Rainbow monochromatic k-edge-connection colorings of graphs

Ping Li • Xueliang Li

Received: date / Accepted: date

Abstract

A path in an edge-colored graph is called a monochromatic path if all edges of the path have a same color. We call k paths P_{1}, \cdots, P_{k} rainbow monochromatic paths if every P_{i} is monochromatic and for any two $i \neq j, P_{i}$ and P_{j} have different colors. An edge-coloring of a graph G is said to be a rainbow monochromatic k -edge-connection coloring (or $R M C_{k}$-coloring for short) if every two distinct vertices of G are connected by at least k rainbow monochromatic paths. We use $r m c_{k}(G)$ to denote the maximum number of colors that ensures G has an $R M C_{k}$-coloring, and this number is called the rainbow monochromatic k-edge-connection number. We prove the existence of $R M C_{k}$-colorings of graphs, and then give some bounds of $r m c_{k}(G)$ and present some graphs whose $r m c_{k}(G)$ reaches the lower bound. We also obtain the threshold function for $r m c_{k}(G(n, p)) \geq f(n)$, where $\left\lfloor\frac{n}{2}\right\rfloor>k \geq 1$.

Keywords Monochromatic path • Rainbow monochromatic paths • Rainbow monochromatic k-edge-connection coloring (number) • Threshold function

1 Introduction

The monochromatic connection coloring of a graph, introduced in [4], allows that any two vertices are connected by a monochromatic path. In order to generalize this concept, we consider an edge-coloring of a given graph G with any two vertices are connected by at least k (a fixed integer) edge-disjoint monochromatic paths. If we allow some of those k monochromatic paths to have different colors, then the

[^0]edge-coloring is called $M C_{k}$-coloring of G. If we require that those k monochromatic paths have the same color, then the edge-coloring is called $U M C_{k}$-coloring of G. The two generalized concepts are introduced in [12]. In this paper, we discuss the third generalized concept, $R M C_{k}$-coloring, which requires that the colors of those k monochromatic paths are pairwise differently. We will introduce the above four concepts systematically, and also introduce some notations and previous work below.

For a graph G, let $\Gamma: E(G) \rightarrow[k]$ be an edge-coloring of G that allows a same color to be assigned to adjacent edges, here and in what follows [k] denotes the set $\{1,2, \cdots, k\}$ of integers for a positive integer k. For an edge e of G, we use $\Gamma(e)$ to denote the color of e. If H is a subgraph of G, we also use $\Gamma(H)$ to denote the set of colors on the edges of H and use $|\Gamma(H)|$ to denote the number of colors in $\Gamma(H)$. For all other terminology and notation not defined here we follow Bondy and Murty [2].

A monochromatic uv-path is a $u v$-path of G whose edges are colored with a same color, and G is monochromatically connected if for any two vertices of G, G has a monochromatic path connecting them. An edge-coloring Γ of G is a monochromatic connection coloring (or MC-coloring for short) if it makes G monochromatically connected. The monochromatic connection number of a connected graph G, denoted by $m c(G)$, is the maximum number of colors that are allowed in order to make G monochromatically connected. An extremal MC-coloring of G is an MC-coloring that uses $m c(G)$ colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster [4]. Huang and Li [10] recently showed that it is NP-hard to compute the monochromatic connection number for a given graph. Some results were obtained in $[3,9,11$, 14,13]. Later, Gonzaléz-Moreno et al. in [8] generalized the above concept to digraphs.

We list the main results in [4] below.
Theorem 1 ([4]) Let G be a connected graph with $n \geq 3$. If G satisfies any of the following properties, then $m c(G)=m-n+2$.

1. \bar{G} (the complement of G) is a 4-connected graph;
2. G is triangle-free;
3. $\Delta(G)<n-\frac{2 m-3(n-1)}{n-3}$;
4. $\operatorname{diam}(G) \geq 3$;
5. G has a cut vertex.

The Erdös-Rényi random graph model $G(n, p)$ will be studied in this paper. The graph $G(n, p)$ is defined on n labeled vertices (informally, we use $[n]$ to denote the n labeled vertices) in which each edge is chosen independently and randomly with probability p. A property of graphs is a subset of the set of all graphs on $[n]$ (such as connectivity, minimum degree, et al). If a property Q has $\operatorname{Pr}[G \sim G(n, p)$ satisfies $Q] \rightarrow$ 1 when $n \rightarrow+\infty$, then we call the property Q almost surely. A property Q is monotone increasing if whenever H is a graph obtained from H^{\prime} by adding some edges and H^{\prime} has property Q, then H also has the property Q.

