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Abstract

An r-edge-coloring of a graph G is a surjective assignment of r colors to the edges of G. A heterochromatic tree is an edge-colored
tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted
by tr (G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G

can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we give an explicit formula for the heterochromatic
tree partition number of an r-edge-colored complete bipartite graph Km,n.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An r-edge-coloring of a graph G is a surjective assignment of r colors to the edges of G. A monochromatic (hete-
rochromatic) tree is an edge-colored tree in which any two edges have the same (different) color(s). The (monochromatic)
tree partition number of an r-edge-colored graph G is defined to be the minimum positive integer p such that whenever
the edges of G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint monochromatic
trees. The (monochromatic) cycle partition number and the (monochromatic) path partition number are defined simi-
larly. Erdös et al. [2] proved that the (monochromatic) tree partition number and the (monochromatic) cycle partition
number of Kn is at most cr2 ln r for some constant c, and conjectured that the (monochromatic) cycle partition number
of Kn is r and the (monochromatic) tree partition number is r − 1. Almost solving one of the two conjectures, Haxell
and Kohayakawa [5] proved that the (monochromatic) tree partition number of Kn is at most r provided that n is large
enough with respect to r . Haxell [4] proved that the (monochromatic) cycle partition number of the complete bipartite
graph Kn,n is also independent of n, which answered a question in [2]. Kaneko et al. [6] gave an explicit expres-
sion for the (monochromatic) tree partition number of a 2-edge-colored complete multipartite graph. In particular, let
n1, n2, . . . , nk (k�2) be integers such that 1�n1 �n2 � · · · �nk and let n = n1 + n2 + · · · + nk−1, m = nk , they [6]
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proved that

t ′2(Kn1,n2,...,nk
) =

⌊
m − 2

2n

⌋
+ 2,

where t ′r (Kn1,n2,...,nk
) denotes the (monochromatic) tree partition number of the r-edge-colored graph Kn1,n2,...,nk

.
Other related partition problems can be found in [1,3,7,8].

Analogous to the monochromatic tree partition case, we define the heterochromatic tree partition number of an
r-edge-colored graph G, denoted by tr (G), to be the minimum positive integer p such that whenever the edges of the
graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees.
In this paper we consider an r-edge-colored complete bipartite graph Km,n.

Since it is almost trivial to get the heterochromatic tree partition number of the graph K1,n, and tr (K1,n)=n− r + 1
for 1�r �n, in this paper we may assume that 2�m�n, and |X|=m, |Y |=n, when we consider the complete bipartite
graph Km,n with bipartition (X, Y ).

In order to prove our main result, we introduce the following notations. Let � be an r-edge-coloring of a graph
G. Denote by tr (G, �) the minimum positive integer p such that under the r-edge-coloring �, the vertices of G can
be covered by at most p vertex-disjoint heterochromatic trees. Clearly, tr (G) = max� tr (G, �), where � runs over all
r-edge-colorings of the graph G. Let � be an r-edge-coloring of the graph G and let F be a spanning forest of G whose
every component is a heterochromatic tree. Then, F is called an optimal heterochromatic tree partition of the graph G

with edge-coloring � if F contains exactly tr (G, �) components. A tree consisting of a single vertex is also regarded as
a heterochromatic tree. As usual, �(e) denotes the color of an edge e, d�(v) denotes the color degree of a vertex v (the
number of colors presenting at v), and �(H) denotes the set of colors appearing in a subgraph or an edge-set H of G.

The paper is organized as follows. In Section 2, we first define a special r-edge-coloring �∗ of Km,n for every r ,
1�r �mn, and then give an explicit formula for the heterochromatic tree partition number of Km,n under the r-edge-
coloring �∗. In Section 3, we prove that the coloring �∗ is a worst coloring, which means that for any 1�r �mn,
tr (Km,n) = tr (Km,n, �

∗).

2. The r-edge-coloring �∗ of Km,n for every r

In this section, we give a special r-edge-coloring �∗ of Km,n for every r , 1�r �mn. Then we give the heterochromatic
tree partition number of Km,n under the r-edge-coloring �∗. This coloring will serve as a worst coloring, which
means that among all edge-colorings of Km,n this coloring will force us to use a maximum number of vertex-disjoint
heterochromatic trees to cover the vertex-set of Km,n.

Definition 1. Suppose 2�m�n, 1�r �mn and Km,n is a complete bipartite graph with bipartition (X, Y ), where
X = {x1, . . . , xm}, Y = {y1, . . . , yn}.

