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Abstract

An edge-colored graph G is rainbow connected if every pair of vertices of G are
connected by a path whose edges have distinct colors. The rainbow connection
number rc(G) of G is defined to be the minimum integer t such that there exists
an edge-coloring of G with t colors that makes G rainbow connected. For a graph
G without any cut vertex, i.e., a 2-connected graph, of order n, it was proved that
rc(G) ≤ dn

2 e and the bound is tight. In this paper, we prove that for a connected
graph G of order n with at least one cut vertex, rc(G) ≤ n+r−1

2 , where r is the
number of blocks of G with even orders, and the upper bound is tight. Moreover,
we also obtain a tight upper bound b(2n−2)/3c for the rainbow connection number
of a bridgeless (2-edge-connected) graph of order n.

Keywords: rainbow edge-coloring, rainbow connection number, cut vertex, block
decomposition.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. For notation

and terminology not defined here, we refer to [2]. In an edge-colored graph G, a path is

called a rainbow path if the colors of its edges are distinct. The graph G is called rainbow

connected if every pair of vertices are connected by at least one rainbow path in G. An

edge-coloring of a connected graph G that makes G rainbow connected is called a rainbow

edge-coloring (rainbow coloring for short) of G. The minimum number of colors required
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to rainbow color G is called the rainbow connection number of G, denoted by rc(G). It is

obvious that rc(G) ≤ d(G) for any connected graph G, where d(G) denotes the diameter

of G. If a graph G has an edge-coloring c and G′ is a subgraph of G, c(G′) denotes the

set of colors appearing in G′. An edge-coloring using k colors is addressed as a k-edge-

coloring. If P is a path, the length of P , which is the number of edges in P , is denoted

by `(P ).

Let G′ be a subgraph of a graph G. An ear of G′ in G is a nontrivial path in G whose

end vertices lie in G′ but whose internal vertices are not. An ear decomposition of a

2-connected graph G is a sequence of subgraphs G0, G1, · · · , Gk of G satisfying that (1)

G0 is a cycle of G; (2) Gi = Gi−1

⋃
Pi (1 ≤ i ≤ k), where Pi is an ear of Gi−1 in G; (3)

Gi−1(1 ≤ i ≤ k) is a proper subgraph of Gi; (4) Gk = G. If `(P1) ≥ `(P2) ≥ · · · ≥ `(Pk),

we say that the ear decomposition is nonincreasing. From the above definition, every

graph Gi in an ear decomposition is 2-connected.

A block of a graph G is a maximal connected subgraph of G that does not have any

cut vertex. So every block of a nontrivial connected graph is either a K2 or a 2-connected

subgraph. All the blocks of a graph G form a block decomposition of G. A block B is

called an even (odd) block if the order of B is even (odd).

Let c be a rainbow k-edge-coloring of a connected graph G. If a rainbow path P in G

has length k, we call P a complete rainbow path; otherwise, it is an incomplete rainbow

path. A rainbow edge-coloring c of G is incomplete if for any vertex u ∈ V (G), G has

at most one vertex v such that all the rainbow paths between u and v are complete;

otherwise, it is complete.

The concept of rainbow coloring was introduced by Chartrand et al. in [5]. For more

knowledge, we refer to [10, 11]. In [6], it was proved that computing the rainbow connec-

tion number of a graph is NP -hard. Hence, tight upper bounds of the rainbow connection

number for a connected graph have been a subject of investigation. The authors of [4]

proved that rc(G) ≤ 3n/(δ + 1) + 3, where δ is the minimum degree of the connected

graph G. The authors of [1] obtained an upper bound of the rainbow connection number

in term of radius: For every bridgeless graph G with radius r, rc(G) ≤ r(r+2). Moreover,

for every integer r ≥ 1, there exists a bridgeless graph with radius r and rc(G) = r(r+2).

Later, the authors of [7] generalized the bound to graphs with bridges, which is a little

bit complicated to restate and therefore omitted.

For 2-connected graphs, there exist the following results.

