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Abstract A path in an edge-colored graph is called a monochromatic path if all edges
of the path have a same color. We call k paths P1, · · · ,Pk rainbow monochromatic
paths if every Pi is monochromatic and for any two i 6= j, Pi and Pj have different
colors. An edge-coloring of a graph G is said to be a rainbow monochromatic k-
edge-connection coloring (or RMCk-coloring for short) if every two distinct vertices
of G are connected by at least k rainbow monochromatic paths. We use rmck(G) to
denote the maximum number of colors that ensures G has an RMCk-coloring, and this
number is called the rainbow monochromatic k-edge-connection number. We prove
the existence of RMCk-colorings of graphs, and then give some bounds of rmck(G)
and present some graphs whose rmck(G) reaches the lower bound. We also obtain the
threshold function for rmck(G(n, p))≥ f (n), where

⌊ n
2

⌋
> k ≥ 1.

Keywords Monochromatic path · Rainbow monochromatic paths · Rainbow
monochromatic k-edge-connection coloring (number) · Threshold function

1 Introduction

The monochromatic connection coloring of a graph, introduced in [4], allows that
any two vertices are connected by a monochromatic path. In order to generalize this
concept, we consider an edge-coloring of a given graph G with any two vertices
are connected by at least k (a fixed integer) edge-disjoint monochromatic paths. If
we allow some of those k monochromatic paths to have different colors, then the
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edge-coloring is called MCk-coloring of G. If we require that those k monochromatic
paths have the same color, then the edge-coloring is called UMCk-coloring of G.
The two generalized concepts are introduced in [12]. In this paper, we discuss the
third generalized concept, RMCk-coloring, which requires that the colors of those
k monochromatic paths are pairwise differently. We will introduce the above four
concepts systematically, and also introduce some notations and previous work below.

For a graph G, let Γ : E(G)→ [k] be an edge-coloring of G that allows a same
color to be assigned to adjacent edges, here and in what follows [k] denotes the set
{1,2, · · · ,k} of integers for a positive integer k. For an edge e of G, we use Γ (e) to
denote the color of e. If H is a subgraph of G, we also use Γ (H) to denote the set of
colors on the edges of H and use |Γ (H)| to denote the number of colors in Γ (H). For
all other terminology and notation not defined here we follow Bondy and Murty [2].

A monochromatic uv-path is a uv-path of G whose edges are colored with a same
color, and G is monochromatically connected if for any two vertices of G, G has a
monochromatic path connecting them. An edge-coloring Γ of G is a monochromatic
connection coloring (or MC-coloring for short) if it makes G monochromatically
connected. The monochromatic connection number of a connected graph G, denoted
by mc(G), is the maximum number of colors that are allowed in order to make G
monochromatically connected. An extremal MC-coloring of G is an MC-coloring
that uses mc(G) colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster
[4]. Huang and Li [10] recently showed that it is NP-hard to compute the monochro-
matic connection number for a given graph. Some results were obtained in [3,9,11,
14,13]. Later, Gonzaléz-Moreno et al. in [8] generalized the above concept to di-
graphs.

We list the main results in [4] below.

Theorem 1 ([4]) Let G be a connected graph with n ≥ 3. If G satisfies any of the
following properties, then mc(G) = m−n+2.

1. G (the complement of G) is a 4-connected graph;
2. G is triangle-free;
3. ∆(G)< n− 2m−3(n−1)

n−3 ;
4. diam(G)≥ 3;
5. G has a cut vertex.

The Erdös-Rényi random graph model G(n, p) will be studied in this paper. The
graph G(n, p) is defined on n labeled vertices (informally, we use [n] to denote the
n labeled vertices) in which each edge is chosen independently and randomly with
probability p. A property of graphs is a subset of the set of all graphs on [n] (such as
connectivity, minimum degree, et al). If a property Q has Pr[G∼G(n, p) satisfies Q]→
1 when n→+∞, then we call the property Q almost surely. A property Q is monotone
increasing if whenever H is a graph obtained from H ′ by adding some edges and H ′

has property Q, then H also has the property Q.
A function h(n) is a threshold function for an increasing property Q, if for any

two functions h1(n) = o(h(n)) and h(n) = o(h2(n)), G(n,h1(n)) does not have prop-
erty Q almost surely and G(n,h2(n)) has property Q almost surely. Moreover, h(n) is
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called a sharp threshold function of Q if there exist two positive constants c1 and c2
such that G(n, p(n)) does not have property Q almost surely when p(n)≤ c1h(n) and
G(n, p(n)) has property Q almost surely when p(n)≥ c2h(n). It was proved in [6] that
every monotone increasing graph property has a sharp threshold function. The proper-
ty monochromatic connection coloring of a graph (and also the properties monochro-
matic k-edge-connection coloring, uniformly monochromatic k-edge-connection col-
oring and rainbow monochromatic k-edge-connection coloring of graphs which are
defined later) is monotone increasing, and therefore it has a sharp threshold function.

Theorem 2 ([9]) Let f (n) be a function satisfying 1≤ f (n)<
(n

2

)
. Then

p =

{
f (n)+n log logn

n2 , if f (n) = Ω(n logn) and f (n)<
(n

2

)
;

logn
n , if f (n) = o(n logn).

is a sharp threshold function for the property mc(G(n, p))≥ f (n).

Now we generalize the concept monochromatic connection coloring of graphs.
There are three ways to generalize this concept.

The first generalized concept is called the monochromatic k-edge-connection col-
oring (or MCk-coloring for short) of G, which requires that every two distinct vertices
of G are connected by at least k edge-disjoint monochromatic paths (allow some of
the paths to have different colors). The monochromatically k-edge-connection num-
ber of a connected G, denoted by mck(G), is the maximum number of colors that are
allowed in order to make G monochromatically k-edge-connected.

The second generalized concept is called the uniformly monochromatic k-edge-
connection coloring (or UMCk-coloring for short) of G, which requires that every
two distinct vertices of G are connected by at least k edge-disjoint monochromatic
paths such that all these k paths have the same color (note that for different pairs
of vertices the paths may have different colors). The uniformly monochromatically
k-edge-connection number of a connected G, denoted by umck(G), is the maximum
number of colors that are allowed in order to make G uniformly monochromatically
k-edge-connected. These two concepts were studied in [12].

It is obvious that a graph has an MCk-coloring (or UMCk-coloring) if and only if
G is k-edge-connected. We mainly study the third generalized concept in this paper,
which is called the rainbow monochromatic k-edge-connection coloring (or RMCk-
coloring for short) of a connected graph. One can see later, compare the results for
MC-colorings, MCk-colorings, UMCk-colorings and RMCk-colorings of graphs, the
concept RMCk-coloring has the best form among all the generalized concepts of the
MC-coloring.