A function $h(n)$ is a threshold function for an increasing property Q, if for any two functions $h_{1}(n)=o(h(n))$ and $h(n)=o\left(h_{2}(n)\right), G\left(n, h_{1}(n)\right)$ does not have property Q almost surely and $G\left(n, h_{2}(n)\right)$ has property Q almost surely. Moreover, $h(n)$ is
called a sharp threshold function of Q if there exist two positive constants c_{1} and c_{2} such that $G(n, p(n))$ does not have property Q almost surely when $p(n) \leq c_{1} h(n)$ and $G(n, p(n))$ has property Q almost surely when $p(n) \geq c_{2} h(n)$. It was proved in [6] that every monotone increasing graph property has a sharp threshold function. The property monochromatic connection coloring of a graph (and also the properties monochromatic k-edge-connection coloring, uniformly monochromatic k-edge-connection coloring and rainbow monochromatic k-edge-connection coloring of graphs which are defined later) is monotone increasing, and therefore it has a sharp threshold function.

Theorem 2 ([9]) Let $f(n)$ be a function satisfying $1 \leq f(n)<\binom{n}{2}$. Then

$$
p= \begin{cases}\frac{f(n)+n \log \log n}{n^{2}}, & \text { if } f(n)=\Omega(n \log n) \text { and } f(n)<\binom{n}{2} ; \\ \frac{\log n}{n}, & \text { if } f(n)=o(n \log n) .\end{cases}
$$

is a sharp threshold function for the property $m c(G(n, p)) \geq f(n)$.
Now we generalize the concept monochromatic connection coloring of graphs. There are three ways to generalize this concept.

The first generalized concept is called the monochromatic k-edge-connection coloring (or $M C_{k}$-coloring for short) of G, which requires that every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths (allow some of the paths to have different colors). The monochromatically k-edge-connection number of a connected G, denoted by $m c_{k}(G)$, is the maximum number of colors that are allowed in order to make G monochromatically k-edge-connected.

The second generalized concept is called the uniformly monochromatic k-edgeconnection coloring (or $U M C_{k}$-coloring for short) of G, which requires that every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths such that all these k paths have the same color (note that for different pairs of vertices the paths may have different colors). The uniformly monochromatically k-edge-connection number of a connected G, denoted by $u m c_{k}(G)$, is the maximum number of colors that are allowed in order to make G uniformly monochromatically k-edge-connected. These two concepts were studied in [12].

It is obvious that a graph has an $M C_{k}$-coloring (or $U M C_{k}$-coloring) if and only if G is k-edge-connected. We mainly study the third generalized concept in this paper, which is called the rainbow monochromatic k-edge-connection coloring (or $R M C_{k^{-}}$ coloring for short) of a connected graph. One can see later, compare the results for $M C$-colorings, $M C_{k}$-colorings, $U M C_{k}$-colorings and $R M C_{k}$-colorings of graphs, the concept $R M C_{k}$-coloring has the best form among all the generalized concepts of the $M C$-coloring.

The definition of the third generalized concept goes as follows. For an edgecolored simple graph G (if G has parallel edges but no loops, the following notions are also reasonable), if for any two distinct vertices u and v of G, G has k edge-disjoint monochromatic paths connecting them, and the colors of these k paths are pairwise differently, then we call such k monochromatic paths k rainbow monochromatic $u v$ paths. An edge-colored graph is rainbow monochromatically k-edge-connected if every two vertices of the graph are connected by at least k rainbow monochromatic paths
in the graph. An edge-coloring Γ of a connected graph G is a rainbow monochromatic k-edge-connection coloring (or $R M C_{k}$-coloring for short) if it makes G rainbow monochromatically k-edge-connected. The rainbow monochromatically k-edgeconnection number of a connected graph G, denoted by $r m c_{k}(G)$, is the maximum number of colors that are allowed in order to make G rainbow monochromatically k-edge-connected. An extremal $R M C_{k}$-coloring of G is an $R M C_{k}$-coloring that uses $r m c_{k}(G)$ colors.

If $k=1$, then an $R M C_{k}$-coloring (also $M C_{k}$-coloring and $U M C_{k}$-coloring) is reduced to a monochromatic connection coloring for any connected graph.

