Rainbow connection number and the number of blocks*

Xueliang Li, Sujuan Liu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; sjliu0529@126.com

Abstract

An edge-colored graph G is rainbow connected if every pair of vertices of G are connected by a path whose edges have distinct colors. The rainbow connection number $\operatorname{rc}(G)$ of G is defined to be the minimum integer t such that there exists an edge-coloring of G with t colors that makes G rainbow connected. For a graph G without any cut vertex, i.e., a 2 -connected graph, of order n, it was proved that $r c(G) \leq\left\lceil\frac{n}{2}\right\rceil$ and the bound is tight. In this paper, we prove that for a connected graph G of order n with at least one cut vertex, $r c(G) \leq \frac{n+r-1}{2}$, where r is the number of blocks of G with even orders, and the upper bound is tight. Moreover, we also obtain a tight upper bound $\lfloor(2 n-2) / 3\rfloor$ for the rainbow connection number of a bridgeless (2-edge-connected) graph of order n.

Keywords: rainbow edge-coloring, rainbow connection number, cut vertex, block decomposition.

AMS subject classification 2010: 05C40, 05C15.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. For notation and terminology not defined here, we refer to [2]. In an edge-colored graph G, a path is called a rainbow path if the colors of its edges are distinct. The graph G is called rainbow connected if every pair of vertices are connected by at least one rainbow path in G. An edge-coloring of a connected graph G that makes G rainbow connected is called a rainbow edge-coloring (rainbow coloring for short) of G. The minimum number of colors required

[^0]to rainbow color G is called the rainbow connection number of G, denoted by $\operatorname{rc}(G)$. It is obvious that $r c(G) \leq d(G)$ for any connected graph G, where $d(G)$ denotes the diameter of G. If a graph G has an edge-coloring c and G^{\prime} is a subgraph of $G, c\left(G^{\prime}\right)$ denotes the set of colors appearing in G^{\prime}. An edge-coloring using k colors is addressed as a k-edgecoloring. If P is a path, the length of P, which is the number of edges in P, is denoted by $\ell(P)$.

Let G^{\prime} be a subgraph of a graph G. An ear of G^{\prime} in G is a nontrivial path in G whose end vertices lie in G^{\prime} but whose internal vertices are not. An ear decomposition of a 2-connected graph G is a sequence of subgraphs $G_{0}, G_{1}, \cdots, G_{k}$ of G satisfying that (1) G_{0} is a cycle of G; (2) $G_{i}=G_{i-1} \bigcup P_{i}(1 \leq i \leq k)$, where P_{i} is an ear of G_{i-1} in G; (3) $G_{i-1}(1 \leq i \leq k)$ is a proper subgraph of G_{i}; (4) $G_{k}=G$. If $\ell\left(P_{1}\right) \geq \ell\left(P_{2}\right) \geq \cdots \geq \ell\left(P_{k}\right)$, we say that the ear decomposition is nonincreasing. From the above definition, every graph G_{i} in an ear decomposition is 2-connected.

A block of a graph G is a maximal connected subgraph of G that does not have any cut vertex. So every block of a nontrivial connected graph is either a K_{2} or a 2-connected subgraph. All the blocks of a graph G form a block decomposition of G. A block B is called an even (odd) block if the order of B is even (odd).

Let c be a rainbow k-edge-coloring of a connected graph G. If a rainbow path P in G has length k, we call P a complete rainbow path; otherwise, it is an incomplete rainbow path. A rainbow edge-coloring c of G is incomplete if for any vertex $u \in V(G), G$ has at most one vertex v such that all the rainbow paths between u and v are complete; otherwise, it is complete.

The concept of rainbow coloring was introduced by Chartrand et al. in [5]. For more knowledge, we refer to [10, 11]. In [6], it was proved that computing the rainbow connection number of a graph is $N P$-hard. Hence, tight upper bounds of the rainbow connection number for a connected graph have been a subject of investigation. The authors of [4] proved that $r c(G) \leq 3 n /(\delta+1)+3$, where δ is the minimum degree of the connected graph G. The authors of [1] obtained an upper bound of the rainbow connection number in term of radius: For every bridgeless graph G with radius $r, r c(G) \leq r(r+2)$. Moreover, for every integer $r \geq 1$, there exists a bridgeless graph with radius r and $r c(G)=r(r+2)$. Later, the authors of [7] generalized the bound to graphs with bridges, which is a little bit complicated to restate and therefore omitted.