• If 1�r �m, let �∗ be an r-edge-coloring of Km,n such that if 1� i�r , then all the edges incident with the vertex
xi are in color Ci , and if r � i�m, then all the edges incident with the vertex xi are in color Cr .

• If m=n and r =n2 − 2n+ 2, let �∗ be an r-edge-coloring of Km,n such that the subgraph Km,n[V (Km,n)\{xn, yn}]
is heterochromatic with colors C1, C2, . . . , Cn2−2n+1, and all the remaining edges in Km,n are in color Cn2−2n+2.

• Otherwise, let �∗ be an r-edge-coloring of Km,n such that every color of C1, . . . , Cr−1 appears exactly once and the
number of vertices in Y with color degree at least 2 is as small as possible. In other words, in this r-edge-coloring
�∗, if (j − 1)m + i�r , then �∗(xiyj ) = C(j−1)m+i ; if (j − 1)m + i�r , then �∗(xiyj ) = Cr .

Then we can easily get the following theorem on the heterochromatic tree partition number of Km,n under the
r-edge-coloring �∗.

Theorem 2.1. If 2�m�n, 1�r �mn, the two parts of Km,n are X and Y , and the r-edge-coloring is defined as in
Definition 1, then

• If 1�r �m, then tr (Km,n, �
∗) = n.

• If m(n − 1) + 1�r �mn, then tr (Km,n, �
∗) = 1.
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• If m = n and r = n2 − 2n + 2, then tr (Km,n, �
∗) = 2.

• Otherwise, tr (Km,n, �
∗) = n − � r−1

m
�.

Notice that if m = n and r = n2 − 2n + 2, then tr (Km,n, �
∗) = 2 > n − � r−1

m
�. So we have that

tr (Km,n, �
∗)�n −

⌈
r − 1

m

⌉
. (1)

3. Heterochromatic tree partition number of an r-edge-colored Km,n

In this section, we prove that for any 1�r �mn, tr (Km,n) = tr (Km,n, �
∗).

First, we do some preparations.

Theorem 3.1. Suppose G is a disconnected bipartite graph with bipartition (X, Y ), and |X| = m, |Y | = n, 2�m, n. If
every component of G contains at least one vertex in X, then |E(G)|�mn − n; if some component of G contains no
vertex of X, then |E(G)|�mn − m.

Proof. Since G is disconnected, G has at least two connected components. Suppose the connected components of G

are S1, S2, . . . , Sa, {x1}, . . . , {xb}, {y1}, . . . , {yc} (as shown in Fig. 1), where every Si has at least two vertices. For
i = 1, . . . , a, denote Xi = X ∩ Si , Yi = Y ∩ Si , then Xi �= ∅, Yi �= ∅.

First, we consider the case when each component of G contains at least one vertex in X, i.e., c = 0. Hence a + b�2,
this implies that for each vertex y ∈ Y , there exists a vertex x ∈ X such that yx /∈ E(G). So mn − |E(G)|� |Y | = n.

Now we consider the case when c > 0, i.e., some component of G contains exactly one vertex that is in Y . Hence
for each vertex x ∈ X there exists a vertex y ∈ Y such that xy /∈ E(G). So mn − |E(G)|� |X| = m. �

From this theorem, we can easily get the following result.

Corollary 3.2. For a bipartite graph G with bipartition X and Y , if |E(G)| > |X||Y | − min{|X|, |Y |}, then G is
connected.

Now we can get some lemmas for the heterochromatic tree partition number of Km,n under an r-edge-coloring �.

Lemma 3.3. Suppose 2�m�n and r �1. Then, for any r-edge-coloring � of Km,n we have tr (Km,n, �)�n, and
especially, if r > m, then tr (Km,n, �)�n − 1.

Proof. Suppose the bipartition ofKm,n is (X, Y )withX={x1, . . . , xm},Y={y1, y2, . . . , yn} and� is an r-edge-coloring
of Km,n. Thus {x1y1}, {x2y2}, . . . , {xmym}, {ym+1}, . . . , {yn} is a heterochromatic tree partition, and so tr (Km,n, �)�n.

Now we consider the case when r > m and m < n. Since r > m, there exists a vertex in X such that there are at
least two different colors presenting at it. Suppose x1 is a such vertex and x1y1, x1y2 are two such edges with different
colors. Hence {y1x1, x1y2}, {x2y3}, . . . , {xmym+1}, {ym+2}, . . . , {yn} is a heterochromatic tree partition of Km,n, and
so tr (Km,n, �)�n − 1.