In an edge-colored graph G, if a color i only colors one edge of $E(G)$, then we call the color i a trivial color, and call the edge (tree) a trivial edge (trivial tree). Otherwise we call the edges (colors, trees) nontrivial. A subgraph H of G is called an i-induced subgraph if H is induced by all the edges of G with the same color i. Sometimes, we also call H a color-induced subgraph.

If Γ is an extremal $R M C_{k}$-coloring of G, then each color-induced subgraph is connected. Otherwise we can recolor the edges in one of its components by a fresh color, then the new edge-coloring is also an $R M C_{k}$-coloring of G, but the number of colors is increased by one, which contradicts that Γ is extremal. Furthermore, each color-induced subgraph does not have cycles; otherwise we can recolor one edge in a cycle by a fresh color. Then the new edge-coloring is also an $R M C_{k}$-coloring of G, but the number of colors is increased, a contradiction. Therefore, we have the following result.

Proposition 1 If Γ is an extremal $R M C_{k}$-coloring of G, then each color-induced subgraph is a tree.

If Γ is an extremal $R M C_{k}$-coloring of G for $i \in \Gamma(G)$, we call an i-induced subgraph of G an i-induced tree or a color-induced tree. We also call it a tree sometimes if there is no confusion.

The paper is organized as follows. Section 2 will give some preliminary results. In Section 3, we study the existence of $R M C_{k}$-colorings of graphs. In Section 4, we give some bounds of $r m c_{k}(G)$, and present some graphs whose $r m c_{k}(G)$ reaches the lower bound. In Section 5, we obtain the threshold function for $\mathrm{rmc}_{k}(G) \geq f(n)$, where $\left\lfloor\frac{n}{2}\right\rfloor>k \geq 1$.

2 Preliminaries

Suppose that $a=\left(a_{1}, \cdots, a_{q}\right)$ and $b=\left(b_{1}, \cdots, b_{p}\right)$ are two positive integer sequences whose lengths p and q may be different. Let \prec be the lexicographic order for integer sequences, i.e., $a \prec b$ if for some $h \geq 1, a_{j}=b_{j}$ for $j<h$ and $a_{h}<b_{h}$, or $p>q$ and $a_{j}=b_{j}$ for $j \leq q$.

Let D, n, s be integers with $n \geq 5$ and $1 \leq s \leq n-4$. Let r be an integer satisfying $D<r\binom{n-s}{2}$. For an integer $t \geq r$, suppose $f\left(\mathbf{x}_{t}\right)=f\left(x_{1}, \cdots, x_{t}\right)=\sum_{i \in[t]}\binom{x_{i}-1}{2}$ and $g\left(\mathbf{x}_{t}\right)=g\left(x_{1}, \cdots, x_{t}\right)=\sum_{i \in[t]}\left(x_{i}-2\right)$, where $x_{i} \in\{3,4, \cdots, n-s\}$. We use \mathscr{S}_{t} to denote
the set of optimum solutions of the following problem:

$$
\begin{array}{ll}
\text { min } & g\left(\mathbf{x}_{t}\right) \\
\text { s.t. } & f\left(\mathbf{x}_{t}\right) \geq D \text { and } x_{i} \in\{3, \cdots, n-s\} \text { for each } i \in[t] .
\end{array}
$$

Lemma 1 There are integers r, x with $r \leq t$ and $3 \leq x<n-s$, such that the above problem has a solution $\mathbf{x}_{t}=\left(x_{1}, \cdots, x_{t}\right)$ in \mathscr{S}_{t} satisfying that $x_{i}=n-s$ for $i \in[r-1]$, $x_{r}=x$ and $x_{j}=3$ for $j \in\{r+1, \cdots, t\}$.

Proof Let $\mathbf{c}_{t}=\left(c_{1}, \cdots, c_{t}\right)$ be a maximum integer sequence of \mathscr{S}_{t}. Then $c_{i} \geq c_{i+1}$ for $i \in[t-1]$. Since $D<t\binom{n-s}{2}$, there is an integer $r \leq t$ such that $c_{i}=n-s$ for $i \leq r-1$ and $3 \leq c_{i}<n-s$ for $i \in\{r, \cdots, t\}$. Let $x=c_{r}$. Then $3 \leq x<n-s$. We need to show $c_{i}=3$ for each $i \in\{r+1, \cdots, t\}$. Otherwise, suppose j is the maximum integer of $\{r+1, \cdots, t\}$ with $n-s>c_{j}>3$. Let $\mathbf{d}_{t}=\left(d_{1}, \cdots, d_{t}\right)$, where $d_{i}=c_{i}$ when $i \notin\{r, j\}, d_{r}=c_{r}+1$ and $d_{j}=c_{j}-1$. Then $f\left(\mathbf{d}_{t}\right) \geq f\left(\mathbf{c}_{t}\right) \geq D, 3 \leq d_{i}<n-s$ for each $i \in[t]$, and $g\left(\mathbf{c}_{t}\right)=g\left(\mathbf{d}_{t}\right)$. i.e., $\mathbf{d}_{t} \in \mathscr{S}_{t}$. However, $\mathbf{c}_{t} \prec \mathbf{d}_{t}$, which contradicts that \mathbf{c}_{t} is a maximum integer sequence of \mathscr{S}_{t}.