For 2-connected graphs, there exist the following results.
Lemma 1.1. [9] Let G be a Hamiltonian graph of order $n(n \geq 3)$. Then G has an incomplete $\left\lceil\frac{n}{2}\right\rceil$-rainbow coloring, i.e., $r c(G) \leq\left\lceil\frac{n}{2}\right\rceil$.

Lemma 1.2. [9] Let G be a 2 -connected non-Hamiltonian graph of order $n(n \geq 4)$. If G has at most one ear with length 2 in a nonincreasing ear decomposition, then G has a incomplete $\left\lceil\frac{n}{2}\right\rceil$-rainbow coloring, i.e., $r c(G) \leq\left\lceil\frac{n}{2}\right\rceil$.
Theorem 1.1. [9, 8] Let G be a 2 -connected graph of order $n(n \geq 3)$. Then $r c(G) \leq\left\lceil\frac{n}{2}\right\rceil$,
and the upper bound is tight for $n \geq 4$.
Proposition 1.1. [3] If G is a connected bridgeless (2-edge-connected) graph with n vertices, then $r c(G) \leq 4 n / 5-1$.

In this paper, we will study the rainbow connection number of a connected graph with at least one cut vertex and obtain a tight upper bound. Besides, a tight upper bound for a 2-edge-connected (bridgeless) graph is also obtained.

2 Main results

We first show that every 2 -connected graph G with odd number of vertices has a rainbow edge-coloring with a nice property.

Lemma 2.1. Let G be a 2-connected graph of order $n(n \geq 3)$ and v_{0} be any vertex of G. If n is odd, then G has a rainbow $\left\lceil\frac{n}{2}\right\rceil$-edge-coloring c such that there exists a color x of the edge-coloring satisfying that every vertex of G can be connected by a rainbow path P to v_{0} with $x \notin c(P)$.

Proof. Since G is 2-connected, G has a nonincreasing ear decomposition $G_{0}, G_{1}, \cdots, G_{q}(=$ $G)(q \geq 0)$ satisfying that (1) G_{0} is a cycle with $v_{0} \in V\left(G_{0}\right)$; (2) $G_{i}=G_{i-1} \bigcup P_{i}$, where $P_{i}(1 \leq i \leq q)$ is one of the longest ears of G_{i-1} in G; (3) $\ell\left(P_{1}\right) \geq \ell\left(P_{2}\right) \geq \cdots \geq \ell\left(P_{q}\right)$. In the sequel, every nonincreasing ear decomposition of a 2-connected graph G satisfies the above tree conditions. We consider the following two cases.
Case 1. No ear of P_{1}, \cdots, P_{q} has an even length.
In this case, since G has an odd order, G_{0} must be an odd cycle. Assume that $G_{0}=$ $v_{0} v_{1} \cdots v_{2 k} v_{2 k+1}\left(=v_{0}\right)$ with $k \geq 1$. Define a $(k+1)$-edge-coloring c_{0} of G_{0} by $c_{0}\left(v_{i-1} v_{i}\right)=x_{i}$ for i with $1 \leq i \leq k+1$ and $c_{0}\left(v_{i-1} v_{i}\right)=x_{i-k-1}$ for i with $k+2 \leq i \leq 2 k+1$. It can be checked that c_{0} is a rainbow $\left\lceil\frac{\left|V\left(G_{0}\right)\right|}{2}\right\rceil$-edge-coloring of G_{0} such that every vertex of G_{0} can be connected by a rainbow path P in G_{0} to v_{0} with $x_{k+1} \notin c_{0}(P)$. If $G_{0}=G$, the conclusion holds.

