym(∆)(P ) = H:A for a subgroup A of Sym(∆) with
A ∼= Zn−1

2 :Aut(Zn−1
2 ).

Proof. By the assumption, P ∼= Zn−1
2 and P is semiregular on ∆. Then P has two

orbits on ∆, say ∆1 and ∆2. We fix an element h ∈ H \ P . Then H = 〈h〉×P and
∆h

1 = ∆2. Taking δ1 ∈ ∆1 and setting δ2 = δh1 , we have that

∆i = δPi := {δyi | y ∈ P}, i = 1, 2.

Let Hi = P∆i for i = 1, 2. Then Hi
∼= P ∼= Zn−1

2 , and Hi is a regular subgroup of
Sym(∆i). Let Ai be the point-stabilizer of δi in NSym(∆i)(Hi). Then

NSym(∆i)(Hi) = Hi:Ai and Ai ∼= Aut(Hi) ∼= Aut(Zn−1
2 ),

refer to [3, Corollary 4.2B].

For convenience, if x ∈ Sym(∆i) then we use the notation x̃ to denote the element
of Sym(∆) acting in the same way as x on ∆i and acting trivially on ∆ \ ∆i. Set

H̃i = {ỹi | yi ∈ Hi} and Ãi = {ãi | ai ∈ Ai}, where i = 1, 2. Then H̃i
∼= Hi and

Ãi ∼= Ai. It is easily shown that H̃1

h
= H̃2 and Ã1

h
= Ã2.

For y ∈ P , let y1 = y∆1 . Then y = ỹ1ỹ1
h = ỹ1

hỹ1. Since H̃1
∼= H1

∼= P ∼= Zn−1
2 ,

it follows that P = {ỹ1ỹ1
h | y1 ∈ H1}. Let D = 〈ããh | a ∈ A1〉. Then D ∼= A1

∼=
Aut(Zn−1

2 ). If a ∈ A1 and y1 ∈ H1, then ya1 ∈ H1 and ỹ1
ã = ỹa1 , hence

(1) (ỹ1ỹ1
h)ãã

h

= ỹ1
ããh ỹ1

hããh = ỹ1
ãỹ1

ãh = ỹa1 ỹ
a
1

h ∈ P.
It follows that D lies in NSym(∆)(P ).

Let ããh ∈ D ∩CSym(∆)(P ), where a ∈ A1. For every y1 ∈ H1, by (1), we have that

ỹ1ỹ1
h = (ỹ1ỹ1

h)ãã
h

= ỹa1 ỹ
a
1

h
,

yielding y1 = ya1 . It follows that a ∈ A1 ∩CSym(∆1)(H1). Since H1 is a regular abelian
subgroup of Sym(∆1), we have that CSym(∆1)(H1) = H1 by [3, Theorem 4.2A]. Thus
a ∈ A1 ∩ H1 = 1, hence ããh = 1. It follows that D ∩ CSym(∆)(P ) = 1. Thus, since
CSym(∆)(P ) is normal in NSym(∆)(P ), we have that

NSym(∆)(P ) ≥ 〈D,CSym(∆)(P )〉 = CSym(∆)(P ):D.
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In particular, |NSym(∆)(P )| is divisible by |CSym(∆)(P )||D|.
Since the quotient group NSym(∆)(P )/CSym(∆)(P ) is isomorphic to a subgroup

of Aut(P ), we know that |NSym(∆)(P ) : CSym(∆)(P )| divides |Aut(P )|. Since D ∼=
Aut(Zn−1

2 ) and P ∼= Zn−1
2 , the order of NSym(∆)(P ) divides |CSym(∆)(P )||D|. There-

fore, NSym(∆)(P ) = CSym(∆)(P ):D.

