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Abstract

An edge-colored graph G is conflict-free connected if, between each pair of

distinct vertices, there exists a path containing a color used on exactly one of

its edges. The conflict-free connection number of a connected graph G, denot-

ed by cfc(G), is defined as the smallest number of colors that are required in

order to make G conflict-free connected. A coloring of vertices of a hypergraph

H = (V, E) is called conflict-free if each hyperedge e of H has a vertex of unique

color that does not get repeated in e. The smallest number of colors required

for such a coloring is called the conflict-free chromatic number of H, and is

denoted by χcf (H). In this paper, we study the conflict-free connection color-

ing of trees, which is also the conflict-free coloring of edge-path hypergraphs of

trees. We first prove that for a tree T of order n, cfc(T ) ≥ cfc(Pn) = dlog2 ne,
and this completely confirms the conjecture of Li and Wu. We then present a

sharp upper bound for the conflict-free connection number of trees by a simple

algorithm. Furthermore, we show that the conflict-free connection number of

the binomial tree with 2k−1 vertices is k − 1. At last, we construct some tree

classes which are k-cfc-critical for every positive integer k.
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1 Introduction

All graphs in this paper are undirected, simple and nontirivial. We follow [3] for

graph theoretical notation and terminology not described here. Let G be a graph. We

use V (G), E(G), n(G),m(G), and ∆(G) to denote the vertex set, edge set, number

of vertices (order of G), number of edges (size of G), and maximum degree of G,

respectively. Let N(v) denote the neighborhood of v in G. Given two graphs G1

and G2, the union of G1 and G2, denoted by G1 ∪ G2, is the graph with vertex set

V (G1)∪V (G2) and edge set E(G1)∪E(G2). A hypergraph H is a pair (V , E), where

V is the vertex set of H and E is the hyperedge set which is a family of nonempty

subsets of V . The concept of hypergraphs is a generalization of graphs, because a

graph is a hypergraph in which each hyperedge is a pair of vertices.

A vertex-coloring of a hypergraph H = (V , E) is called conflict-free if each hyper-

edge e of H has a vertex of unique color that does not get repeated in e. The smallest

number of colors required for such a coloring is called the conflict-free chromatic num-

ber of H, and is denoted by χcf (H). This parameter was first introduced by Even,

Lotker, Ron and Smorodinsky [11] (FOCS 2002), with an emphasis on hypergraphs

induced by geometric shapes. The main application of a conflict-free coloring is that

it models a frequency assignment for cellular networks. A cellular network consists

of two kinds of nodes: base stations and mobile agents. Base stations have fixed

positions and provide the backbone of the network; they are represented by vertices

in V . Mobile agents are the clients of the network and are served by base stations.

This is done as follows: every base station has a fixed frequency; this is represented

by the coloring c; i.e., colors represent frequencies. If an agent wants to establish a

link with a base station, it has to tune itself to this base station’s frequency. Since

agents are mobile, they can be in the range of many different base stations. To avoid

interference, the system must assign frequencies to base stations in the following way:

for any range, there must be a base station in the range with a frequency that is not

used by some other base station in the range. One can solve the problem by assigning

n different frequencies to the n base stations. However, using many frequencies is ex-

pensive, and therefore a scheme that reuses frequencies, where possible, is preferable.

Conflict-free coloring problems have been the subject of many recent papers due to

their practical and theoretical interest. One can find many results on conflict-free

coloring, see [2, 5, 12, 14, 20, 21].

Other hypergraphs that have been studied with respect to the conflict-free coloring

are ones which are induced by a graph G = (V,E) and its neighborhoods or its paths:

(i) The vertex-neighborhood hypergraph HN(G) = (V , E) is a hypergraph with
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V(HN) = V (G) and E(HN) = {NG(x)|x ∈ V (G)}, which has been studied in [4, 19].

(ii) The vertex-path hypergraph HV P (G) = (V , E) is a hypergraph with V(HV P ) =

V (G) and E(HV P ) = {V (P )| P is a path of G }. A conflict-free coloring of HV P (G) is

called a conflict-free coloring of G with respect to paths ; we also define the correspond-

ing graph chromatic number, χP
cf (G) = χcf (HV P (G)). In [9], the authors proved that

it is coNP-complete to decide whether a given vertex-coloring of a graph is conflict-

free with respect to paths. And in [8], the authors studied the conflict-free coloring

of tree graphs with respect to paths, and they showed that χP
cf (Pn) = dlog2(n + 1)e

for a path Pn on n vertices, and χP
cf (B∗2(r+1)+3r) ≤ 4r+ 2 for the complete binary tree

with 5r + 2 levels.