Now assume that $G_{0} \neq G$ and $P_{1}=v_{0}^{\prime} v_{1}^{\prime} \cdots v_{2 s}^{\prime} v_{2 s+1}^{\prime}(s \geq 0)$ with $V\left(G_{0}\right) \cap V\left(P_{1}\right)=$ $\left\{v_{0}^{\prime}, v_{2 s+1}^{\prime}\right\}$. Define an edge-coloring c_{1} of $G_{1}=G_{0} \bigcup P_{1}$ by $c_{1}(e)=c_{0}(e)$ for $e \in E\left(G_{0}\right)$, $c_{1}\left(v_{i-1}^{\prime} v_{i}^{\prime}\right)=y_{i}$ for i with $1 \leq i \leq s, c_{1}\left(v_{s}^{\prime} v_{s+1}^{\prime}\right)=x^{\prime}$ and $c_{1}\left(v_{i-1}^{\prime} v_{i}^{\prime}\right)=y_{i-s-1}$ for i with $s+2 \leq i \leq 2 s+1$, where y_{1}, \cdots, y_{s} are new colors and x^{\prime} is a color that already appeared in G_{0}. Here, if $\ell\left(P_{1}\right)=1$, i.e., $s=0$, we just color the only edge $v_{0}^{\prime} v_{1}^{\prime}$ of P_{1} by a color that appeared in G_{0}. It can be checked that c_{1} is a rainbow $\left\lceil\frac{\left|V\left(G_{1}\right)\right|}{2}\right\rceil$-edge-coloring of G_{1}. From the definition of c_{1}, every vertex of G_{0} can be connected by a rainbow path P in G_{0} to v_{0} with $x_{k+1} \notin c_{1}(P)$. Let P^{\prime} and $P^{\prime \prime}$ be the rainbow paths, respectively, from v_{0}^{\prime} and $v_{2 s+1}^{\prime}$ to v_{0} in G_{0} such that $x_{k+1} \notin c_{1}\left(P^{\prime}\right)$ and $x_{k+1} \notin c_{1}\left(P^{\prime \prime}\right)$. For any vertex $v_{j}^{\prime}(1 \leq j \leq s)$, $v_{j}^{\prime} P_{1} v_{0}^{\prime} P^{\prime} v_{0}$ is a rainbow path in G_{1} from v_{j}^{\prime} to v_{0} such that $x_{k+1} \notin c_{1}\left(v_{j}^{\prime} P_{1} v_{0}^{\prime} P^{\prime} v_{0}\right)$. For any
vertex $v_{j}^{\prime}(s+1 \leq j \leq 2 s)$, we can choose $v_{j}^{\prime} P_{1} v_{2 s+1}^{\prime} P^{\prime \prime} v_{0}$ as a rainbow path in G_{1} from v_{j}^{\prime} to v_{0} such that $x_{k+1} \notin c_{1}\left(v_{j}^{\prime} P_{1} v_{2 s+1}^{\prime} P^{\prime \prime} v_{0}\right)$. Hence, c_{1} is a required rainbow edge-coloring of G_{1}.