Finally, we consider the case when r > m and m = n. Therefore there exists a vertex in Y such that there are at least
two different colors presenting at it. Suppose y1 is a such vertex. Since r > n and d�(y1)�d(y1) = n, there exists
an edge xiyj (j �= 1) whose color is different from any color presenting at y1. Noticing that d�(y1)�2, there is a
vertex xi′ �= xi such that �(xi′y1) �= �(xiy1). So T1 ∪ {e : e ∈ M} (where T1 is a heterochromatic spanning tree

Fig. 1. A disconnected bipartite graph.
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Fig. 2. An optimal heterochromatic tree partition of (Km,n,�).

Fig. 3. Suppose x1 ∈ S1.

in Km,n[{xi, xi′ , y1, yj }], and M is a perfect matching of Km,n\{xi, xi′ , y1, yj }) is a heterochromatic tree partition of
Kn,n, and so tr (Km,n, �)�n − 1. This completes the proof. �

Lemma 3.4. Suppose 2�m�n, m < r �m(n − 1), � is an r-edge-coloring of Km,n, and the bipartition of Km,n is
(X, Y ) with |X| = m, |Y | = n. If there is an optimal heterochromatic tree partition of Km,n under the coloring � such
that X is contained in a heterochromatic tree in the partition, then tr (Km,n, �)� tr (Km,n, �

∗).

Proof. Suppose T , {y1}, {y2}, . . . , {yt−1} is the optimal heterochromatic tree partition of (Km,n, �). Thus X ⊆ V (T ),
t = tr (Km,n, �). Let S be a heterochromatic spanning subgraph of Km,n[V (T )] that contains all the colors appearing in
Km,n[V (T )] (as shown in Fig. 2). Hence it is obvious that |E(S)|=r . Denote n1 =|V (S)∩Y |. Therefore t =n−n1 +1,
and r �mn1 since |E(S)| = r . Now we have n1 �� r

m
�, and if n1 �� r

m
� + 1, then t = n − n1 + 1�n − � r

m
��n −

� r−1
m

�� tr (Km,n, �
∗) (the last inequality is because of Eq. (1)).

So we need only to consider the case when n1 = � r
m

� = � r−1
m

�. In this case, we have r − 1 > (n1 − 1)m, and

n1 = � r
m

���m(n−1)
m

� = n − 1. Thus t = n − n1 + 1�2. Since |E(S)| = r > m, there must exist a vertex x1 in X

such that there are at least two edges in E(S) incident with it. Noticing that T , {y1}, {y2}, . . . , {yt−1} is an optimal
heterochromatic tree partition of (Km,n, �), there is an edge e ∈ E(S) such that �(e)=�(x1y1), and (V (S), E(S)\{e})
is disconnected and has exactly two connected components S1 and S2. Without loss of generality, we may suppose
x1 ∈ V (S1), see Fig. 3. Since dS(x1)�2, we get |V (S1)|�2.

Now we distinguish the following two cases for t.
Case 1: t = 2.
Hence n1 = n − 1. So we have |E(S)\{e}|�mn1 − min{m, n1} = m(n − 1) − min{m, n − 1} by Corollary 3.2.
If m < n, then m�n − 1. Therefore |E(S)\{e}|�m(n − 1) − m = m(n − 2), and r = |E(S)|�m(n − 2) + 1. By

Eq. (1) we can easily get that t = 2� tr (Km,n, �
∗).

If m = n, then |E(S)\{e}|�m(n − 1) − (n − 1) = (n − 1)2, and r = |E(S)|�(n − 1)2 + 1. Note that if r = (n −
1)2 + 1 = n2 − 2n + 2, then tr (Km,n, �

∗) = 2 = t under the condition of this case. So we need only to consider the
case when r �n2 − 2n + 1. Thus tr (Km,n, �

∗)�n − � r−1
m

��2 = t (the first inequality is because of Eq. (1) and the
second inequality is because m = n).

Case 2: t �3.
Hence we have S2 ∩ Y �= ∅. Since otherwise S2 contains exactly one vertex that is in X, denoting it by x2. Now

T1, {x2y2}, {y3}, . . . , {yt−1} (T1 is a spanning tree in (V (S1)∪{y1}, E(S1)∪{x1y1})) is a heterochromatic tree partition
of (Km,n, �), and only has t − 1 vertex-disjoint trees, a contradiction. So we have |E(S)\{e}|�m · n1 − m, because
of Theorem 3.1.
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Fig. 4. A heterochromatic tree partition of Km,n under the r-edge-coloring �.