(iii) The edge-path hypergraph HEP (G) = (V , E) is a hypergraph with V(HEP ) =

E(G) and E(HEP ) = {E(P )| P is a path of G }, which is studied in this paper.

Inspired by rainbow connection colorings [16, 17] and proper connection colorings

[15] of graphs and conflict-free colorings of hypergraphs, Czap et al. [7] introduced

the concept of conflict-free connection colorings of graphs. An edge-colored graph G

is called conflict-free connected if each pair of distinct vertices is connected by a path

which contains at least one color used on exactly one of its edges. This path is called

a conflict-free path, and this coloring is called a conflict-free connection coloring of

G. The conflict-free connection number of a connected graph G, denoted by cfc(G),

is the smallest number of colors required to color the edges of G so that G is conflict-

free connected. It is easy to see that for a tree T , each of a proper connection

coloring and a conflict-free connection coloring of T is a proper edge-coloring, and

cfc(T ) ≥ χ′(T ) = ∆(T ) = pc(G). Note that a conflict-free coloring of the edge-path

hypergraph H of a graph G is a conflict-free connection coloring of G. The other way

round is not true in general, since some pairs of vertices in a general graph G may have

more than one path between them. However, for any tree T , the conflict-free coloring

of the edge-path hypergraph of T is equivalent to the conflict-free connection coloring

of T , i.e., χcf (HEP (T )) = cfc(T ), since every pair of vertices in T has a unique path

between them. In this paper, we study the conflict-free connection coloring of trees,

which is also the conflict-free coloring of edge-path hypergraphs of trees. At first, we

present some results on the conflict-free connection for general graphs.

Lemma 1.1 [6] Let G be a connected graph of order n. Then 1 ≤ cfc(G) ≤ n − 1.

Moreover, cfc(G) = 1 if and only if G = Kn, and cfc(G) = n − 1 if and only if

G = K1,n−1.

Theorem 1.2 [7] If G is a noncomplete 2-connected graph, then cfc(G) = 2.
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In [6], the authors weaken the condition of the above theorem and got the following

result.

Theorem 1.3 [6, 10] Let G be a noncomplete 2-edge-connected graph. Then cfc(G) =

2.

Let C(G) be the subgraph of G induced by the set of cut-edges of G. It is easy

to see that every component of C(G) is a tree and hence C(G) is a forest. Let

h(G) = max{cfc(T ) : T is a component of C(G)}. For a graph G with cut-edges,

the authors of [7] gave lower and upper bounds of cfc(G) in terms of h(G).

Theorem 1.4 [7] If G is a connected graph with cut-edges, then h(G) ≤ cfc(G) ≤
h(G) + 1. Moreover, the bounds are sharp.

Recently, the authors in [6] gave a sufficient condition such that the lower bound

is sharp for h(G) ≥ 2.

Theorem 1.5 [6] Let G be a connected graph with h(G) ≥ 2. If there exists a unique

component T of C(G) such that cfc(G) = h(G), then cfc(G) = h(G).

So, the problem of determining the value of cfc(G) for graphs G without bridges

or cut-edges is completely solved. The rest graphs all have cut-edges. The extremal

such graphs are trees for which every edge is a cut-edge. And by the above theorem, to

determine the conflict-free connection number of general graphs relies on determining

the conflict-free connection number of trees, with an error of only one. Next, we

present some known results on the conflict-free connection number of trees.

Lemma 1.6 [7] If Pn is a path on n vertices, then cfc(Pn) = dlog2 ne.

Lemma 1.7 [7] If T is a tree on n vertices with maximum degree ∆(T ) ≥ 3 and

diameter diam(T ), then

max{∆(T ), log2 diam(T )} ≤ cfc(T ) ≤ (∆(T )− 2) log2 n

log2 ∆(T )− 1
.

The following result indicates that when the maximum degree of a tree is large, the

conflict-free connection number is immediately determined by its maximum degree.