The definition of the third generalized concept goes as follows. For an edge-
colored simple graph G (if G has parallel edges but no loops, the following notions
are also reasonable), if for any two distinct vertices u and v of G, G has k edge-disjoint
monochromatic paths connecting them, and the colors of these k paths are pairwise
differently, then we call such k monochromatic paths k rainbow monochromatic uv-
paths. An edge-colored graph is rainbow monochromatically k-edge-connected if ev-
ery two vertices of the graph are connected by at least k rainbow monochromatic paths
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in the graph. An edge-coloring Γ of a connected graph G is a rainbow monochro-
matic k-edge-connection coloring (or RMCk-coloring for short) if it makes G rain-
bow monochromatically k-edge-connected. The rainbow monochromatically k-edge-
connection number of a connected graph G, denoted by rmck(G), is the maximum
number of colors that are allowed in order to make G rainbow monochromatically
k-edge-connected. An extremal RMCk-coloring of G is an RMCk-coloring that uses
rmck(G) colors.

If k = 1, then an RMCk-coloring (also MCk-coloring and UMCk-coloring) is re-
duced to a monochromatic connection coloring for any connected graph.

In an edge-colored graph G, if a color i only colors one edge of E(G), then we
call the color i a trivial color, and call the edge (tree) a trivial edge (trivial tree).
Otherwise we call the edges (colors, trees) nontrivial. A subgraph H of G is called
an i-induced subgraph if H is induced by all the edges of G with the same color i.
Sometimes, we also call H a color-induced subgraph.

If Γ is an extremal RMCk-coloring of G, then each color-induced subgraph is
connected. Otherwise we can recolor the edges in one of its components by a fresh
color, then the new edge-coloring is also an RMCk-coloring of G, but the number of
colors is increased by one, which contradicts that Γ is extremal. Furthermore, each
color-induced subgraph does not have cycles; otherwise we can recolor one edge in a
cycle by a fresh color. Then the new edge-coloring is also an RMCk-coloring of G, but
the number of colors is increased, a contradiction. Therefore, we have the following
result.

Proposition 1 If Γ is an extremal RMCk-coloring of G, then each color-induced sub-
graph is a tree.

If Γ is an extremal RMCk-coloring of G for i ∈ Γ (G), we call an i-induced sub-
graph of G an i-induced tree or a color-induced tree. We also call it a tree sometimes
if there is no confusion.

The paper is organized as follows. Section 2 will give some preliminary results.
In Section 3, we study the existence of RMCk-colorings of graphs. In Section 4, we
give some bounds of rmck(G), and present some graphs whose rmck(G) reaches the
lower bound. In Section 5, we obtain the threshold function for rmck(G) ≥ f (n),
where

⌊ n
2

⌋
> k ≥ 1.

2 Preliminaries

Suppose that a = (a1, · · · ,aq) and b = (b1, · · · ,bp) are two positive integer sequences
whose lengths p and q may be different. Let ≺ be the lexicographic order for integer
sequences, i.e., a≺ b if for some h≥ 1, a j = b j for j < h and ah < bh, or p > q and
a j = b j for j ≤ q.

Let D,n,s be integers with n≥ 5 and 1≤ s≤ n−4. Let r be an integer satisfying
D < r

(n−s
2

)
. For an integer t ≥ r, suppose f (xt) = f (x1, · · · ,xt) = ∑i∈[t]

(xi−1
2

)
and

g(xt)= g(x1, · · · ,xt)=∑i∈[t](xi−2), where xi ∈{3,4, · · · ,n−s}. We use St to denote
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the set of optimum solutions of the following problem:

min g(xt)

s.t. f (xt)≥ D and xi ∈ {3, · · · ,n− s} for each i ∈ [t].

Lemma 1 There are integers r,x with r ≤ t and 3 ≤ x < n− s, such that the above
problem has a solution xt = (x1, · · · ,xt) in St satisfying that xi = n− s for i ∈ [r−1],
xr = x and x j = 3 for j ∈ {r+1, · · · , t}.

Proof Let ct = (c1, · · · ,ct) be a maximum integer sequence of St . Then ci ≥ ci+1
for i ∈ [t − 1]. Since D < t

(n−s
2

)
, there is an integer r ≤ t such that ci = n− s for

i ≤ r− 1 and 3 ≤ ci < n− s for i ∈ {r, · · · , t}. Let x = cr. Then 3 ≤ x < n− s. We
need to show ci = 3 for each i ∈ {r+1, · · · , t}. Otherwise, suppose j is the maximum
integer of {r+1, · · · , t} with n−s > c j > 3. Let dt = (d1, · · · ,dt), where di = ci when
i /∈ {r, j}, dr = cr + 1 and d j = c j− 1. Then f (dt) ≥ f (ct) ≥ D, 3 ≤ di < n− s for
each i ∈ [t], and g(ct) = g(dt). i.e., dt ∈St . However, ct ≺ dt , which contradicts that
ct is a maximum integer sequence of St . ut

Lemma 2 Suppose t ≥ r, at ∈St and br ∈Sr. Then g(br)≤ g(at).

Proof The result holds for t = r, so let t > r. W.l.o.g., suppose at = (a1, · · · ,at),
where a1 = · · ·= al−1 = n−s, 3≤ al < n−s and al+1 = · · ·= xt = 3. Since t > r and
D < r

(n−s
2

)
, l < t and at = 3. Let ct−1 = (c1, · · · ,ct−1), where c1 = · · ·= cl−1 = n−s,

cl = al + 1 and cl+1 = · · · = xt−1 = 3. Then f (ct−1) ≥ D and g(ct−1) = g(at). Let
dt−1 ∈St−1. Then g(ct−1) ≥ g(dt−1). By induction on t− r, g(br) ≤ g(dt−1). Thus
g(br)≤ g(at). ut

The following result is easily seen.

Lemma 3 If a,b,c are positive integers with c+a−1≥ 2 and a+b = c, then
(c

2

)
−(a

2

)
≥ b.

Suppose X is a proper vertex set of G. We use E(X) to denote the set of edges
whose ends are in X . For a graph G and X ⊆V (G), to shrink X is to delete E(X) and
then merge the vertices of X into a single vertex. A partition of the vertex set V is
to divide V into some mutual disjoint nonempty sets. Suppose P = {V1, · · · ,Vs} is a
partition of V (G). Then G/P is a graph obtained from G by shrinking every Vi into
a single vertex.