Therefore r = |E(S)|�mn1 − m + 1 = m(n1 − 1) + 1 = m(n − t) + 1 (the last equality is because t = n − n1 + 1).
So t �n − � r−1

m
�� tr (Km,n, �

∗) by Eq. (1). This completes the proof. �

Finally, we give our main results.

Theorem 3.5. If 2�m�n, and 1�r �m or m(n − 1) + 1�r �mn, then tr (Km,n) = tr (Km,n, �
∗).

Proof. If 1�r �m, then tr (Km,n, �
∗)=n. On the other hand, for any r-edge-coloring ofKm,n, we have tr (Km,n, �)�n=

tr (Km,n, �
∗) by Lemma 3.3.

If m(n − 1) + 1�r �mn, then for any r-edge-coloring � of Km,n, the maximal spanning heterochromatic subgraph
of Km,n under the r-edge-coloring � must contain r �m(n − 1) + 1 edges, and so it is connected by Corollary 3.2.
Therefore tr (Km,n, �) = 1 = tr (Km,n, �

∗). This completes the proof. �

Theorem 3.6. If 2�m�n, m < r �m(n − 1), then tr (Km,n) = tr (Km,n, �
∗).

Proof. Suppose tr (Km,n) > tr (Km,n, �
∗) by contradiction. Choose an r-edge-coloring � such that tr (Km,n, �) =

tr (Km,n) > tr (Km,n, �
∗). Let E0 be a subset of E(Km,n) with r elements such that any two edges in E0 have different

colors. Denote G = (V (Km,n), E0). It is obvious that G is heterochromatic. Suppose that the connected components
of G are S1, S2, . . . , Sa , {x1}, . . . , {xb}, {y1}, . . . , {yc}, where for any i ∈ {1, . . . , a}, Si contains at least two vertices.
Suppose G is chosen so as to first minimize a and then minimize b. Denote Xi = Si ∩ X, Yi = Si ∩ Y , mi = |Xi |,
ni =|Yi |. Without loss of generality, assume that the Si’s have been ordered so that n1 �n2 � · · · �na �1, if c�b, and
so that m1 �m2 � · · · �ma �1, if c < b.

Suppose Ti is a spanning tree in Si for i =1, 2, . . . , a; therefore if c�b, T1, . . . , Ta , {x1y1}, . . . , {xbyb}, {yb+1}, . . . ,
{yc} is a heterochromatic tree partition of Km,n under the r-edge-coloring �, otherwise T1, . . . , Ta , {x1y1}, . . . , {xcyc},
{xc+1}, . . . , {xb} is a heterochromatic tree partition of Km,n under the r-edge-coloring �, see Fig. 4. So we have
tr (Km,n, �)�a + max{b, c}. Now we distinguish the following two cases.

Case 1: c�b. Hence tr (Km,n, �)�a + c.
Since n1 �n2 � · · · �na �1, r = |E(G)| = ∑a

i=1|E(Si)|�∑a
i=1mini �n1(

∑a
i=1mi)�n1m, and so n1 �� r

m
�.

If n2 �2, then tr (Km,n, �)�a + c = n1 + 2 + (a − 2) + c − n1 �n − n1 �n − � r
m

��n − � r−1
m

�� tr (Km,n, �
∗), a

contradiction. So we need only to consider the case when n2 = · · · = na = 1.
In this case, if a+c > tr(Km,n, �), then tr (Km,n, �)�a+c−1=n1+(a−1)+c−n1=n−n1 �n−� r

m
�� tr (Km,n, �

∗),
a contradiction. So we can assume that a+c=tr (Km,n, �). Therefore n−n1+1=tr (Km,n, �)�n−1 (the last inequality
is because of Lemma 3.3). This implies that n1 �2. On the other hand, n−n1+1=a+c=tr (Km,n, �)� tr (Km,n, �

∗)+1.
Noticing that tr (Km,n, �

∗)�n − � r−1
m

�, we have 2�n1 �� r−1
m

�. Therefore � r
m

��n1 �� r−1
m

�, and it remains only to
consider the case that n1 = � r

m
� = � r−1

m
�.