Theorem 1.8 [6] Let T be a tree of order n, and let t be a natural number such that

t ≥ 1 and n ≥ 2t+ 2. Then cfc(T ) = n− t if and only if ∆(T ) = n− t.
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It is easy to obtain the following result for trees with diameter 3.

Lemma 1.9 Let Sa,b be a tree with diameter 3 such that the two non-leaf vertices

have degrees a and b, Then cfc(Sa,b) = ∆(Sa,b).

Proof. By Lemma 1.7, we have cfc(Sa,b) ≥ ∆(Sa,b) = max{a, b}. It remains to prove

the matching lower bound. Without loss of generality, we assume that the non-leaf

vertex u has maximum degree a and the other non-leaf vertex v has degree b. We

provide an edge-coloring of Sa,b with a colors: assign a distinct colors to the edges

incident with u, then for the remaining edges, assign b− 1 distinct used colors which

do not contain the color on the edge uv. It is obvious that this is a conflict-free

connection coloring of Sa,b. Thus, cfc(Sa,b) ≤ ∆(Sa,b) = max{a, b}. �

Recently, Li and Wu proposed the following conjecture in [18].

Conjecture 1.10 [18] For a tree T of order n, cfc(T ) ≥ cfc(Pn) = dlog2 ne.

Definition 1.11 A tree T is called k-cfc-critical if cfc(T ) = k, and for every proper

subtree T ′ of T , cfc(T ′) < k, which means that for every edge e of T , any one of the

(two) nontrivial components in T − e has a conflict-free connection number less than

k.

Let us give an overview of the results of this paper. In Section 2, we present a

sharp lower bound for the conflict-free connection number of trees, this completely

confirms Conjecture 1.10. In Section 3, we give a sharp upper bound for the conflict-

free connection number of trees by a simple algorithm we develop. Furthermore, we

show that the conflict-free connection number of the binomial tree with 2k−1 vertices

is k − 1. In Section 4, we construct some classes of trees which are k-cfc-critical for

every positive integer k.

2 The lower bound

In order to obtain a lower bound for the conflict-free connection number of trees,

we define a new kind of edge-colorings of graphs, which is regarded as the general-

ization of the conflict-free connection colorings of graphs.

Definition 2.1 Let G be a nontrivial connected graph with an edge-coloring. A path

in G is called an odd path if there is a color that occurs an odd number of times
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on the edges of the path. An edge-colored graph G is called odd connected if any

two distinct vertices of G are connected by an odd path, and this coloring is called

an odd connection coloring of G. For a connected graph G, the minimum number of

colors that are required in order to make G odd connected is called the odd connection

number of G, denoted by oc(G).

It is easy to see that every conflict-free connection coloring of G is an odd con-

nection coloring, which implies the following easy result.

Proposition 2.2 Let G be a connected graph, then oc(G) ≤ cfc(G).

The parity vector below is a very useful tool to study the odd connection coloring

of graphs.

Definition 2.3 Given an edge-coloring c : E → {1, · · · , k} of G and a path P of G,

the parity vector of P is an element of {0, 1}k in which the i-th coordinate equals the

parity (0 for even, or 1 for odd) of the number of edges in P with color i.

It is clear that an edge-colored graph G is odd connected if and only if any two

distinct vertices of G are connected by a path whose parity vector is not the all-zero

vector. Now we are ready to give the proof of our main result of this section.

Lemma 2.4 Let T be a tree of order n. Then oc(T ) ≥ dlog2 ne.

Proof. Let c be an odd connection coloring of T with oc(T ) colors. Take n−1 distinct

paths each starting from a fixed leaf vertex of T to the other n − 1 vertices. First,

we claim that any two of these n− 1 paths have distinct parity vectors. Assume, to

the contrary, two of them, say P1 and P2, have the same parity vector a. Let E ′ be

the symmetric difference of E(P1) and E(P2). Then the subgraph induced by E ′ is

also a path P ′. Notice that the parity vector a′ of P ′ is a + a = 0, as the colors in

E(P1) ∩ E(P2) are counted twice, which cannot change the value of a′. So, on the

path P ′ each color appears an even number of times, a contradiction. Thus, there

are n − 1 distinct parity vectors, none of which is the all-zero vector. On the other

hand, the number of nonezero parity vectors is at most 2oc(T )− 1, which implies that

2oc(T ) − 1 ≥ n− 1, and hence oc(T ) ≥ dlog2 ne. �

The following result is an immediate consequence of Lemmas 1.6 and 2.4 and

Proposition 2.2, which completely confirms Conjecture 1.10.