The spanning tree packing number (STP number) of a graph is the maximum
number of edge-disjoint spanning trees contained in the graph. We use T (G) to denote
the number of edge-disjoint spanning trees of G. The following theorem was proved
by Nash-Williams and Tutte independently.

Theorem 3 ([15] [16]) A graph G has at least k edge-disjoint spanning trees if and
only if e(G/P)≥ k(|G/P|−1) for any vertex-partition P of V (G).

We denote τ(G) = min|P|≥2
e(G/P)
|G/P|−1 . Then Nash-Williams-Tutte Theorem can be

restated as follows.

Theorem 4 T (G) = k if and only if bτ(G)c= k.
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If Γ is an extremal RMCk-coloring of G, then we say that Γ wastes ω =∑i∈[r](|Ti|−
2) colors, where T1, · · · ,Tr are all the nontrivial color-induced trees of G. Thus rmck(G)=
m−ω .

Suppose that Γ is an edge-coloring of G and v is a vertex of G. The nontrivial
color degree of v under Γ is denoted by dn(v), that is, the number of nontrivial colors
appearing on the edges incident with v.

Lemma 4 Suppose that Γ is an RMCk-coloring of G with k ≥ 2. Then dn(v)≥ k for
every vertex v of G.

Proof Since every two vertices have k≥ 2 rainbow monochromatic paths connecting
them and G is simple, every two vertices have at least one nontrivial monochromatic
path connecting them, i.e., dn(v) ≥ 1 for each v ∈ V (G). Let e = vu be a nontriv-
ial edge. Then there are k− 1 rainbow monochromatic paths of order at least three
connecting u and v. Since these k− 1 rainbow monochromatic paths are nontrivial,
dn(v)≥ k for each v ∈V (G). ut

3 Existence of RMCk-colorings

We knew that there exists an MCk-coloring or a UMCk-coloring of G if and only if
G is k-edge-connected. It is natural to ask how about RMCk-colorings ? It is obvious
that any cycle of order at least 3 is 2-edge-connected, but it does not have an RMC2-
coloring.

We mainly think about simple graphs in this paper, but in the following result, all
graphs may have parallel edges but no loops.

Theorem 5 A graph G has an RMCk-coloring if and only if τ(G)≥ k.

Proof If G has k edge-disjoint spanning trees T1, · · · ,Tk, then we can color the edges
of each Ti by i and color the other edges of G by colors in [k] arbitrarily. Then the
coloring is an RMCk-coloring of G. Therefore, G has an RMCk-coloring when τ(G)≥
k.

We will prove that if there exists an RMCk-coloring of G, then G has k edge-
disjoint spanning trees, i.e., τ(G) ≥ k. Before proceeding to the proof, we need a
critical claim as follows.

Claim If G has an RMCk-coloring, then e(G)≥ k(n−1).

Proof Suppose that Γ is an extremal RMCk-coloring of G and G1, · · · ,Gt are all
the color-induced trees of G (say Gi is the i-induced tree). If there are two color-
induced trees Gi and G j satisfying that all the three sets V (Gi)−V (G j), V (G j)−
V (Gi) and V (Gi)∩V (G j) are nonempty, then we use P(G,Γ , i, j) to denote the graph
(G−E(Gi∪G j))∪T1∪T2, where T1 and T2 are two new trees with V (T1) =V (Gi)∪
V (G j) and V (T2) =V (Gi)∩V (G j) (note that T1,T2 and G−E(Gi∪G j) are mutually
edge disjoint, then P(G,Γ , i, j) may have parallel edges); we also use ϒ (G,Γ , i, j)
to denote the edge-coloring of P(G,Γ , i, j), which is obtained from Γ by coloring
E(T1) with i and coloring E(T2) with j, respectively. Then |G| = |P(G,Γ , i, j)| and
e(G) = e(P(G,Γ , i, j)).
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We claim that ϒ (G,Γ , i, j) is an RMCk-coloring of P(G,Γ , i, j), and we prove it
below. For any two vertices u,v of G, if at least one of them is in V (G)−V (Gi∪G j),
or one is in V (Gi)−V (G j) and the other is in v ∈V (G j)−V (Gi), then none of rain-
bow monochromatic uv-paths of G are colored by i or j, these rainbow monochro-
matic uv-paths of G are kept unchanged. Thus there are at least k rainbow monochro-
matic uv-paths in P(G,Γ , i, j) under ϒ (G,Γ , i, j); if both of u,v are in V (Gi)∩V (G j),
then there are at least k− 2 rainbow monochromatic uv-paths of G with colors dif-
ferent from i and j, and these rainbow monochromatic uv-paths are kept unchanged.
Since T1 and T2 provide two rainbow monochromatic uv-paths, one is colored by i
and the other is colored by j, there are at least k rainbow monochromatic uv-paths in
P(G,Γ , i, j) under ϒ (G,Γ , i, j); if, by symmetry, u and v are in Gi and at most one of
them is in V (Gi)∩V (G j), then there are at least k− 1 rainbow monochromatic uv-
paths with colors different from i and j, and these rainbow monochromatic uv-paths
are kept unchanged. Since T1 provides a monochromatic uv-path with color i, there
are at least k rainbow monochromatic uv-paths in P(G,Γ , i, j) under ϒ (G,Γ , i, j).

We now introduce a simple algorithm on G. Setting H := G and Γ ∗ :=Γ . If there
are two color-induced subgraphs Hi and H j of H satisfying that all the three sets
V (Hi)−V (H j), V (H j)−V (Hi) and V (Hi)∩V (H j) are nonempty, then replace H by
P(H,Γ ∗, i, j) and replace Γ ∗ by ϒ (H,Γ ∗, i, j).

We now show that the algorithm will terminate in a finite steps. In the ith step,
let H = Hi and Γ ∗ = Γi, and let Gi

1, · · · ,Gi
ti be all the color-induced subgraphs of Hi

such that |Gi
1| ≥ |Gi

2| ≥ · · · ≥ |Gi
ti | (in fact, in each step, each color-induced subgraph

is a tree), and let li = (|Gi
1|, |Gi

2|, · · · , |Gi
ti |) be an integer sequence. Suppose Hi+1 =

P(Hi,Γi,s, t), i.e., Hi+1 = Hi−E(Gi
s ∪Gi

t)∪T1 ∪T2, where V (T1) = V (Gi
s)∪V (Gi

t)
and V (T2) =V (Gi

s)∩V (Gi
t). Then |T1|> max{|Gi

s|, |Gi
t |}. Therefore, li ≺ li+1. Since

G is a finite graph and e(Hi) = e(G) in each step, the algorithm will terminate in a
finite step.