Lemma 2 Suppose $t \geq r, \mathbf{a}_{t} \in \mathscr{S}_{t}$ and $\mathbf{b}_{r} \in \mathscr{S}_{r}$. Then $g\left(\mathbf{b}_{r}\right) \leq g\left(\mathbf{a}_{t}\right)$.
Proof The result holds for $t=r$, so let $t>r$. W.l.o.g., suppose $\mathbf{a}_{t}=\left(a_{1}, \cdots, a_{t}\right)$, where $a_{1}=\cdots=a_{l-1}=n-s, 3 \leq a_{l}<n-s$ and $a_{l+1}=\cdots=x_{t}=3$. Since $t>r$ and $D<r\binom{n-s}{2}, l<t$ and $a_{t}=3$. Let $\mathbf{c}_{t-1}=\left(c_{1}, \cdots, c_{t-1}\right)$, where $c_{1}=\cdots=c_{l-1}=n-s$, $c_{l}=a_{l}+1$ and $c_{l+1}=\cdots=x_{t-1}=3$. Then $f\left(\mathbf{c}_{t-1}\right) \geq D$ and $g\left(\mathbf{c}_{t-1}\right)=g\left(\mathbf{a}_{t}\right)$. Let $\mathbf{d}_{t-1} \in \mathscr{S}_{t-1}$. Then $g\left(\mathbf{c}_{t-1}\right) \geq g\left(\mathbf{d}_{t-1}\right)$. By induction on $t-r, g\left(\mathbf{b}_{r}\right) \leq g\left(\mathbf{d}_{t-1}\right)$. Thus $g\left(\mathbf{b}_{r}\right) \leq g\left(\mathbf{a}_{t}\right)$.

The following result is easily seen.
Lemma 3 If a, b, c are positive integers with $c+a-1 \geq 2$ and $a+b=c$, then $\binom{c}{2}-$ $\binom{a}{2} \geq b$.

Suppose X is a proper vertex set of G. We use $E(X)$ to denote the set of edges whose ends are in X. For a graph G and $X \subseteq V(G)$, to shrink X is to delete $E(X)$ and then merge the vertices of X into a single vertex. A partition of the vertex set V is to divide V into some mutual disjoint nonempty sets. Suppose $\mathscr{P}=\left\{V_{1}, \cdots, V_{s}\right\}$ is a partition of $V(G)$. Then G / \mathscr{P} is a graph obtained from G by shrinking every V_{i} into a single vertex.

The spanning tree packing number (STP number) of a graph is the maximum number of edge-disjoint spanning trees contained in the graph. We use $T(G)$ to denote the number of edge-disjoint spanning trees of G. The following theorem was proved by Nash-Williams and Tutte independently.

Theorem 3 ([15] [16]) A graph G has at least k edge-disjoint spanning trees if and only if $e(G / \mathscr{P}) \geq k(|G / \mathscr{P}|-1)$ for any vertex-partition \mathscr{P} of $V(G)$.
We denote $\tau(G)=\min _{|\mathscr{P}| \geq 2} \frac{e(G / \mathscr{P})}{|G / \mathscr{P}|-1}$. Then Nash-Williams-Tutte Theorem can be restated as follows.

Theorem $4 T(G)=k$ if and only if $\lfloor\tau(G)\rfloor=k$.

If Γ is an extremal $R M C_{k}$-coloring of G, then we say that Γ wastes $\omega=\sum_{i \in[r]}\left(\left|T_{i}\right|-\right.$ 2) colors, where T_{1}, \cdots, T_{r} are all the nontrivial color-induced trees of G. Thus $r m c_{k}(G)=$ $m-\omega$.