If there are at most m1n1 − m1 + 1 edges in S1, then we have

r = |E(S)| = |E(S1)| + |E(S2)| + · · · + |E(Sa)|
�(m1n1 − m1 + 1) + m2 + · · · + ma �m1n1 − m1 + 1 + (m − m1)

�m1(n1 − 2) + m + 1. (2)

Therefore, n1 � r−m−1
m1

+2� r−m−1
m−1 +2 = r−2

m−1 +1 > r−2
m

+1�� r−1
m

� (the second inequality is because m1 < m since
otherwise Lemma 3.4 completes the proof), a contradiction.

So we can assume S1 contains at least m1n1 − m1 + 2 edges. Thus (by Theorem 3.1) we can see that removing any
edge from S1 results in either a connected graph or a graph one of whose connected components is a single vertex from
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Fig. 5. Figure for Case 1 of Theorem 3.6.

X. Let x′ be a vertex of X1 with degree at least 2 (possible since r �m + 1, ni = 1 for i�2). Note that no matter what
edge we delete from S1, x′ is always in the connected component that contains all remaining edges, see Fig. 5.

If a > 1, then add the edge e between x′ and S2, and remove the edge e′ from G of the same color; denote the
new graph by G′. Since tr (Km,n, �) = a + c, (V (S1) ∪ V (S2), E(S1) ∪ E(S2) ∪ {e}\{e′}) must have exactly two
components. This implies that e′ ∈ E(S1) ∪ E(S2). If e′ ∈ E(S1), then (V (S1), E(S1)\{e′}) has two connected
components, and one component is a single vertex in X1, thus (V (S1) ∪ V (S2), E(S1) ∪ E(S2) ∪ {e}\{e′}) has a
component which is a single vertex in X1. If e′ ∈ E(S2), by noticing that S2 is a star centered at the only vertex in Y2,
then (V (S1)∪V (S2), E(S1)∪E(S2)∪ {e}\{e′}) has a component which is a singlevertex in X2. Therefore the number
of connected components in G′ which have at least two vertices is a −1, a contradiction to the choice of G. Thus a =1.

If c�b + 2, then add the edge between x′ and yc, and remove the edge e′ from G of the same color, de-
note the resulting graph by G′. Since tr (Km,n, �) = a + c and |E(S1)|�m1n1 − m1 + 2, the graph (V (S1) ∪
{yc}, E(S1) ∪ {x′yc}\{e′}) has exactly two components, and one component is a single vertex x′′ from X, there-
fore T ′

1, {x′′yc−1}, {x1y1}, . . . , {xbyb}, {yb+1}, . . . , {yc−2} is a heterochromatic tree partition of (Km,n, �), where T ′
1 is

a spanning tree in (V (S1) ∪ {yc}\{x′′}, E(S1) ∪ {x′yc}\{e′}), and has a + c − 1 vertex-disjoint trees, a contradiction
to tr (Km,n, �) = a + c. Thus c�b + 1.

Furthermore, if S1 is 2-edge-connected, then add an edge e between xb and S1 (by Lemma 3.4 xb must exist), and delete
the edge e′ of the same color, denote the new graph by G′. Since S1 is 2-edge-connected, (V (S1)∪{xb}, E(S1)∪{e}\{e′})
is connected, hence G′ has exactly one connected components with at least two vertices, c components with exactly
one vertex which is in Y , and b − 1 components with exactly one vertex which is in X; this contradicts that b was
minimized in our choice of G. Thus by Corollary 3.2 we conclude that S1 has at most m1n1 − n1 + 1 edges, and hence
that n1 < m1 (since we know there are at least m1n1 − m1 + 2 edges in S1).

Since m�n, a = 1 and b�c�b + 1, this implies m = n, n1 = m1 − 1 and c = b + 1. Hence r �m1n1 − n1 + 1 =
m1n1 − m1 + 2, implying n1 � r−2

m1
+ 1� r−2

m−1 + 1, which is greater than � r−1
m

�, a contradiction. This completes the
case c�b.

Case 2: b > c.
Therefore b > 0 and tr (Km,n, �)�a + b. It is easy to see that r = |E(S)| = |E(S1)| + · · · + |E(Sa)|�∑a

i=1mini �
m1(

∑a
i=1ni)�m1n, so we have m1 �� r

n
�.

If m1 = 1, then a + b = m, r �n and m < n, since m1 �� r
n
� and r > m. If n = m + 1, then r = m + 1, and so

tr (Km,n, �)�a + b = m = n − 1 = n − � r−1
m

�� tr (Km,n, �
∗), a contradiction. If n�m + 2, then n − � r−1

m
��n −

�n−1
m

��n − n+m−2
m

= m + (n − m) − n+m−2
m

= m + (m−1)n−m2−m+2
m

�m + (m−1)(m+2)−m2−m+2
m

= m� tr (Km,n, �),
a contradiction. Thus m1 �2.