Let H ′ be the resulting graph and Γ ′ be the resulting RMCk-coloring of H ′, and
T ′1 , · · · ,T ′r be the color-induced trees of H ′ with |T ′1 | ≥ · · · ≥ |T ′r |. Then T ′k is a s-
panning tree of H ′; otherwise, there is al least one vertex w in V (G)−V (Tk). Sup-
pose u ∈ V (Tk). Since T ′1 , · · · ,T ′k−1 provide at most k− 1 rainbow monochromatic
uw-paths, there is a tree of {T ′k+1, · · · ,T ′r }, say T ′a , containing u and w. Then V (T ′k )−
V (T ′a) 6= /0; otherwise |T ′k |< |T ′a |, a contradiction. Thus V (T ′k )−V (T ′a), V (T ′a)∩V (T ′k )
and V (T ′a)−V (T ′k ) are nonempty sets, which contradicts that H ′ is the resulting
graph of the algorithm. Therefore, there are at least k spanning trees of H ′, i.e.,
e(G) = e(H ′)≥ k(n−1). ut

Now, we are ready to prove τ(G) ≥ k by contradiction. Suppose that Γ is an
RMCk-coloring of G but τ(G) < k. By Theorem 3, there exists a partition P =
{V1, · · · ,Vt} of V (G) (|P|= t ≥ 2), such that e(G/P)< k(|P|−1). Let G∗ = G/P
be the graph obtained from G by shrinking each Vi into a single vertex vi, 1≤ i≤ t.

Suppose that Γ ∗ is an edge-coloring of G∗ obtained from Γ by keeping the color
of every edge of G not being deleted (we only delete edges contained in each Vi).
It is obvious that Γ ∗ is an RMCk-coloring of G∗. However, e(G∗) < k(|G∗| − 1), a
contradiction to Claim 3. So, τ(G)≥ k. ut
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We will turn to discuss simple graphs below. Because a simple graph is also a
loopless graph, Theorem 5 holds for simple graphs. For a connected simple graph G,
since 1≤ τ(G)≤ τ(Kn) =

⌊
e(Kn)
n−1

⌋
=
⌊ n

2

⌋
, we have the following result.

Corollary 1 If G is a simple graph of order n and G has an RMCk-coloring, then
1≤ k ≤

⌊ n
2

⌋
.

By Theorem 5, if τ(G)≥ k, a trivial RMCk-coloring of a graph G is a coloring that
colors the edges of the k edge-disjoint spanning trees of G by colors in [k], respec-
tively, and then colors the other edges trivial. Since the edge-coloring wastes k(n−2)
colors, rmck(G) ≥ m− k(n− 2). Thus, m− k(n− 2) is a lower bound of rmck(G) if
G has an RMCk-coloring.

Corollary 2 If G is a graph with τ(G)≥ k, then rmck(G)≥ m− k(n−2).

4 Some graphs with rainbow monochromatic k-edge-connection number
m− k(n−2)

In this section, we mainly study the graphs with rainbow monochromatic k-edge-
connection number m− k(n−2) (graphs in the following theorem).

Theorem 6 Let G be a graph with τ(G)≥ k. If G satisfies any of the following prop-
erties, then rmck(G) = m− k(n−2).

1. G is triangle-free;
2. diam(G)≥ 3;
3. G has a cut vertex;
4. G is not k+1-edge-connected.

We will prove this theorem separately by four propositions below (the second result
is a corollary of Proposition 3).

Proposition 2 If G is a triangle-free graph with τ(G)≥ k, then rmck(G) =m−k(n−
2).

Proof By Theorem 1, the result holds for k = 1. Therefore, let k ≥ 2 (this requires
n≥ 4). Since G is a triangle-free graph, by Turán’s Theorem, e(G)≤ n2

4 . Then

k ≤ τ(G)≤ e(G)

|G|−1
≤ n+1

4
+

1
4(n−1)

.

So, n≥ 4k−1− 1
n−1 , i.e., n≥ 4k−1.

Suppose Γ is an extremal RMCk-coloring of G. If there is a color-induced tree, say
T , that forms a spanning tree of G, then Γ is an extremal RMCk−1-coloring restricted
on G−E(T ). Otherwise, suppose Γ is not an extremal RMCk−1-coloring restricted on
G−E(T ). Since Γ is obviously an RMCk−1-coloring restricted on G−E(T ), there is
an RMCk−1-coloring Γ ′ of G−E(T ) such that |Γ (G−E(T ))|< |Γ ′(G−E(T ))|. Let
Γ ′′ be an edge-coloring of G obtained from Γ ′ by assigning E(T ) with a new color.



Rainbow monochromatic k-edge-connection colorings of graphs 9

Then Γ ′′ is an RMCk-coloring of G. However, |Γ (G)| < |Γ ′′(G)|, a contradiction.
Since G−E(T ) is triangle-free, by induction on k,

rmck−1(G−E(T )) = e(G−E(T ))− (k−1)(n−2) = m− k(n−2)−1.

Therefore,

rmck(G) = 1+ |Γ (G−E(T ))|= 1+ rmck−1(G−E(T )) = m− k(n−2).

Now, suppose that each color-induced tree is not a spanning tree. We use S to
denote the set of nontrivial color-induced trees of G. We will prove that Γ wastes at
least k(n−2) colors below.

Case 1. There is a vertex v of G such that dn(v) = k.
Suppose that T = {T1, · · · ,Tk} is the set of the k nontrivial color-induced trees

containing v. Since each vertex connects v by at least k− 1 ≥ 1 nontrivial rainbow
monochromatic paths, V (G) =

⋃
i∈[k]V (Ti). Let S =

⋂
i∈[k]V (Ti) and Si =V (Ti)−S.

For any i, j ∈ [k], both Si−S j and S j−Si are nonempty. Otherwise, suppose Si ⊆
S j. Since Tj is not a spanning tree, there is a vertex u′ ∈V (G)−V (Tj). Then there are
at most k−2 nontrivial rainbow monochromatic u′v-paths, a contradiction.

According to the above discussion, S,S1, · · · ,Sk are all nonempty sets. Moreover,
since k ≥ 2, |V (G)−S| ≥ 2.