If $G_{1}=G$, the conclusion holds. Otherwise, repeating the above process of defining c_{1} from c_{0}, we can obtain a rainbow $\left\lceil\frac{\left|V\left(G_{i}\right)\right|}{2}\right\rceil$-edge-coloring of $G_{i}(2 \leq i \leq q)$ such that every vertex of G_{i} can be connected by a rainbow path P in G_{i} to v_{0} with $x_{k+1} \notin c_{i}(P)$. Therefore, c_{q} is a required rainbow $\left\lceil\frac{n}{2}\right\rceil$-edge-coloring of G.
Case 2. At least one of P_{1}, \cdots, P_{q} has an even length.
Suppose that $P_{t}(1 \leq t \leq q)$ is the last added ear with an even length. So P_{t+1}, \cdots, P_{s} have odd lengths. Once we show that G_{t} has a required rainbow $\left\lceil\frac{n_{t}}{2}\right\rceil$-edge-coloring by arguments similar to those used in the proof of Case 1, we can show that G has the required rainbow $\left\lceil\frac{n}{2}\right\rceil$-edge-coloring. We will consider the following two cases:
Subcase 2.1. At most one of the ears P_{1}, \cdots, P_{t-1} has length 2.
Assume that $P_{t}=v_{0}^{\prime} v_{1}^{\prime} \cdots v_{2 s-1}^{\prime} v_{2 s}^{\prime}$ such that $V\left(P_{t}\right) \bigcap V\left(G_{t-1}\right)=\left\{v_{0}^{\prime}, v_{2 s}^{\prime}\right\}$. It is obvious that $G_{0}, G_{1}, \cdots, G_{t-1}$ is a nonincreasing ear decomposition of G_{t-1} with at most one ear with length 2. Note that G_{t-1} has at least 4 vertices. From Lemmas 1.1 and 1.2, G_{t-1} has an incomplete rainbow $\left\lceil\frac{\left|V\left(G_{t-1}\right)\right|}{2}\right\rceil$-edge-coloring c_{t-1}. In G_{t-1}, there exists an incomplete rainbow path P^{\prime} from v_{0} to one of v_{0}^{\prime} and $v_{2 s}^{\prime}\left(\right.$ say $\left.v_{2 s}^{\prime}\right)$. Assume that x^{\prime} is a color of the coloring c_{t-1} with $x^{\prime} \notin c_{t-1}\left(P^{\prime}\right)$. Define an edge-coloring c_{t} of $G_{t}=G_{t-1} \bigcup P_{t}$ by $c_{t}(e)=c_{t-1}(e)$ for $e \in E\left(G_{t-1}\right), c_{t}\left(v_{i-1}^{\prime} v_{i}^{\prime}\right)=x_{i}$ for i with $1 \leq i \leq s, c_{t}\left(v_{s}^{\prime} v_{s+1}^{\prime}\right)=x^{\prime}$ and $c_{t}\left(v_{i-1}^{\prime} v_{i}^{\prime}\right)=x_{i-s-1}$ for i with $s+2 \leq i \leq 2 s$, where x_{1}, \cdots, x_{s} are new colors. It can be checked that c_{t} is a rainbow $\left\lceil\frac{\left|V\left(G_{t}\right)\right|}{2}\right\rceil$-edge-coloring of G_{t}. From the definition of coloring c_{t}, every vertex of G_{t-1} has a rainbow path P in G_{t-1} to v_{0} with $x_{s} \notin c_{t}(P)$. Let $P^{\prime \prime}$ be a rainbow path in G_{t-1} from v_{0}^{\prime} to v_{0}. For any vertex $v_{j}^{\prime}(1 \leq j \leq s-1)$, $v_{j}^{\prime} P_{t} v_{0}^{\prime} P^{\prime \prime} v_{0}$ is a rainbow path in G_{t} from v_{j}^{\prime} to v_{0} such that $x_{s} \notin c_{t}\left(v_{j}^{\prime} P_{t} v_{0}^{\prime} P^{\prime \prime} v_{0}\right)$. For any vertex $v_{j}^{\prime}(s \leq j \leq 2 s-1)$, we have $v_{j}^{\prime} P_{t} v_{2 s}^{\prime} P^{\prime} v_{0}$ is a rainbow path in G_{t} from v_{j}^{\prime} to v_{0} such that $x_{s} \notin c_{t}\left(v_{j}^{\prime} P_{t} v_{2 s}^{\prime} P^{\prime} v_{0}\right)$. So every vertex of G_{t} has a rainbow path P in G_{t} to v_{0} with $x_{s} \notin c_{t}(P)$. Hence, c_{t} is a required rainbow edge-coloring of G_{t}.
Subcase 2.2. At least two ears of P_{1}, \cdots, P_{t-1} have length 2.
In this case, it is obvious that $\ell\left(P_{t}\right)=2$ and $\ell\left(P_{t+1}\right)=\cdots=\ell\left(P_{q}\right)=1$. Assume that $\ell\left(P_{1}\right) \geq \cdots \geq \ell\left(P_{h}\right) \geq 3$ and $\ell\left(P_{h+1}\right)=\cdots=\ell\left(P_{t}\right)=2$. Note that the endvertices of every P_{j} with $h+1 \leq j \leq t$ belong to $V\left(G_{t}\right)$. Here at least three ears have length 2 , i.e., $t-h \geq 3$. From Theorem 1.1, G_{h} has a rainbow $\left\lceil\frac{\left|V\left(G_{h}\right)\right|}{2}\right\rceil$-edge-coloring c_{h}. Assume that $P_{j}=a_{j} v_{j} b_{j}(h+1 \leq j \leq t)$ such that $V\left(P_{j}\right) \bigcap V\left(G_{h}\right)=\left\{a_{j}, b_{j}\right\}$. Define an edgecoloring c_{t} of G_{t} by $c_{t}(e)=c_{h}(e)$ for $e \in E\left(G_{h}\right), c_{t}\left(a_{j} v_{j}\right)=x_{1}$ for j with $h+1 \leq j \leq t$ and $c_{t}\left(v_{j} b_{j}\right)=x_{2}$ for j with $h+1 \leq j \leq t$, where x_{1}, x_{2} are new colors. When there are exactly 3 ears in the nonincreasing ear decomposition, i.e., $t-h=3$, then $\left|V\left(G_{h}\right)\right|$ is even. So c_{t} uses exactly $\left\lceil\frac{\left|V\left(G_{t}\right)\right|}{2}\right\rceil$ colors. If $t-h \geq 4, c_{t}$ is a rainbow edge-coloring of G_{t} with at $\operatorname{most}\left\lceil\frac{\left|V\left(G_{t}\right)\right|}{2}\right\rceil$ colors. It is easy to check that every vertex of G_{t} has a rainbow path P to
v_{0} with $x_{2} \notin c_{t}(P)$. Therefore, G_{t} has a required rainbow $\left\lceil\frac{\left|V\left(G_{t}\right)\right|}{2}\right\rceil$-edge-coloring.
Theorem 2.1. Let G be a connected graph of order $n(n \geq 3)$ and G has a block decomposition $B_{1}, \cdots, B_{q}(q \geq 2)$, where r blocks are even blocks. Then $r c(G) \leq \frac{n+r-1}{2}$ and the upper bound is tight.