If m2 �2, then

tr (Km,n, �)�a + b = a + m −
a∑

i=1

mi

�m − m1 �m −
⌈ r

n

⌉

= n − r

m
+ (m − n) +

( r

m
− r

n

)
−

(⌈ r

n

⌉
− r

n

)

= n − r

m
−

(⌈ r

n

⌉
− r

n

)
+ (n − m)

( r

mn
− 1

)

�n − r

m
< n − r − 1

m
. (3)

So we have that tr (Km,n, �)��n − r−1
m


 = n − � r−1
m

�� tr (Km,n, �
∗), a contradiction. Thus, mi = 1 for 2� i�a.
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Fig. 6. Figure for Case 2 of Theorem 3.6.

If m1 �� r
n
� + 1, then tr (Km,n, �)�m − m1 + 1�m − � r

n
�� tr (Km,n, �

∗) (the last inequality is because of Eq.
(3)), a contradiction. Thus m1 = � r

n
�. If tr (Km,n, �)�a + b − 1, then tr (Km,n, �)�a + b − 1 = m − m1 = m − � r

n
�,

a contradiction. Hence tr (Km,n, �) = a + b. Furthermore, if r �n, then m1 = � r
n
� = 1, a contradiction. Therefore

r �n + 1�2.
If r ≡ 1 (mod n), then tr (Km,n, �) = a + b = m − m1 + 1 = m − � r

n
� + 1 = m − r−1

n
= mn−r+1

n
< mn−r+2

m
= n −

r−2
m

�n − � r−1
m

� + 1� tr (Km,n, �
∗) + 1, a contradiction. So we can assume r �= 1 (mod n). Thus � r

n
�� r+n−2

n
.

If there are at most m1n1 − n1 + 1 edges in S1, then as in the previous case, we conclude r �m1n1 − n1 + 1 +∑a
i=2 ni �m1n1 −n1 + 1 + (n−n1), implying m1 � r−n−1

n1
+ 2� r−n−1

n
+ 2 = r+n−1

n
> r+n−2

n
�� r

n
�, a contradiction.

Therefore we can assume S1 has at least n1m1 − n1 + 2 edges. Thus (by Theorem 3.1) we see that removing any edge
from S1 results in either a connected graph, or a graph one of whose connected components is a single vertex from Y1.
Let y′ be a vertex of Y1 with degree at least 2 (possible since r �n + 1, and mi = 1 for 2� i�a). Note no matter what
edge we delete from S1, y′ is always in the connected component that contains all the remaining edges, see Fig. 6.

If a > 1, then add the edge e between y′ and S2, and remove the edge e′ from G of the same color; denote the
new graph by G′. Since tr (Km,n, �) = a + b and S2 is a star centered at the only vertex in X2, the graph (V (S1) ∪
V (S2), E(S1)∪E(S2)∪{e}\{e′}) has exactly two components, and one component is a single vertex y′′ from Y . Since
b > c, T ′

1, T3, . . . , Ta, {x1y1}, . . . , {xcyc}, {xby
′′}, {xc+1}, . . . , {xb−1} (T ′

1 is a spanning tree in (V (S1) ∪ V (S2)\{y′′},
E(S1) ∪ E(S2) ∪ {e}\{e′})) is a heterochromatic treepartition of (Km,n, �) with a + b − 1 vertex disjoint trees, a
contradiction. Thus a = 1.

Add the edge e between y′ and xb, remove the edge e′ from G of the same color, and denote the new graph by G′.
Since (V (S1) ∪ {xb}, E(S1) ∪ {e}\{e′}) is connected, or has two components such that one of them is a single vertex
y′′ of Y1, G′ contradicts the minimality of b in G. This completes the proof. �

From the above results, we can give an explicit formula for the heterochromatic tree partition number of an r-edge-
colored complete bipartite graph.

Theorem 3.7. If 2�m�n, 1�r �mn, then the heterochromatic tree partition number of an r-edge-colored Km,n is

tr (Km,n) = tr (Km,n, �
∗)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n if 1�r �m,

1 if m(n − 1) + 1�r �mn,

2 if m = n and r = n2 − 2n + 2,

n −
⌈

r − 1

m

⌉
otherwise.
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