For each i ∈ [k] and a vertex u in Si, there is an iu ∈ [k] such that u /∈ V (Tiu).
Furthermore, u ∈V (Tj) for each j ∈ [k]−{iu}; for otherwise, there are at most k−2
nontrivial rainbow monochromatic uv-paths, which contradicts that Γ is an RMCk-
coloring of G. Therefore, there are exactly k− 1 nontrivial rainbow monochromatic
uv-paths. This implies that uv is a trivial edge of G. Thus, v connects each vertex of
V (G)−S by a trivial edge. Since G is triangle-free, V (G)−S is an independent set.
It is easy to verify that T wastes

∑
i∈[k]

(|Ti|−2) = ∑
i∈[k]
|Ti|−2k = k|S|+(k−1)(n−|S|)−2k = k(n−2)+ |S|−n

colors.
Let F =S −T (recall that S is the set of nontrivial trees of G). Since each two

vertices of V (G)−S are in at most k−1 trees of T and V (G)−S is an independent
set, there is at least one tree of F containing them. Moreover, such a tree contains at
least one vertex of S. Suppose that F1, · · · ,Ft are trees of F with |V (Fi)∩ (V (G)−
S)|= xi ≥ 2 and x1 ≥ x2 ≥ ·· · ≥ xt . Let wi ∈V (Fi)∩S and Wi =V (Fi)∩(V (G)−S)∪
{wi}. Then 3≤ |Wi| ≤ n−|S|+1 for each i ∈ [t], and

∑
i∈[t]

(
|Wi|−1

2

)
≥
(

n−|S|
2

)
. (1)

F wastes at least ∑i∈[t](|Fi|−2)≥ ∑i∈[t](|Wi|−2) colors.
For any i, j ∈ [k], since both Si− S j and S j− Si are nonempty, there are at most

k− 2 rainbow monochromatic paths connecting every vertex of Si − S j and every
vertex of S j − Si in T . Thus there are at least two trees of F containing the two
vertices, i.e., t ≥ 2.
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If k = 2 and |S| − 1 = 3, then F wastes at least two colors, and thus Γ wastes
at least k(n− 2) colors. Otherwise, |S| − 1 ≥ 4. Then by Lemma 1, the expression
∑i∈[t](|Wi|− 2), subjects to (1), n−|S|+ 1 ≥ |Wi| ≥ 3 and t ≥ 2, is minimum when
|W1|= n−|S|+1, and |Wi|= 3 for i= 2,3 · · · , t. Then F wastes at least n−|S| colors,
and thus Γ wastes at least k(n−2) colors.

Case 2. each vertex v of G has dn(v)≥ k+1.
Suppose S = {T1, · · · ,Tr} and |Ti| ≥ |Ti+1| for i∈ [r−1]. Since dn(v)≥ k+1 for

each vertex v of G, ∑i∈[r] |Ti| ≥ (k+1)n.
If r ≤ n

2 + k, then ∑i∈[r](|Ti|− 2) ≥ k(n− 2). This implies that Γ wastes at least
k(n−2) colors. Thus, we consider r > n

2 + k.
Since each pair of non-adjacent vertices are connected by at least k rainbow

monochromatic paths of order at least three, and each pair of adjacent vertices are
connected by at least k− 1 rainbow monochromatic paths of order at least three,
there are at least k[

(n
2

)
−e(G)]+(k−1)e(G) = k

(n
2

)
−e(G) such paths. Since each Ti

of S provides
(|Ti|−1

2

)
paths of order at least three, we have

∑
i∈[r]

(
|Ti|−1

2

)
≥ k
(

n
2

)
− e(G).

Since e(G)≤ n2

4 ,

∑
i∈[r]

(
|Ti|−1

2

)
≥ k
(

n
2

)
− n2

4
. (2)

If |Ti| = n−1 for each i ∈ [r], since r > n
2 + k, Γ wastes r(n−3) > k(n−2) colors.

Thus, we assume that there are some trees of S with order less than n−1. By Lem-
ma 1, there are integers t,x with t < r and 3 ≤ x ≤ n− 2, such that the expression
∑i∈[r](|Ti|−2), subject to (2) and 3≤ |Ti| ≤ n−1, is minimum when |Ti|= n−1 for
i ∈ [t], |Tt+1|= x and |Tj|= 3 for j ∈ {t +1, · · · ,r}. By (2),

t
(

n−2
2

)
+

(
x−1

2

)
+ r− t−1≥ k

(
n
2

)
− n2

4
. (3)

This implies that Γ wastes at least

w(Γ ) = t(n−3)+ x−2+ r− t−1 (4)

colors.
If t ≥ k, or t = k−1 and x≥ n

2 + k−1, then Γ wastes at least

(k−1)(n−3)+ x−2+ r− k = k(n−2)+(r+ x+1−2k−n)≥ k(n−2)

colors.
If t = k− 1 and x < n

2 + k− 1, then suppose y is a positive integer such that
x+ y =

⌈ n
2 + k−1

⌉
. Let z =

⌈ n
2 + k−1

⌉
. Recall that n ≥ 4k−1 and x ≥ 3, and then



Rainbow monochromatic k-edge-connection colorings of graphs 11

x+ z−3≥ 7. By Lemma 3,
(z−1

2

)
−
(x−1

2

)
≥ y−1. We have

∑
i∈[r]

(
|Ti|−1

2

)
= (k−1)

(
n−2

2

)
+

(
x−1

2

)
+ r− k

≤ (k−1)
(

n−2
2

)
+

(
z−1

2

)
− y+1+ r− k

≤ (k−1)
(

n−2
2

)
+

( n
2 + k−1

2

)
− y+1+ r− k

=
4k−3

8
n2− 8k−7

4
n+

(k−1)(k+2)
2

+ r− y

= k
(

n
2

)
− n2

4
− (

n2

8
+

6k−7
4

n− (k+2)(k−1)
2

)+ r− y.

By (2), we have

−(n2

8
+

6k−7
4

n− (k+2)(k−1)
2

)+ r− y≥ 0,

i.e., r ≥ ε + y, where ε = n2

8 + 6k−7
4 n− (k+2)(k−1)

2 . Then Γ wastes

∑
i∈[r]

(|Ti|−2)≥ (k−1)(n−3)+ x−2+ r− k

≥ k(n−2)+(x+ y− k+1)−n− k+ ε

≥ k(n−2)− n
2
− k+ ε

colors. Let

h(n) =−n
2
− k+ ε =

1
8
[n2 +(12k−18)n−4(k2 +3k−2)].