Suppose that Γ is an edge-coloring of G and v is a vertex of G. The nontrivial color degree of v under Γ is denoted by $d^{n}(v)$, that is, the number of nontrivial colors appearing on the edges incident with v.
Lemma 4 Suppose that Γ is an $R M C_{k}$-coloring of G with $k \geq 2$. Then $d^{n}(v) \geq k$ for every vertex v of G.

Proof Since every two vertices have $k \geq 2$ rainbow monochromatic paths connecting them and G is simple, every two vertices have at least one nontrivial monochromatic path connecting them, i.e., $d^{n}(v) \geq 1$ for each $v \in V(G)$. Let $e=v u$ be a nontrivial edge. Then there are $k-1$ rainbow monochromatic paths of order at least three connecting u and v. Since these $k-1$ rainbow monochromatic paths are nontrivial, $d^{n}(v) \geq k$ for each $v \in V(G)$.

3 Existence of $R M C_{k}$-colorings

We knew that there exists an $M C_{k}$-coloring or a $U M C_{k}$-coloring of G if and only if G is k-edge-connected. It is natural to ask how about $R M C_{k}$-colorings ? It is obvious that any cycle of order at least 3 is 2-edge-connected, but it does not have an $R M C_{2}-$ coloring.

We mainly think about simple graphs in this paper, but in the following result, all graphs may have parallel edges but no loops.

Theorem 5 A graph G has an $R M C_{k}$-coloring if and only if $\tau(G) \geq k$.
Proof If G has k edge-disjoint spanning trees T_{1}, \cdots, T_{k}, then we can color the edges of each T_{i} by i and color the other edges of G by colors in $[k]$ arbitrarily. Then the coloring is an $R M C_{k}$-coloring of G. Therefore, G has an $R M C_{k}$-coloring when $\tau(G) \geq$ k.

We will prove that if there exists an $R M C_{k}$-coloring of G, then G has k edgedisjoint spanning trees, i.e., $\tau(G) \geq k$. Before proceeding to the proof, we need a critical claim as follows.
Claim If G has an $R M C_{k}$-coloring, then $e(G) \geq k(n-1)$.
Proof Suppose that Γ is an extremal $R M C_{k}$-coloring of G and G_{1}, \cdots, G_{t} are all the color-induced trees of G (say G_{i} is the i-induced tree). If there are two colorinduced trees G_{i} and G_{j} satisfying that all the three sets $V\left(G_{i}\right)-V\left(G_{j}\right), V\left(G_{j}\right)-$ $V\left(G_{i}\right)$ and $V\left(G_{i}\right) \cap V\left(G_{j}\right)$ are nonempty, then we use $P(G, \Gamma, i, j)$ to denote the graph $\left(G-E\left(G_{i} \cup G_{j}\right)\right) \cup T_{1} \cup T_{2}$, where T_{1} and T_{2} are two new trees with $V\left(T_{1}\right)=V\left(G_{i}\right) \cup$ $V\left(G_{j}\right)$ and $V\left(T_{2}\right)=V\left(G_{i}\right) \cap V\left(G_{j}\right)$ (note that T_{1}, T_{2} and $G-E\left(G_{i} \cup G_{j}\right)$ are mutually edge disjoint, then $P(G, \Gamma, i, j)$ may have parallel edges); we also use $\Upsilon(G, \Gamma, i, j)$ to denote the edge-coloring of $P(G, \Gamma, i, j)$, which is obtained from Γ by coloring $E\left(T_{1}\right)$ with i and coloring $E\left(T_{2}\right)$ with j, respectively. Then $|G|=|P(G, \Gamma, i, j)|$ and $e(G)=e(P(G, \Gamma, i, j))$.