Lemma 1.1. [9] Let G be a Hamiltonian graph of order n (n ≥ 3). Then G has an

incomplete dn
2
e-rainbow coloring, i.e., rc(G) ≤ dn

2
e.

Lemma 1.2. [9] Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). If

G has at most one ear with length 2 in a nonincreasing ear decomposition, then G has a

incomplete dn
2
e-rainbow coloring, i.e., rc(G) ≤ dn

2
e.

Theorem 1.1. [9, 8] Let G be a 2-connected graph of order n (n ≥ 3). Then rc(G) ≤ dn
2
e,
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and the upper bound is tight for n ≥ 4.

Proposition 1.1. [3] If G is a connected bridgeless (2-edge-connected) graph with n

vertices, then rc(G) ≤ 4n/5− 1.

In this paper, we will study the rainbow connection number of a connected graph with

at least one cut vertex and obtain a tight upper bound. Besides, a tight upper bound for

a 2-edge-connected (bridgeless) graph is also obtained.

2 Main results

We first show that every 2-connected graph G with odd number of vertices has a rainbow

edge-coloring with a nice property.

Lemma 2.1. Let G be a 2-connected graph of order n (n ≥ 3) and v0 be any vertex of G.

If n is odd, then G has a rainbow dn
2
e-edge-coloring c such that there exists a color x of

the edge-coloring satisfying that every vertex of G can be connected by a rainbow path P

to v0 with x /∈ c(P ).

Proof. Since G is 2-connected, G has a nonincreasing ear decomposition G0, G1, · · · , Gq(=

G) (q ≥ 0) satisfying that (1) G0 is a cycle with v0 ∈ V (G0); (2) Gi = Gi−1

⋃
Pi, where

Pi (1 ≤ i ≤ q) is one of the longest ears of Gi−1 in G; (3) `(P1) ≥ `(P2) ≥ · · · ≥ `(Pq). In

the sequel, every nonincreasing ear decomposition of a 2-connected graph G satisfies the

above tree conditions. We consider the following two cases.

Case 1. No ear of P1, · · · , Pq has an even length.

In this case, since G has an odd order, G0 must be an odd cycle. Assume that G0 =

v0v1 · · · v2kv2k+1(= v0) with k ≥ 1. Define a (k+1)-edge-coloring c0 of G0 by c0(vi−1vi) = xi

for i with 1 ≤ i ≤ k + 1 and c0(vi−1vi) = xi−k−1 for i with k + 2 ≤ i ≤ 2k + 1. It can

be checked that c0 is a rainbow d |V (G0)|
2

e-edge-coloring of G0 such that every vertex of G0

can be connected by a rainbow path P in G0 to v0 with xk+1 /∈ c0(P ). If G0 = G, the

conclusion holds.

Now assume that G0 6= G and P1 = v′0v
′
1 · · · v′2sv

′
2s+1(s ≥ 0) with V (G0)

⋂
V (P1) =

{v′0, v′2s+1}. Define an edge-coloring c1 of G1 = G0

⋃
P1 by c1(e) = c0(e) for e ∈ E(G0),

c1(v
′
i−1v

′
i) = yi for i with 1 ≤ i ≤ s, c1(v

′
sv
′
s+1) = x′ and c1(v

′
i−1v

′
i) = yi−s−1 for i with

s+2 ≤ i ≤ 2s+1, where y1, · · · , ys are new colors and x′ is a color that already appeared

in G0. Here, if `(P1) = 1, i.e., s = 0, we just color the only edge v′0v
′
1 of P1 by a color that

appeared in G0. It can be checked that c1 is a rainbow d |V (G1)|
2

e-edge-coloring of G1. From

the definition of c1, every vertex of G0 can be connected by a rainbow path P in G0 to v0

with xk+1 /∈ c1(P ). Let P ′ and P ′′ be the rainbow paths, respectively, from v′0 and v′2s+1

to v0 in G0 such that xk+1 /∈ c1(P
′) and xk+1 /∈ c1(P

′′). For any vertex v′j (1 ≤ j ≤ s),

v′jP1v
′
0P

′v0 is a rainbow path in G1 from v′j to v0 such that xk+1 /∈ c1(v
′
jP1v

′
0P

′v0). For any
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vertex v′j (s + 1 ≤ j ≤ 2s), we can choose v′jP1v
′
2s+1P

′′v0 as a rainbow path in G1 from v′j
to v0 such that xk+1 /∈ c1(v

′
jP1v

′
2s+1P

′′v0). Hence, c1 is a required rainbow edge-coloring

of G1.