We now determine CSym(∆)(P ). Clearly, H ≤ CSym(∆)(P ). Since P is a normal
subgroup of CSym(∆)(P ), the P -orbits ∆1 and ∆2 give a CSym(∆)(P )-invariant partition
of ∆. Let K be the set-wise stabilizer of ∆1 in CSym(∆)(P ). Since h 6∈ K we thus
have that |CSym(∆)(P ) : K| = 2, and so CSym(∆)(P ) = K:〈h〉. Recall that H1 = P∆1 .

It is easily shown that H̃1 ≤ CSym(∆)(P ), hence H̃1 ≤ K, and so H̃1

h
≤ Kh = K.

Thus H̃1×H̃1

h
≤ K.

For x ∈ K, let xi = x∆i , where i = 1, 2. Then x = x̃1x̃2 and xi ∈ CSym(∆i)(P
∆i).

Note that Hi = P∆i is a regular abelian subgroup of Sym(∆i). By [3, Theorem 4.2A],

CSym(∆i)(Hi) = Hi. It follows that xi ∈ Hi, and hence x = x̃1x̃2 ∈ H̃1×H̃2 = H̃1×H̃1

h
.

Therefore, K ≤ H̃1×H̃1

h
, and so K = H̃1×H̃1

h
. Recalling that P = {ỹỹh | y ∈ H1},

it follows that K = P×H̃1, and hence

CSym(∆)(P ) = K:〈h〉 = (P×H̃1):〈h〉 = 〈P, h, H̃1〉 = 〈H, H̃1〉.

For each y1 ∈ H1, we have that ỹ1
2 = 1 and ỹ1

hỹ1 = ỹ1ỹ1
h ∈ P , hence

hỹ1 = ỹ1hỹ1 = hh−1ỹ1hỹ1 = hỹ1
hỹ1 = hỹ1ỹ1

h ∈ H.

It follows that H̃1 normalizes H = 〈P, h〉, and hence that H is normal in CSym(∆)(P ) =

〈H, H̃1〉, yielding CSym(∆)(P ) = H:H̃1. Thus NSym(∆)(P ) = (H:H̃1):D.

For each a ∈ A1, since ããh = ãhã, we have that (ã−1(ã−1)h)(ããh) = 1. Hence

hãã
h

= hã−1hã−1hãhãh = h(ã−1(ã−1)h)(ããh) = h.

Since D = 〈ããh | a ∈ A1〉, we know that D centralizes h. Then D normalizes

H = 〈P, h〉 as D normalizes P . Since H̃1 normalizes H, we conclude that H is

normal in NSym(∆)(P ) = (H:H̃1):D. It is easily shown that D normalizes H̃1. Then

NSym(∆)(P ) = (H:H̃1):D = H:(H̃1:D)

and H̃1:D ∼= Zn−1
2 :Aut(Zn−1

2 ). Thus the lemma follows. �

3. Proof of Theorem 1

Let Γ = Cay(G,S) be a connected cubic Cayley graph. Assume that G ≤ X ≤
AutΓ . Since Γ is cubic, |G| ≥ 4. Assume further that CoreX(G) = 1. Then X 6= G.

Let u be the vertex of Γ corresponding to the identity element of G and let H = Xu

be the stabilizer of u in X. Then X = GH, G ∩H = 1 and H 6= 1.
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If X acts transitively on the arc set of Γ then, by [4], X = AutΓ and H is non-
abelian, and so the result follows.

Assume in the following that X is not transitive on the arc set of Γ . Then H is
a non-trivial 2-group, and H has exactly two orbits, say {v1} and {v2, v3}, on the
neighborhood Γ (u) of u in Γ . Since X is transitive on V Γ , there exist zi ∈ X with
uzi = vi, where i = 1, 2. It is easily shown that

{y ∈ X | uy ∈ Γ (u)} = H{z1, z2}H ⊂ 〈z1, z2, H〉.