Proof. Let G be a connected graph of order n with $q(q \geq 2)$ blocks in its block decomposition. If G has at least one even block, we choose $G_{1}=B_{1}$ being an even block of G; otherwise, $G_{1}=B_{1}$ being an odd block of G. Since $q \geq 2$ and G is connected, G has a block B_{2} such that $V\left(G_{1}\right) \bigcap V\left(B_{2}\right)=\left\{v_{1}\right\}$. Let $G_{2}=G_{1} \bigcup B_{2}$. So G_{2} is a connected graph which consists of two blocks B_{1}, B_{2}. Repeating the process of adding B_{2} to G_{1}, we obtain a sequence of subgraphs $G_{1}, G_{2}, \cdots, G_{q}$ such that $G_{i}(1 \leq i \leq q)$ is a connected graph and $G_{i}=B_{1} \bigcup B_{2} \bigcup \cdots \bigcup B_{i}(2 \leq i \leq q)$ with $V\left(G_{i-1}\right) \bigcap V\left(B_{i}\right)=\left\{v_{i-1}\right\}$ for i with $2 \leq i \leq q$. Denote the order of $B_{i}(1 \leq i \leq q)$ by n_{i}. From Theorem 1.1 and $r c\left(K_{2}\right)=1$, every block B has a rainbow $\left\lceil\frac{|V(B)|}{2}\right\rceil$-edge-coloring. We will consider the following two cases.