If G1 = G, the conclusion holds. Otherwise, repeating the above process of defining

c1 from c0, we can obtain a rainbow d |V (Gi)|
2

e-edge-coloring of Gi (2 ≤ i ≤ q) such that

every vertex of Gi can be connected by a rainbow path P in Gi to v0 with xk+1 /∈ ci(P ).

Therefore, cq is a required rainbow dn
2
e-edge-coloring of G.

Case 2. At least one of P1, · · · , Pq has an even length.

Suppose that Pt (1 ≤ t ≤ q) is the last added ear with an even length. So Pt+1, · · · , Ps

have odd lengths. Once we show that Gt has a required rainbow dnt

2
e-edge-coloring by

arguments similar to those used in the proof of Case 1, we can show that G has the

required rainbow dn
2
e-edge-coloring. We will consider the following two cases:

Subcase 2.1. At most one of the ears P1, · · · , Pt−1 has length 2.

Assume that Pt = v′0v
′
1 · · · v′2s−1v

′
2s such that V (Pt)

⋂
V (Gt−1) = {v′0, v′2s}. It is obvious

that G0, G1, · · · , Gt−1 is a nonincreasing ear decomposition of Gt−1 with at most one ear

with length 2. Note that Gt−1 has at least 4 vertices. From Lemmas 1.1 and 1.2, Gt−1 has

an incomplete rainbow d |V (Gt−1)|
2

e-edge-coloring ct−1. In Gt−1, there exists an incomplete

rainbow path P ′ from v0 to one of v′0 and v′2s (say v′2s). Assume that x′ is a color of

the coloring ct−1 with x′ /∈ ct−1(P
′). Define an edge-coloring ct of Gt = Gt−1

⋃
Pt by

ct(e) = ct−1(e) for e ∈ E(Gt−1), ct(v
′
i−1v

′
i) = xi for i with 1 ≤ i ≤ s, ct(v

′
sv
′
s+1) = x′

and ct(v
′
i−1v

′
i) = xi−s−1 for i with s + 2 ≤ i ≤ 2s, where x1, · · · , xs are new colors. It

can be checked that ct is a rainbow d |V (Gt)|
2

e-edge-coloring of Gt. From the definition of

coloring ct, every vertex of Gt−1 has a rainbow path P in Gt−1 to v0 with xs /∈ ct(P ).

Let P ′′ be a rainbow path in Gt−1 from v′0 to v0. For any vertex v′j (1 ≤ j ≤ s − 1),

v′jPtv
′
0P

′′v0 is a rainbow path in Gt from v′j to v0 such that xs /∈ ct(v
′
jPtv

′
0P

′′v0). For any

vertex v′j (s ≤ j ≤ 2s−1), we have v′jPtv
′
2sP

′v0 is a rainbow path in Gt from v′j to v0 such

that xs /∈ ct(v
′
jPtv

′
2sP

′v0). So every vertex of Gt has a rainbow path P in Gt to v0 with

xs /∈ ct(P ). Hence, ct is a required rainbow edge-coloring of Gt.

Subcase 2.2. At least two ears of P1, · · · , Pt−1 have length 2.

In this case, it is obvious that `(Pt) = 2 and `(Pt+1) = · · · = `(Pq) = 1. Assume that

`(P1) ≥ · · · ≥ `(Ph) ≥ 3 and `(Ph+1) = · · · = `(Pt) = 2. Note that the endvertices of

every Pj with h + 1 ≤ j ≤ t belong to V (Gt). Here at least three ears have length 2,

i.e., t− h ≥ 3. From Theorem 1.1, Gh has a rainbow d |V (Gh)|
2

e-edge-coloring ch. Assume

that Pj = ajvjbj (h + 1 ≤ j ≤ t) such that V (Pj)
⋂

V (Gh) = {aj, bj}. Define an edge-

coloring ct of Gt by ct(e) = ch(e) for e ∈ E(Gh), ct(ajvj) = x1 for j with h + 1 ≤ j ≤ t

and ct(vjbj) = x2 for j with h + 1 ≤ j ≤ t, where x1, x2 are new colors. When there are

exactly 3 ears in the nonincreasing ear decomposition, i.e., t−h = 3, then |V (Gh)| is even.