Theorem 2.5 Let T be a tree of order n. Then cfc(T ) ≥ cfc(Pn) = dlog2 ne.
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3 An algorithm for the upper bound

At the very beginning of this section, we give the following concept.

Definition 3.1 Let T be a tree. An edge e of T is called balanced if the difference

of the sizes of two resulting subtrees of T − e is minimum.

We below present an algorithm for constructing a conflict-free connection coloring

of a given tree. This algorithm starts from the single connected component T , and in

each iteration, removes one balanced edge from each generated subtree of T to split

it into two generated subtrees, until all the generated subtrees become singletons as

illustrated in Fig. 1.

For convenience, the depth of a tree T , denoted by d(T ), is defined as the number

of the iterations of the following algorithm; the depth of an edge e in T , denoted by

d(e), is defined as the sequence number of the iteration that deletes e. That is, the

edges deleted in d-th iteration are the ones with depth d.

Algorithm 1 for conflict-free connection coloring of a tree

Input: A tree T = (V,E).

Output: A conflict-free connection coloring c of T .

Step 1: Set F = T , c : E → {0}.
Step 2: Determine whether there exists a component which has more than one vertex

in F . If so, go to Step 3; otherwise, go to Step 4.

Step 3: Choose all the components which have more than one vertex, and then delete

a balanced edge e from each of such components to get new components which form a

forest F ′. Replace F by F ′. Update c: color edges e with d(e). Go to Step 2.

Step 4: Return c.

Lemma 3.2 Let T be a tree of order n. Then max{∆(T ), dlog2 ne} ≤ d(T ) ≤ n− 1.

Proof. It is obvious that d(T ) ≤ n − 1. And since we remove only one balanced

edge from a generated subtree of T in Algorithm 1, it follows that edges in the

same depth are not adjacent, which means d(T ) ≥ ∆(T ). Thus, we only need to

prove d(T ) ≥ dlog2 ne. Note that the number of edges with depth i is at most 2i−1.

Algorithm 1 is not terminated until all the generated subtrees become singletons. It

follows that m(T ) ≤ 20 +21 + · · ·+2d(T )−1 = 2d(T )−1, which implies d(T ) ≥ dlog2 ne.
�
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Figure 1: A tree of depth 4

Note that the choice of the balanced edge of each generated subtree is unique

for k1,n−1 and Sa,n−a by symmetry in Algorithm 1, and it is easy to check that

d(k1,n−1) = n − 1 and d(Sa,n−a) = ∆(Sa,n−a). Next, we study the depths of other

trees. Obviously, the path Pn has the same property as k1,n−1 and Sa,n−a.

Lemma 3.3 Let Pn be a path on n vertices. Then d(Pn) = dlog2 ne.

Proof. By Lemma 3.2, we have d(Pn) ≥ dlog2 ne. Thus, it remains to verify

the matching lower bound. We use induction on n. The statement is evident-

ly true for n = 1 and n = 2. Let Pn be a path on n vertices. Then we delete

a central edge from Pn. The resulting paths P and P ′ have at most dn
2
e ver-

tices. Therefore, by the induction hypothesis, max{d(P ), d(P ′)} ≤ dlog2
n
2
e. Thus,

d(Pn) ≤ 1 + max{d(P ), d(P ′)} ≤ 1 + dlog2
n
2
e ≤ dlog2 ne. �

The (rooted) binomial tree Bk with 2k−1 vertices is defined as follows: B1 is a

single vertex; for k > 1, Bk consists of two disjoint copies of Bk−1 and an edge between

their two roots, where the root of Bk is the root of the first copy. These trees are

used in [1, 13]. The binomial tree Bk is another tree class for which the choice of the

balanced edge of each generated subtree is unique in Algorithm 1.

Lemma 3.4 Let Bk be the binomial tree with 2k−1 vertices for k ≥ 2. Then d(Bk) =

k − 1.