Then h(n)≥ 0 when n≥ 1
2 (
√

160k2−384k+292−12k+18). Thus h(n)≥ 0 when
n ≥ k

2 + 9. Recall that n ≥ 4k− 1, and then n ≥ k
2 + 9 holds for k ≥ 3. So Γ wastes

at least k(n− 2) colors if k ≥ 3. If k = 2, then h(n) = 1
8 (n

2 + 6n− 32). Since n ≥
4k−1 = 7, h(n)≥ 0. Therefore, Γ wastes at least k(n−2) colors when k = 2.

If t ≤ k− 2, then the number of trees of order 3 is at least r− t− 1. Recall that
n≥ 4k−1≥ 7 and k ≥ 2. By (3),

r− t−1≥ k
(

n
2

)
− n2

4
− t
(

n−2
2

)
−
(

x−1
2

)
≥ k
(

n
2

)
− n2

4
− (k−1)

(
n−2

2

)
≥ k(2n−3)+

1
4
(n2−10n+12)

≥ k(2n−3)− 9
4
≥ k(n−2).

Thus, Γ wastes at least k(n−2) colors. ut



12 Ping Li, Xueliang Li

For a graph G, we use Nuv to denote the set of common neighbors of u and v, and
let nuv = |Nuv|, nG = min{nuv : u,v ∈V (G) and u 6= v}.

Proposition 3 If G is a graph with τ(G)≥ k, then rmck(G)≤ m− k(n−2)+nG.

Proof Suppose Γ is an extremal RMCk-coloring of G. Let u,v be two vertices of
G with nuv = nG. Let V (G)−N[v]−{u} = A, Nuv = C and N(v)−{u} = B. Then
C ⊆ B. Suppose that T is the set of nontrivial trees containing u and v, F is the set
of nontrivial trees containing u and at least one vertex of B but not v, and H is the
set of nontrivial trees containing v and at least one vertex of A but not u. Thus, T ,F
and H are pairwise disjoint.

The vertex set A is partitioned into k+1 pairwise disjoint subsets A0, · · · ,Ak (some
sets may be empty) such that every vertex of Ai is in exactly i nontrivial trees of T
for i ∈ {0, · · · ,k− 1} and every vertex of Ak is in at least k nontrivial trees of T .
The vertex set B can also be partitioned into k+1 pairwise disjoint subsets B0, · · · ,Bk
(some sets may be empty) such that every vertex of Bi is in exactly i nontrivial trees
of T for i ∈ {0, · · · ,k− 1} and every vertex of Bk is in at least k nontrivial trees of
T . Then T wastes

w1 = ΣT∈T (|T |−2)≥ Σ
k
i=0i(|Ai|+ |Bi|)

colors.
For every vertex w of Ai, since N(v)∩A = /0, there are at least k nontrivial trees

containing v and w. Since there are i such trees in T for i 6= k, there are at least k− i
nontrivial trees connecting v and w in H . Since every nontrivial tree of H must
contain v and a vertex of B, H wastes

w2 = ΣH∈H (|H|−2)≥ Σ
k
i=0(k− i)|Ai|

colors.
Let Ci = {w : w ∈ Bi∩C and uw is a trivial edge}. For each vertex w of B, if w ∈

Bi−Ci, then there are at least k nontrivial trees containing u and w; if w ∈Ci, there
are at least k−1 nontrivial trees containing u and w. This implies that each vertex of
Bi−Ci, i ∈ {0, · · · ,k−1}, is in at least k− i nontrivial trees of F , and each vertex of
Ci is in at least k− i− 1 nontrivial trees of F . Now we partition F into two parts,
F1 and F2, such that

F1 = {F ∈F : V (F)⊆ B∪{u}}

and
F2 = F −F1.

Then for every F of F1, u connects a vertex of C in F . Thus, there are at most
|C|−∑

k
i=0 |Ci| trees in F1. Therefore, F wastes

w3 = ΣF∈F (|F |−2)

≥ Σ
k
i=0(k− i)|Bi−Ci|+Σ

k−1
i=0 (k− i−1)|Ci|− (|C|−

k−1

∑
i=0
|Ci|)

=−|C|+Σ
k
i=0(k− i)|Bi|
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colors.
According to the above discussion, Γ wastes at least

w1 +w2 +w3 ≥−|C|+Σ
k
i=0[k(|Ai|+ |Bi|)] = k(n−2)−nG

colors. Therefore, rmck(G)≤ m− k(n−2)+nG. ut

If G is not an s+ 1-connected graph, then nG ≤ s. Thus, we have the following
result.

Corollary 3 If G is a graph with τ(G)≥ k and G is not s+1-connected, then rmck(G)≤
m− k(n−2)+ s.

The next theorem decreases this upper bound by one when s = 1.

Proposition 4 If G has a cut vertex and τ(G)≥ k≥ 2, then rmck(G) = m−k(n−2).

Proof Let Γ be an extremal RMCk-coloring of G. Suppose that a is a vertex cut of
G and A1, · · · ,At are components of G−{a}. Let w be a vertex of A1, and let T =
{T1, · · · ,Tr} be the set of nontrivial trees connecting w and some vertices of

⋃t
i=2 Ai.

Then each Ti contains a. Suppose {S0,S1, · · · ,Sk} is a vertex partition of A1−w such
that each vertex of Si is in exactly i nontrivial trees of T for i = 0,1 · · · ,k− 1 and
each vertex of Sk is in at least k nontrivial trees of T . Since each vertex of

⋃t
i=2 Ai

connects w by at least k trees of T , T wastes

∑
i∈[r]

(|Ti|−2)≥ k
t

∑
i=2
|Ai|+

k

∑
i=0

i|Si|

colors.
Let F = {F1, · · · ,Fl} be the set of nontrivial trees connecting at least one vertex

of
⋃t

i=2 Ai and at least one vertex of A1 but not w. Then T ∩F = /0. Since a is
a cut vertex of G, each Fi of F contains a. Since T provides at most i rainbow
monochromatic paths connecting every vertex of Si and every vertex of

⋃t
i=2 Ai, each

vertex of Si is in at least k− i trees of F . Then F wastes at least

∑
i∈[l]

(|Fi|−2)≥
k

∑
i=0

(k− i)|Si|

colors. Thus, Γ wastes at least

∑
i∈[r]

(|Ti|−2)+ ∑
i∈[l]

(|Fi|−2)≥ k(
t

∑
i=2
|Ai|+

k

∑
i=0
|Si|) = k(n−2)

colors, rmck(G) = m− k(n−2). ut

Proposition 5 If G is not a k + 1-edge-connected graph and τ(G) ≥ k ≥ 2, then
rmck(G) = m− k(n−2).
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Proof Since τ(G) ≥ k, G is k-edge-connected. Thus, G has an edge cut S such that
|S| = k. Then G− S has two components, say D1 and D2. Let x ∈ V (D1) and y ∈
V (D2). For an extremal RMCk-coloring of G, there are k color-induced trees (say
T1, · · · ,Tk) containing x and y, i.e., each Ti contains exactly one edge of S. For each
u ∈ V (D1), since there are k rainbow monochromatic uy-paths, each path contains
exactly one edge of S. Thus each Ti contains u. By the same reason, each Ti contains
each vertex of V2. Therefore, each Ti is a spanning tree of G, and so rmck(G) =
m− k(n−2). ut

Proposition 6 ([4]) If G is a cycle of order n, then mc(G)≥ e(G)−
⌈ 2n

3

⌉
.