Recall that Γ is connected. For each x ∈ X denote by p(x) the distance between u
and ux in Γ . Now we show that x ∈ 〈z1, z2, H〉 by induction on p(x). If p(x) = 0 then
ux = u, yielding x ∈ H. Suppose that x ∈ 〈z1, z2, H〉 for x ∈ X with p(x) = l − 1,
where l ≥ 1. Let x ∈ X with p(x) = l. Take a vertex uy ∈ Γ (u) which is at distance
l − 1 from ux. Then y ∈ H{z1, z2}H ⊂ 〈z1, z2, H〉, and p(xy−1) = l − 1. By the
induction hypothesis, xy−1 ∈ 〈z1, z2, H〉. It follows that x ∈ 〈z1, z2, H〉. Therefore,

(2) X = 〈z1, z2, H〉.

Set P = Xu ∩Xv2 . Then |H : P | = 2. We claim that

(3) z1 ∈ NX(H) and z2 ∈ NX(P ).

Since H fixes v1, we have that

H = Xu = Xv1 = Xuz1 = Xz1
u = Hz1 ,

hence z1 ∈ NX(H). Noting that Γ (u) = {v1, v2, v3}, we have that

u ∈ Γ (v2) = Γ (uz2) = Γ (u)z2 = {vz21 , v
z2
2 , v

z2
3 }.

If u = vz21 , then
H = Xv

z2
1

= Xz2
v1

= Xz2
u = Xuz2 = Xv2 ,

hence H fixes v2, a contradiction. Thus u = vz2j for j = 2 or 3. Since H is transitive

on {v2, v3}, there is some h ∈ H with vj = vh2 . Then

u = vz2j = vhz22 and v2 = uz2 = uhz2 ,

that is, hz2 interchanges u and v2. This yields that hz2 normalizes P = Xu ∩ Xv2 .
Since P is normal in H as |H : P | = 2, we have that H ≤ NX(P ). Thus z2 ∈ NX(P ).

Let N be a characteristic subgroup of both H and P . By the above (3), we conclude
that N z1 = N and N z2 = N . It follows that N is normal in 〈z1, z2, H〉 = X, yielding
N = 1 as N fixes u. This easy observation will be useful to our further argument.

Recall that H is a non-trivial 2-group. Suppose, by contradiction, that H is abelian.

Let K be the subgroup generated by all involutions in H. Then K 6= 1 and K is a
characteristic subgroup of H. Since H and P cannot have a non-trivial characteristic
subgroup in common, K 6≤ P . This means that H contains an element h of order
2 with h 6∈ P . Since |H : P | = 2 and H is abelian, H = 〈h, P 〉 = 〈h〉×P . Recall
that the Frattini subgroup of H is the smallest normal subgroup Φ(H) with H/Φ(H)
being elementary abelian (refer to [1, (23.2)]). It is easily shown that Φ(P ) = Φ(H).
Thus Φ(H) is a common characteristic subgroup of H and P , and hence Φ(H) = 1.
It follows that H ∼= Zn2 for some positive integer n.
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Let ∆ := {Gh | h ∈ H}. Recalling that X = GH, the set ∆ consists of all right
cosets of G in X. Consider the action of X on ∆ by right multiplication. Since
X = GH = HG and G∩H = 1, H acts regularly on ∆, and Xδ = G for some δ ∈ ∆.
Moreover, the kernel of this action is CoreX(G). Since CoreX(G) = 1, this action
is faithful. Thus X can be viewed as a subgroup of Sym(∆), while H is a regular
subgroup of X (acting on ∆). Recall that |Xδ| = |G| ≥ 4. Then X, as a permutation
group on ∆, has a point-stabilizer of order at least 4. It follows that |∆| ≥ 4. Thus
2n = |H| = |∆| ≥ 4, hence n ≥ 2.

By Lemma 2, NX(P ) ≤ NSym(∆)(P ) ≤ NSym(∆)(H). Then, by (3), both z1 and z2

normalize H, and hence H is normal in 〈z1, z2, H〉. Thus H is normal in X by (2).
Since H fixes the vertex u ∈ V Γ , it follows that H = 1, which contradicts |H| ≥ 4.

Therefore, H is non-abelian. This completes the proof of Theorem 1.
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