Proof. By Lemma 3.2, we have d(Bk) ≥ dlog2 ne = k − 1. For the converse, we

use induction on k. Noticing that B2 is a path of order 2, it follows that the result

holds trivially for k = 2. Suppose that the result holds for Bk−1 for k ≥ 3. Let Bk

be the binomial tree with 2k−1 vertices, it follows that Bk consists of two disjoint
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copies of Bk−1 and an edge e0 between their two roots. We delete the edge e0 from

Bk. Therefore, by the induction hypothesis, d(Bk−1) ≤ k − 2. Thus, d(Bk) ≤
1 + d(Bk−1) ≤ k − 1. �

The correctness of Algorithm 1 is confirmed by the following theorem, and this

gives a sharp upper bound for the conflict-free connection number of trees. Note that

for general trees, the choice of the balanced edge of each generated subtree may not

be unique in Algorithm 1, which implies that there exist many priorities of removing

edges of T .

Theorem 3.5 Algorithm 1 constructs a conflict-free connection coloring of a given

tree T . Moreover, cfc(T ) ≤ min{d(T )| d(T ) is the depth of T by a certain priority

of removal edges of T in Algorithm 1}, where all possible priorities of removing edges

of T are taken.

Proof. It is sufficient to show that there exists a conflict-free path for each pair of

distinct vertices u, v of T under the coloring given by Algorithm 1. Since adjacent

edges are colored with distinct colors in Algorithm 1, we may assume that u and

v are not adjacent. Let e0 be the balanced edge of the first generated subtree that

simultaneously contains u and v starting from u and v, respectively. Since the color

of e0 on the path between u and v is minimal and unique, it follows that the path

between u and v is conflict-free. Thus, this is a conflict-free connection coloring of

T , which implies that the result holds. �

Remark: Algorithm 1 provides an optimal conflict-free connection coloring for the

path, the star, the tree with diameter 3, and the binomial tree which is proved below.

These imply that the upper bound in Theorem 3.5 is sharp.

Let D(T ) = min{d(T )| d(T ) is the depth of T by a certain priority of removing

edges of T in Algorithm 1}, where all possible priorities of removing edges of T are

taken. For general trees, we propose the following conjecture.

Conjecture 3.6 For a given tree T , D(T ) ≤ 2cfc(T ).

Next, we determine the conflict-free connection number of the binomial tree. Com-

bining Theorems 2.5 and 3.5 and Lemma 3.4, we get the following conclusion.

Theorem 3.7 Let Bk be the binomial tree with 2k−1 vertices, then cfc(Bk) = k − 1.

Recall that the complete binary tree B∗k has k levels and 2k − 1 vertices. It is not

difficult to prove by induction that B∗k ⊆ B2k−1, and so we get the following corollary.
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Corollary 3.8 Let B∗k be the complete binary tree with k levels. Then k ≤ cfc(B∗k) ≤
2k − 2.

Proof. Since B∗k has 2k − 1 vertices, it follows that cfc(B∗k) ≥ dlog2(2
k − 1)e = k

by Theorem 2.5. We only need to prove the upper bound. Since B∗k ⊆ B2k−1, it

follows that a conflict-free connection coloring of B2k−1 restricted on the edges of B∗k
is conflict-free connected. Thus, cfc(B∗k) ≤ cfc(B2k−1) = 2k − 2 by Theorem 3.7. �

4 k-cfc-critical

In this section, we study trees which are k-cfc-critical for every positive integer

k. The following two results are immediate corollaries of Lemmas 1.1 and 1.6.

Proposition 4.1 The star K1,k of order k + 1 is k-cfc-critical.

Proposition 4.2 The path P2k−1+1 on 2k−1 + 1 vertices is k-cfc-critical.

Next, we construct two other kinds of trees which are k-cfc-critical for every

integer k ≥ 2.

Theorem 4.3 Let Qk be the graph obtained from two copies of K1,k−1 with k ≥ 2 by

identifying a leaf vertex in one copy with a leaf vertex in the other copy. Then Qk is

k-cfc-critical.