Case 1. $r \geq 1$.
From the definition of $G_{1}, G_{1}=B_{1}$ is an even block and G_{1} has a rainbow $\left\lfloor\frac{n_{1}}{2}\right\rfloor$-edgecoloring c_{1}. If B_{2} is an even block, color the edges of B_{2} with $\left\lfloor\frac{n_{2}}{2}\right\rfloor$ new colors such that B_{2} is rainbow connected. It is obvious that G_{2} is rainbow connected and the obtained edge-coloring c_{2} of G_{2} uses $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$ colors. Consider the case that B_{2} is an odd block. From Lemma 2.1, B_{2} has a rainbow edge-coloring c_{2}^{\prime} with $\left\lceil\frac{n_{2}}{2}\right\rceil$ new colors such that there exists a color x^{\prime} of c_{2}^{\prime} satisfying that every vertex of B_{2} has a rainbow path P in B_{2} to v_{1} with $x^{\prime} \notin c_{2}^{\prime}(P)$. Replacing the color x^{\prime} of c_{2}^{\prime} by a color x that already appeared in G_{1}, we obtain an edge-coloring c_{2} of G_{2} with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$ colors. It is obvious that G_{1} and B_{2} are rainbow connected, respectively. Consider two vertices $v^{\prime} \in V\left(G_{1}\right)$ and $v^{\prime \prime} \in V\left(B_{2}\right)$. From the definition of c_{2}, there are two rainbow paths P^{\prime} in G_{1} from v^{\prime} to v_{1} and $P^{\prime \prime}$ in B_{2} from v_{1} to $v^{\prime \prime}$ such that $x \notin c_{2}\left(P^{\prime \prime}\right)$. So $v^{\prime} P^{\prime} v_{1} P^{\prime \prime} v^{\prime \prime}$ is a rainbow path from v^{\prime} to $v^{\prime \prime}$ in G_{2}. Hence, c_{2} is a rainbow edge-coloring of G_{2} with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$ colors.
If $q \geq 3$, we can repeat the process of defining c_{2} from c_{1} to obtain a rainbow edgecoloring c_{q} of $G_{q}(=G)$ with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{n_{q}}{2}\right\rfloor$ colors.
Case 2. $r=0$.
In this case, $G_{2}=B_{1} \bigcup B_{2}$ consists of two odd blocks. From Lemma 2.1, $B_{i}(i=1,2)$ has a rainbow $\left\lceil\frac{n_{i}}{2}\right\rceil$-edge-coloring c_{i}^{\prime} such that x_{i}^{\prime} is a color of c_{i}^{\prime} satisfying that every vertex of $B_{i}(i=1,2)$ has a rainbow path P in B_{i} to v_{1} with $x_{i}^{\prime} \notin c_{i}^{\prime}(P)$. Note that $c_{1}^{\prime}\left(B_{1}\right) \bigcap c_{2}^{\prime}\left(B_{2}\right)=\emptyset$. Assume that $x_{i}(i=1,2)$ is a color of c_{i}^{\prime} such that $x_{i} \neq x_{i}^{\prime}$. Replacing x_{1}^{\prime} by x_{2} in B_{1} and x_{2}^{\prime} by x_{1} in B_{2}, we obtain an edge-coloring c_{2} of G_{2} with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$ colors. It is obvious that $B_{i}(i=1,2)$ is rainbow connected. Consider two vertices $v^{\prime} \in V\left(B_{1}\right)$ and $v^{\prime \prime} \in V\left(B_{2}\right)$. From the definition of c_{2}, there exist two rainbow paths P^{\prime} in B_{1} from v^{\prime} to v_{1} and $P^{\prime \prime}$ in B_{2} from v_{1} to $v^{\prime \prime}$ such that $x_{2} \notin c_{2}\left(P^{\prime}\right)$ and $x_{1} \notin c_{2}\left(P^{\prime \prime}\right)$. So $v^{\prime} P^{\prime} v_{1} P^{\prime \prime} v^{\prime \prime}$ is a rainbow path in G_{2} from v^{\prime} to $v^{\prime \prime}$. Hence, c_{2} is a rainbow
edge-coloring of G_{2} with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor$ colors. If $q \geq 3$, we can color the blocks B_{3}, \cdots, B_{q} similar to Case 1 to obtain a rainbow edge-coloring of G with $\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{n_{q}}{2}\right\rfloor$ colors.

Therefore, in any case we have that $r c(G) \leq\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{n_{q}}{2}\right\rfloor=\frac{n+r-1}{2}$.

Figure 1. A graph of order n with $r K_{2},(q-r-1) K_{3}$ and one odd cycle $C_{n-2 q+r+2}$.