So ct uses exactly d |V (Gt)|
2

e colors. If t− h ≥ 4, ct is a rainbow edge-coloring of Gt with at

most d |V (Gt)|
2

e colors. It is easy to check that every vertex of Gt has a rainbow path P to
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v0 with x2 /∈ ct(P ). Therefore, Gt has a required rainbow d |V (Gt)|
2

e-edge-coloring.

Theorem 2.1. Let G be a connected graph of order n (n ≥ 3) and G has a block decom-

position B1, · · · , Bq (q ≥ 2), where r blocks are even blocks. Then rc(G) ≤ n+r−1
2

and the

upper bound is tight.

Proof. Let G be a connected graph of order n with q (q ≥ 2) blocks in its block decom-

position. If G has at least one even block, we choose G1 = B1 being an even block of G;

otherwise, G1 = B1 being an odd block of G. Since q ≥ 2 and G is connected, G has

a block B2 such that V (G1)
⋂

V (B2) = {v1}. Let G2 = G1

⋃
B2. So G2 is a connected

graph which consists of two blocks B1, B2. Repeating the process of adding B2 to G1, we

obtain a sequence of subgraphs G1, G2, · · · , Gq such that Gi (1 ≤ i ≤ q) is a connected

graph and Gi = B1

⋃
B2

⋃ · · ·⋃ Bi (2 ≤ i ≤ q) with V (Gi−1)
⋂

V (Bi) = {vi−1} for i with

2 ≤ i ≤ q. Denote the order of Bi (1 ≤ i ≤ q) by ni. From Theorem 1.1 and rc(K2) = 1,

every block B has a rainbow d |V (B)|
2
e-edge-coloring. We will consider the following two

cases.

Case 1. r ≥ 1.

From the definition of G1, G1 = B1 is an even block and G1 has a rainbow bn1

2
c-edge-

coloring c1. If B2 is an even block, color the edges of B2 with bn2

2
c new colors such that

B2 is rainbow connected. It is obvious that G2 is rainbow connected and the obtained

edge-coloring c2 of G2 uses bn1

2
c+ bn2

2
c colors. Consider the case that B2 is an odd block.

From Lemma 2.1, B2 has a rainbow edge-coloring c′2 with dn2

2
e new colors such that there

exists a color x′ of c′2 satisfying that every vertex of B2 has a rainbow path P in B2 to v1

with x′ /∈ c′2(P ). Replacing the color x′ of c′2 by a color x that already appeared in G1,

we obtain an edge-coloring c2 of G2 with bn1

2
c+ bn2

2
c colors. It is obvious that G1 and B2

are rainbow connected, respectively. Consider two vertices v′ ∈ V (G1) and v′′ ∈ V (B2).

From the definition of c2, there are two rainbow paths P ′ in G1 from v′ to v1 and P ′′ in

B2 from v1 to v′′ such that x /∈ c2(P
′′). So v′P ′v1P

′′v′′ is a rainbow path from v′ to v′′ in

G2. Hence, c2 is a rainbow edge-coloring of G2 with bn1

2
c+ bn2

2
c colors.

If q ≥ 3, we can repeat the process of defining c2 from c1 to obtain a rainbow edge-

coloring cq of Gq(= G) with bn1

2
c+ bn2

2
c+ · · ·+ bnq

2
c colors.

Case 2. r = 0.