By Proposition 6, if P is a Hamiltonian path of Kn with n ≥ 4, then mc(G\P) ≥
e(G\P)−

⌈ 2n
3

⌉
. The following result is obvious.

Corollary 4 rmc2(Kn)≥
⌊

3n2−13n
6

⌋
+2, n≥ 4.

Remark 1: The above corollary implies that there are indeed some graphs with
rainbow monochromatic k-edge-connection number greater that the lower bound. In
fact, for any k ≥ 2 and s ≥ 2, there exist graphs with rainbow monochromatic k-
edge-connection number greater than or equal to m− k(n−2)+ s−1. We construct
the (k,s)-perfectly-connected graphs below. A graph G is called a (k,s)-perfectly-
connected graph if V (G) can be partitioned into s+1 parts {v},V1, · · · ,Vs, such that
τ(G[Vi])≥ k, V1, · · · ,Vs induces a corresponding complete s-partite graph (call it Ks),
and v has precisely k neighbors in each Vi. Since τ(G[Vi])≥ k, each G[Vi] has k edge-
disjoint spanning trees (say T i

1 , · · · ,T i
k ). Let the k neighbors of v in Vi be ui

1, · · · ,ui
k

and let ei
1 = vui

1, · · · ,ei
k = vui

k. Let Tj =
⋃

i∈[s] e
i
j ∪
⋃

i∈[s] T
i
j for j ∈ {2, · · · ,k}. Let Γ

be an edge-coloring of G such that Γ (T i
1 ∪ ei

1) = i for i ∈ [s], Γ (Tj) = s+ j− 1 for
j ∈ {2, · · · ,k}, and the other edges are trivial. Then Γ is an RMCk-coloring of G and
|Γ (G)|= m− k(n−2)+ s−1, and thus rmck(G)≥ m− k(n−2)+ s−1. ut

We propose an open problem below. If the answer for the problem is true, then it
will cover our main Theorem 6.

Problem 1 For an integer k ≥ 2 and a graph G with τ(G) ≥ k, does rmck(G) ≤
mc(G)−(k−1)(n−2) hold ? More generally, does rmck(G)≤ rmct(G)−(k−t)(n−
2) hold for any integer 1≤ t < k ?

5 Random results

The following result can be found in text books.

Lemma 5 ([1], Chernoff Bound) If X is a binomial random variable with expecta-
tion µ , and 0 < δ < 1, then

Pr[X < (1−δ )µ]≤ exp(−δ 2µ

2
)

and if δ > 0,

Pr[X > (1+δ )µ]≤ exp(− δ 2µ

2+δ
).
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Let p = logn+a
n . The authors in [5] proved that

Pr[G(n, p) is connected]→


1, a−→+∞;
e−e−a

, |a|= O(1);
0, a−→−∞.

Thus, p = logn
n is the threshold function for G(n, p) being connected.

A sufficient condition for G(n, p) to have an RMCk-coloring almost surely is that
T (G(n, p)) ≥ k almost surely. For the STP number problem of G(n, p), Gao et al.
proved the following results.

Lemma 6 ([7]) For every p ∈ [0,1], we have

T (G(n, p)) = min{δ (G(n, p)),
⌊

e(G(n, p))
n−1

⌋
}

almost surely.

In this section, we denote β = 2
loge−log2 ≈ 6.51778.

Lemma 7 ([7]) If

p≥ β (logn− log logn/2)+ω(1)
n−1

,

then T (G(n, p)) =
⌊

e(G(n,p))
n−1

⌋
almost surely; if

p≤ β (logn− log logn/2)−ω(1)
n−1

,

then T (G(n, p)) = δ (G(n, p)) almost surely.

We knew that m− k(n−2) is a lower bound of rmck(G). Next is an upper bound
of rmck(G). Although the upper bound is rough, it is useful for the subsequent proof.

Proposition 7 If G is a graph with τ(G)≥ k, then rmck(G)≤ m− (k−1)(n−2).

Proof Since the result holds for k = 1, we only consider k ≥ 2. Suppose Γ is an
extremal RMCk-coloring of G and T = {T1, · · · ,Tr} is the set of nontrivial color-
induced trees with |T1| ≥ · · · ≥ |Tr|. Then

k
(

n
2

)
− e(G)≤ ∑

i∈[r]

(
|Ti|−1

2

)
. (5)

Case 1. T1 is a spanning tree of G.
Then Γ is an extremal RMCk−1-coloring restricted on G′ = G−E(T1) (this result

has been proved in Theorem 2). By induction on k,

|Γ (G′)|= rmck−1(G′)≤ e(G′)− (k−2)(n−2).
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Then

rmck(G)= 1+|Γ (G′)|= 1+rmck−1(G′)≤ 1+e(G′)−(k−2)(n−2)≤m−(k−1)(n−2).

Case 2. |Ti| ≤ n−1 for each i ∈ [r].
By Lemmas 1 and 2, the expression ∑i∈[r](|Ti|−2), subjects to (5) and 3≤ |Ti| ≤

n− 1, is minimum when |T1| = · · · = |Tr−1| = n− 1 and |Tr| = x+ 1, where x is an
integer with 3≤ x+1≤ n−2.

If r ≤ k− 1, then ∑i∈[r]
(|Ti|−1

2

)
< (k− 1)

(n−2
2

)
< k
(n

2

)
− e(G), a contradiction to

(5).
If r > k, then Γ wastes at least k(n−3)≥ (k−1)(n−2) colors. Thus rmck(G)≤

m− (k−1)(n−2).
If r = k, then

(k−1)
(

n−2
2

)
+

(
x
2

)
≥ k
(

n
2

)
− e(G).

So, x2− x−α ≥ 0, where

α = 2[
(

n
2

)
+(2n−3)(k−1)− e(G)] = 2[(2n−3)(k−1)+ e(G)].