In order to prove that the upper bound is tight, we will show that for any integers n, r, q, if there exist graphs of order n with r even blocks and $q-r$ odd blocks, then one of such graphs has a rainbow connection number $\frac{n+r-1}{2}$.

In fact, if there exists a connected graph of order n with r even blocks, then $n+r$ must be an odd number. The graph G of order n in Figure 1 consists of r even blocks $K_{2}, q-r-1$ odd cycles K_{3} and one odd cycle $C_{n-2 q+r+2}$. Since $d(G)=\frac{n+r-1}{2}$ and $d(G) \leq r c(G) \leq \frac{n+r-1}{2}$, we have $r c(G)=\frac{n+r-1}{2}$.

We know that for any connected graph G of order $n \operatorname{rc}(G) \leq n-1$ with equality if and only if G is a tree. Since the number of even blocks in any connected graph G of order n is at most $n-1$ (when G is a tree), from the bound of Theorem 2.1 we have $r c(G) \leq(n+r-1) / 2 \leq(n+n-1-1) / 2=n-1$. Hence, the upper bound in the Theorem 2.1 generalizes the bound $n-1$.

In the following, we give a tight upper bound of the rainbow connection number for a 2-edge-connected graph which improves the result of Proposition 1.1.

Theorem 2.2. Let G be a 2-edge-connected graph of order $n(n \geq 3)$. Then we have $r c(G) \leq\lfloor(2 n-2) / 3\rfloor$ and the upper bound is tight.

Proof. Suppose that G has the block decomposition $B_{1}, B_{2}, \cdots, B_{q}$. Since G is 2-edgeconnected, we have $\left|B_{i}\right| \geq 3,1 \leq i \leq q$. And if B_{i} is an even block, then $\left|B_{i}\right| \geq 4$. If G has r even blocks, then $3 r+1 \leq n$, i.e., $r \leq \frac{n-1}{3}$. From Theorem 2.1, $r c(G) \leq \frac{n+r-1}{2} \leq \frac{2 n-2}{3}$. Since $r c(G)$ is an integer, we have $r c(G) \leq\lfloor(2 n-2) / 3\rfloor$.

The three graphs G_{1}, G_{2}, G_{3} in Figure 2 are 2-edge-connected. The order of $G_{i}(i=$ $1,2,3)$ is $n_{i}=3 k+i$, and $d\left(G_{1}\right)=d\left(G_{2}\right)=2 k$ and $d\left(G_{3}\right)=2 k+1$. From the above result and $d(G) \leq r c(G)$, we have that $r c\left(G_{1}\right)=r c\left(G_{2}\right)=2 k$ and $r c\left(G_{3}\right)=2 k+1$, i.e., $r c\left(G_{i}\right)=\left\lfloor\left(2 n_{i}-2\right) / 3\right\rfloor$ for $i=1,2,3$. Hence, the upper bound is tight.

Acknowledgement. The authors are very grateful to the referees for detailed comments and suggestions, which helped to improving the presentation of the paper.

G_{1}

G_{2}

G_{3}

Figure 2. Graphs for the tightness of Theorem 2.2.

References

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection nuumber and radius, Graphs \& Combin., doi: 10.1007/s00373-012-1267-7.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, New York, 2008.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection nuumber and connected dominating sets, J. Graph Theory 71(2012), 206-218.
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Mathematica Bohemica 133(2008), 85-98.
[6] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Combin. Optim. 21(2010), 330-347.
[7] J. Dong, X. Li, Rainbow connection nuumber, bridges and radius, Graphs \& Combin., doi: 10.1007/s00373-012-1218-3.
[8] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S.M. Camacho, Z. Ryjáček, I. Schiermeyer, The rainbow connection number of 2-connected graphs, Discrete Math., doi: 10.1016/j.disc.2012.04.022.
[9] X. Li, S. Liu, L.S. Chandran, R. Mathew, D. Rajendraprasad, Rainbow connection number and connectivity, Electron. J. Combin. 19(2012), \sharp P20.
[10] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin., 29(1)(2013), 1-38.
[11] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.

[^0]: *Supported by NSFC No. 11071130 and the " 973 " program.