Proof. Since Qk is a path on 2k−1 + 1 vertices for k = 2, 3, it follows that the result

holds by Proposition 4.2. Next, we may assume that k ≥ 4. Note that Qk is a tree of

order 2k− 1 with diameter 4. Let w be the only vertex of degree 2, which is adjacent

to u and v, and let N(u) = {w, u1, · · · , uk−2} and N(v) = {w, v1, · · · , vk−2}.
We first show that cfc(Qk) = k. Suppose that there exists a conflict-free connec-

tion coloring of Qk with at most k − 1 colors. It follows that all the edges incident

with each of u and v are assigned distinct colors. Without loss of generality, we

assume that the color of the edge uw is ci and the color of the edge vw is cj. Thus,

there exists a path of length 4 having the color sequence ci, cj, ci, cj, a contradiction.

Thus, cfc(Qk) ≥ k. And we define an edge-coloring of Qk with k colors: assign k

distinct colors to vw and all the edges incident with u, then for the remaining edges

assign k − 2 distinct used colors, none of which is the color on the edge vw. It is

obvious that Qk is conflict-free connected under the coloring. Thus, cfc(Qk) = k.
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Next, we prove that Qk is k-cfc-critical. It suffices to show that for every edge e

of Qk, each nontrivial component in Qk−e has a conflict-free connection number less

than k. Suppose that e is one of the edges uw and vw. Then the resulting subtrees

of Qk − e are K1,k−2 and K1,k−1. It follows that the result holds by Lemma 1.1.

Suppose that e is a pendent edge of Qk. We may assume that e = uui (for some i

with 1 ≤ i ≤ k−2) is incident with u by symmetry. Notice that the resulting subtrees

in Qk − e are a singleton {ui} and Qk − ui. We provide an edge-coloring of Qk − ui
as follows: color edges incident with v using k − 1 distinct colors, and color edges

incident with u using k−2 distinct used colors, which do not contain the color on the

edge vw. It can be checked that this is a conflict-free connection coloring of Qk − ui
with k − 1 colors. Thus, cfc(Qk − ui) ≤ k − 1, and so each nontrivial component in

Qk − e has a conflict-free connection number less than k for every edge e of Qk. �

Lemma 4.4 Let Rk be the graph obtained from K1,k−1 and P2k−2+1 with k ≥ 2 by

identifying a leaf vertex in K1,k−1 with an end vertex in P2k−2+1. Then cfc(Rk) = k.

Proof. Firstly, we prove that cfc(Rk) ≥ k. Note that R2 is a path on 3 vertices,

and cfc(R2) = 2 > 1. Then we focus on k ≥ 3. Assume to the contrary that

there is a Rk such that cfc(Rk) ≤ k − 1, and let k0 be the minimum k with such

property. Suppose that T1 is the copy of K1,k0−1 in Rk0 , T2 is the copy of P2k0−2+1

in Rk0 that has one common leaf vertex with T1. Let V (T1) = {u,w, u1, · · · , uk0−2}
and V (T2) = {w = v0, v1 · · · , v2k0−2}, where u is the only vertex of maximum degree

k0 − 1 in T1, vivi+1 is an edge of T2 for i = 0, · · · , 2k0−2 − 1, and V (T1) ∩ V (T2) = w.

Let c be a conflict-free connection coloring of Rk0 with k0−1 colors. Then we present

the following claim.

Claim 1. There exist exactly two colors c1, c2 each of which is used on exactly

one of the edges of T2.

Proof of Claim 1: To make T2 conflict-free connected, it needs k0− 1 colors by

Lemma 1.6, and there exists one color c1 used on exactly one of edges of T2. Suppose

that there exists a unique color c1 used on exactly one of edges of T2. Note that the

edges of T1 are colored with k0 − 1 colors. We assume that uui (or uw) is colored

with c1 for some i with 1 ≤ i ≤ k0 − 2. It follows that there is no conflict-free path

from v2k0−2 to ui (or u), which is a contradiction. Thus, there exist at least two colors

c1, c2 each of which is used on exactly one of edges of T2. Suppose that there exists

another color c3 used on exactly one of the edges of T2. Without loss of generality,

assume that the edge colored with c1 appears between the edges colored with c2, c3.

Then we can get a conflict-free connection coloring of T2 with k0 − 2 colors obtained
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from the above coloring c by replacing c3 with c2, which is impossible. Thus, there

exist exactly two colors c1, c2 each of which is used on exactly one of the edges of T2.