The inequality holds when x≥ 1+
√

1+4α

2 ≥
√

α . Thus, Γ wastes at least

Σi∈[k](|Ti|−2) = (k−1)(n−2)+ x−1≥ (k−1)(n−2)+
√

α−1.

Since k ≥ 2,
√

α ≥ 1. Thus rmck(G)≤ m− (k−1)(n−2). ut

Theorem 7 Let k = k(n) be an integer such that
⌊ n

2

⌋
> k ≥ 1 and let rmck(Kn) >

f (n)≥ k(n−1). Then

p =


f (n)+kn

n2 , f (n)≥ O(n logn) and k = o(n);
min{ k

n ,
logn

n }, f (n) = o(n logn) and k = o(n);
1, k = O(n) and f (n)< rmck(Kn).

is a sharp threshold function for the property rmck(G(n, p))≥ f (n).

Proof Let c be a positive constant and let E(||G(n,cp)||) be the expectation of the
number of edges in G(n,cp). Then

E(||G(n,cp)||)=


c(n−1)

2n f (n)+ c·k(n−1)
2 , f (n)≥ O(n logn) and k = o(n);

c·k(n−1)
2 , f (n) = o(n logn),k = o(n) and k > logn;

c logn(n−1)
2 , f (n) = o(n logn),k = o(n) and k ≤ logn;

c
(n

2

)
, k = O(n) and f (n)< rmck(Kn).

By Lemma 5, both inequalities

Pr[||G(n,cp)||< 1
2

E(||G(n,cp)||)]≤ exp(−1
8

E(||G(n,cp)||)) = o(1)
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and

Pr[||G(n,cp)||> 3
2

E(||G(n,cp)||)]≤ exp(− 1
10

E(||G(n,cp)||)) = o(1)

hold for each p.
Case 1. k = O(n), i.e., there is an l ∈ R+ such that l ·n≤ k <

⌊ n
2

⌋
.

Since G(n, p) = Kn, rmck(G(n, p)) ≥ f (n) always holds. On the other hand, we
have

||G(n, l · p)|| ≤ 3
2

E(||G(n, l · p)||) = 3l
2
·
(

n
2

)
< k(n−2)

almost surely. By Claim 3, G(n, l · p) does not have RMCk-colorings almost surely.
Case 2. k = o(n).
Case 2.1. f (n)≥ O(n logn).
Then, there is an s ∈ R+ and f (n)≥ s ·n logn. Let

c1 =

{
β +1, s≥ 1;
β+1

s , 0 < s < 1.

Since f (n)≥ s ·n logn, we have

c1 p≥ (β +1)(logn+ kn)
n

≥ β (logn− log logn/2)+ω(1)
n−1

.

Since

||G(n,c1 p)|| ≥ 1
2

E(||G(n,c1 p)||) = β +1
2
· n−1

2n
f (n)+

k(n−1)(β +1)
4

almost surely, by Lemma 7, T (G(n,c1 p)) =
⌊
||G(n,c1 p)||

n−1

⌋
> k almost surely, i.e.,

G(n,c1 p) has RMCk-colorings almost surely. Therefore,

rmck(G(n,c1 p))≥ ||G(n,c1 p)||− k(n−2)

≥ β +1
2
· n−1

2n
f (n)+

k(n−1)(β +1)
4

− k(n−2)

>
(β +1)(n−1)

4n
f (n)

> f (n)

almost surely.
Let c2 =

2
3 . Then

||G(n,c2 p)|| ≤ 3
2

E(||G(n,c2 p)||)

≤ 3c2

2
· n−1

2n
f (n)+

3c2

2
· k(n−1)

2

<
1
2
[ f (n)+ k(n−1)]
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almost surely. Thus, either G(n,c2 p) does not have RMCk-colorings almost surely, or

rmck(G(n,c2 p))< ||G(n,c2 p)||− (k−1)(n−2)<
1
2

f (n)

almost surely (recall that rmck(G)≤ m− (k−1)(n−2) by Proposition 7).
Case 2.2. f (n) = o(n logn).
If k ≤ logn, then p = logn

n . Let c1 = β +1 and c2 =
1
2 be two constants. Since

c1 p >
(β +1) logn

n
≥ β (logn− log logn/2)+ω(1)

n−1
,

by Lemma 7, T (G(n,c1 p)) =
⌊
||G(n,c1 p)||

n−1

⌋
almost surely. Since

||G(n,c1 p)|| ≥ 1
2

E(||G(n,c1 p)||) = logn(n−1)(β +1)
4

almost surely, T (G(n,c1 p)) ≥ logn ≥ k almost surely, i.e., G(n,c1 p) has RMCk-
coloring almost surely. Therefore,

rmck(G(n,c1 p))≥ ||G(n,c1 p)||− k(n−2)

≥ logn(n−1)(β +1)
4

− k(n−2)

≥ 3logn(n−1)
4

> f (n)

almost surely. For G(n,c2 p), since c2 p = logn
2n , G(n,c2 p) is not connected almost

surely, i.e., G(n,c2 p) does not have RMCk-colorings almost surely.
If k > logn and k = o(n), then p = k

n . Let c1 = β +1 and c2 = 1. Then

c1 p =
(β +1)k

n
>

(β +1) logn
n

≥ β (logn− log logn/2)+ω(1)
n−1

,

i.e., T (G(n,c1 p)) =
⌊
||G(n,c1 p)||

n−1

⌋
almost surely. Since

||G(n,c1 p)|| ≥ 1
2

E(||G(n,c1 p)||) = k(n−1)(β +1)
4

almost surely, T (G(n,c1 p)) ≥ k almost surely, i.e., G(n,c1 p) has RMCk-colorings
almost surely. Thus

rmck(G(n,c1 p))≥ ||G(n,c1 p)||− k(n−2)>
3
4

k(n−1)>
3
4
(n−1) logn > f (n)

almost surely. For G(n,c2 p), since

||G(n,c2 p)|| ≤ 3
2

E(||G(n,c2 p)||) = 3
4

k(n−1)< k(n−2)

almost surely. By Claim 3, G(n,c2 p) does not have RMCk-colorings almost surely.
ut
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Remark 2. Since rmck(G) = rmck(Kn) if and only if G=Kn, we only concentrate
on the case 1 ≤ f (n) < rmck(Kn). If n is odd, then G has RMCb n

2c-colorings if and

only if G = Kn. So, we are not going to consider the case k =
⌊ n

2

⌋
. ut
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