In this case, G2 = B1

⋃
B2 consists of two odd blocks. From Lemma 2.1, Bi (i = 1, 2)

has a rainbow dni

2
e-edge-coloring c′i such that x′i is a color of c′i satisfying that every

vertex of Bi (i = 1, 2) has a rainbow path P in Bi to v1 with x′i /∈ c′i(P ). Note that

c′1(B1)
⋂

c′2(B2) = ∅. Assume that xi (i = 1, 2) is a color of c′i such that xi 6= x′i.
Replacing x′1 by x2 in B1 and x′2 by x1 in B2, we obtain an edge-coloring c2 of G2 with

bn1

2
c + bn2

2
c colors. It is obvious that Bi (i = 1, 2) is rainbow connected. Consider two

vertices v′ ∈ V (B1) and v′′ ∈ V (B2). From the definition of c2, there exist two rainbow

paths P ′ in B1 from v′ to v1 and P ′′ in B2 from v1 to v′′ such that x2 /∈ c2(P
′) and

x1 /∈ c2(P
′′). So v′P ′v1P

′′v′′ is a rainbow path in G2 from v′ to v′′. Hence, c2 is a rainbow
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edge-coloring of G2 with bn1

2
c+ bn2

2
c colors. If q ≥ 3, we can color the blocks B3, · · · , Bq

similar to Case 1 to obtain a rainbow edge-coloring of G with bn1

2
c + bn2

2
c + · · · + bnq

2
c

colors.

Therefore, in any case we have that rc(G) ≤ bn1

2
c+ bn2

2
c+ · · ·+ bnq

2
c = n+r−1

2
.

Figure 1. A graph of order n with rK2, (q − r − 1)K3 and one odd cycle Cn−2q+r+2.

In order to prove that the upper bound is tight, we will show that for any integers

n, r, q, if there exist graphs of order n with r even blocks and q − r odd blocks, then one

of such graphs has a rainbow connection number n+r−1
2

.

In fact, if there exists a connected graph of order n with r even blocks, then n + r

must be an odd number. The graph G of order n in Figure 1 consists of r even blocks

K2, q − r − 1 odd cycles K3 and one odd cycle Cn−2q+r+2. Since d(G) = n+r−1
2

and

d(G) ≤ rc(G) ≤ n+r−1
2

, we have rc(G) = n+r−1
2

.

We know that for any connected graph G of order n, rc(G) ≤ n − 1 with equality if

and only if G is a tree. Since the number of even blocks in any connected graph G of

order n is at most n − 1 (when G is a tree), from the bound of Theorem 2.1 we have

rc(G) ≤ (n + r − 1)/2 ≤ (n + n − 1 − 1)/2 = n − 1. Hence, the upper bound in the

Theorem 2.1 generalizes the bound n− 1.

In the following, we give a tight upper bound of the rainbow connection number for a

2-edge-connected graph which improves the result of Proposition 1.1.

Theorem 2.2. Let G be a 2-edge-connected graph of order n (n ≥ 3). Then we have

rc(G) ≤ b(2n− 2)/3c and the upper bound is tight.

Proof. Suppose that G has the block decomposition B1, B2, · · · , Bq. Since G is 2-edge-

connected, we have |Bi| ≥ 3, 1 ≤ i ≤ q. And if Bi is an even block, then |Bi| ≥ 4. If G has

r even blocks, then 3r + 1 ≤ n, i.e., r ≤ n−1
3

. From Theorem 2.1, rc(G) ≤ n+r−1
2

≤ 2n−2
3

.

Since rc(G) is an integer, we have rc(G) ≤ b(2n− 2)/3c.
The three graphs G1, G2, G3 in Figure 2 are 2-edge-connected. The order of Gi (i =

1, 2, 3) is ni = 3k + i, and d(G1) = d(G2) = 2k and d(G3) = 2k + 1. From the above

result and d(G) ≤ rc(G), we have that rc(G1) = rc(G2) = 2k and rc(G3) = 2k + 1, i.e.,

rc(Gi) = b(2ni − 2)/3c for i = 1, 2, 3. Hence, the upper bound is tight.

Acknowledgement. The authors are very grateful to the referees for detailed comments

and suggestions, which helped to improving the presentation of the paper.
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G1

G2

G3

Figure 2. Graphs for the tightness of Theorem 2.2.
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