Claim 2. The color on the edge uw is neither c1 nor c2.

Proof of Claim 2: By contradiction. Without loss of generality, assume that

the color on the edge uw is c1, and the color on the edge uu` is c2 for some ` with

1 ≤ ` ≤ k0 − 2. Then there is no conflict-free path from v2k0−2 to u`, which is a

contradiction.

Let T ′2 be the subpath resulting from the removal of the two edges with the colors

c1, c2 in T2 such that v2k0−2 ∈ T ′2. Since the edges of T ′2 are colored with at most

k0 − 3 colors, it follows that n(T ′2) ≤ 2k0−3 by Theorem 2.5. Let T ′′2 be the subpath

starting from w with order 2k0−3 + 1 in T2 − V (T ′2), and T ′1 be the subtree obtained

from T1 by deleting the edge with color c2, where the edge with color c1 is closer to

w than the edge with color c2. It is obtained that T ′ = T ′1 ∪ T ′′2 is exactly Rk0−1, and

the coloring c restricted on the edges of T ′ is a conflict-free connection coloring with

k0−2 colors. It follows that cfc(Rk0−1) ≤ k0−2, which contradicts the minimality of

k0. Thus, cfc(Rk) ≥ k. And we provide an edge-coloring of Rk with k colors: color

the edges of T2−w with k− 2 distinct colors 1, · · · , k− 2 such that it is conflict-free

connected, and color the remaining edges of Rk with k distinct colors 1, · · · , k such

that the color on the edge wv1 is k. It is easy to see that Rk is conflict-free connected

under the coloring. Thus, cfc(Rk) = k. �

Theorem 4.5 Let Rk be the graph obtained from K1,k−1 and P2k−2+1 with k ≥ 2

by identifying a leaf vertex in K1,k−1 with an end vertex in P2k−2+1. Then Rk is

k-cfc-critical.

Proof. By Lemma 4.4, we have cfc(Rk) = k. We only need to prove that for every

edge e of Rk, each nontrivial component in Rk − e has a conflict-free connection

number less than k. If k = 2, then R2 is a path on 3 vertices, and the result holds by

Proposition 4.2. Thus, we assume that k ≥ 3. Suppose that T1 is the copy of K1,k−1

in Rk, T2 is the copy of P2k−2+1 in Rk that has one common leaf vertex with T1. Let

V (T1) = {u,w, u1, · · · , uk−2} and V (T2) = {w = v0, v1 · · · , v2k−2}, where u is the only

vertex of maximum degree k− 1 in T1, vivi+1 is an edge of T2 for i = 0, · · · , 2k−2− 1,

and V (T1) ∩ V (T2) = w. In order to obtain our result, We distinguish the following

three cases.

Case 1. e = uw.

Note that the resulting subtrees in Rk − e are K1,k−2 and P2k−2+1. Thus, Rk is

k-cfc-critical by Lemmas 1.1 and 1.6.
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Case 2. e = uui (1 ≤ i ≤ k − 2).

It is obtained that the resulting subtrees in Rk−e are a singleton {ui} and Rk−ui.
We provide an edge-coloring of Rk − ui: color the edges of T2−w with k− 2 distinct

colors 1, · · · , k − 2 such that it is conflict-free connected, and color the remaining

edges with k − 1 distinct colors 1, · · · , k − 1 such that the color on the edge wv1 is

k − 1. It can be checked that Rk − ui is conflict-free connected under the coloring.

Thus, cfc(Rk − ui) ≤ k − 1, which implies that Rk is k-cfc-critical.

Case 3. e = vivi+1 (0 ≤ i ≤ 2k−2 − 1).

Let T ′ and T ′′ be the resulting subtrees in Rk − e, where u ∈ T ′. Obviously,

cfc(T ′′) ≤ k − 2. For T ′, we define an edge-coloring as follows: color the edges on

the subpath from w to vi with k − 2 colors 1, · · · , k − 2 such that the subpath is

conflict-free connected, and color the remaining edges of T ′ with k− 1 distinct colors

1, · · · , k − 1 such that the color on the edge uw is k − 1. It is obtained that this

is a conflict-free connection coloring of T ′. Thus, cfc(T ′) ≤ k − 1, and so Rk is

k-cfc-critical. �
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