We claim that $\Upsilon(G, \Gamma, i, j)$ is an $R M C_{k}$-coloring of $P(G, \Gamma, i, j)$, and we prove it below. For any two vertices u, v of G, if at least one of them is in $V(G)-V\left(G_{i} \cup G_{j}\right)$, or one is in $V\left(G_{i}\right)-V\left(G_{j}\right)$ and the other is in $v \in V\left(G_{j}\right)-V\left(G_{i}\right)$, then none of rainbow monochromatic $u v$-paths of G are colored by i or j, these rainbow monochromatic $u v$-paths of G are kept unchanged. Thus there are at least k rainbow monochromatic $u v$-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$; if both of u, v are in $V\left(G_{i}\right) \cap V\left(G_{j}\right)$, then there are at least $k-2$ rainbow monochromatic $u v$-paths of G with colors different from i and j, and these rainbow monochromatic $u v$-paths are kept unchanged. Since T_{1} and T_{2} provide two rainbow monochromatic $u v$-paths, one is colored by i and the other is colored by j, there are at least k rainbow monochromatic $u v$-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$; if, by symmetry, u and v are in G_{i} and at most one of them is in $V\left(G_{i}\right) \cap V\left(G_{j}\right)$, then there are at least $k-1$ rainbow monochromatic $u v$ paths with colors different from i and j, and these rainbow monochromatic $u v$-paths are kept unchanged. Since T_{1} provides a monochromatic $u v$-path with color i, there are at least k rainbow monochromatic $u v$-paths in $P(G, \Gamma, i, j)$ under $\Upsilon(G, \Gamma, i, j)$.

We now introduce a simple algorithm on G. Setting $H:=G$ and $\Gamma^{*}:=\Gamma$. If there are two color-induced subgraphs H_{i} and H_{j} of H satisfying that all the three sets $V\left(H_{i}\right)-V\left(H_{j}\right), V\left(H_{j}\right)-V\left(H_{i}\right)$ and $V\left(H_{i}\right) \cap V\left(H_{j}\right)$ are nonempty, then replace H by $P\left(H, \Gamma^{*}, i, j\right)$ and replace Γ^{*} by $\Upsilon\left(H, \Gamma^{*}, i, j\right)$.

We now show that the algorithm will terminate in a finite steps. In the i th step, let $H=H_{i}$ and $\Gamma^{*}=\Gamma_{i}$, and let $G_{1}^{i}, \cdots, G_{t_{i}}^{i}$ be all the color-induced subgraphs of H_{i} such that $\left|G_{1}^{i}\right| \geq\left|G_{2}^{i}\right| \geq \cdots \geq\left|G_{t_{i}}^{i}\right|$ (in fact, in each step, each color-induced subgraph is a tree), and let $l_{i}=\left(\left|G_{1}^{i}\right|,\left|G_{2}^{i}\right|, \cdots,\left|G_{t_{i}}^{i}\right|\right)$ be an integer sequence. Suppose $H_{i+1}=$ $P\left(H_{i}, \Gamma_{i}, s, t\right)$, i.e., $H_{i+1}=H_{i}-E\left(G_{s}^{i} \cup G_{t}^{i}\right) \cup T_{1} \cup T_{2}$, where $V\left(T_{1}\right)=V\left(G_{s}^{i}\right) \cup V\left(G_{t}^{i}\right)$ and $V\left(T_{2}\right)=V\left(G_{s}^{i}\right) \cap V\left(G_{t}^{i}\right)$. Then $\left|T_{1}\right|>\max \left\{\left|G_{s}^{i}\right|,\left|G_{t}^{i}\right|\right\}$. Therefore, $l_{i} \prec l_{i+1}$. Since G is a finite graph and $e\left(H_{i}\right)=e(G)$ in each step, the algorithm will terminate in a finite step.

Let H^{\prime} be the resulting graph and Γ^{\prime} be the resulting $R M C_{k}$-coloring of H^{\prime}, and $T_{1}^{\prime}, \cdots, T_{r}^{\prime}$ be the color-induced trees of H^{\prime} with $\left|T_{1}^{\prime}\right| \geq \cdots \geq\left|T_{r}^{\prime}\right|$. Then T_{k}^{\prime} is a spanning tree of H^{\prime}; otherwise, there is al least one vertex w in $V(G)-V\left(T_{k}\right)$. Suppose $u \in V\left(T_{k}\right)$. Since $T_{1}^{\prime}, \cdots, T_{k-1}^{\prime}$ provide at most $k-1$ rainbow monochromatic $u w$-paths, there is a tree of $\left\{T_{k+1}^{\prime}, \cdots, T_{r}^{\prime}\right\}$, say T_{a}^{\prime}, containing u and w. Then $V\left(T_{k}^{\prime}\right)-$ $V\left(T_{a}^{\prime}\right) \neq \emptyset$; otherwise $\left|T_{k}^{\prime}\right|<\left|T_{a}^{\prime}\right|$, a contradiction. Thus $V\left(T_{k}^{\prime}\right)-V\left(T_{a}^{\prime}\right), V\left(T_{a}^{\prime}\right) \cap V\left(T_{k}^{\prime}\right)$ and $V\left(T_{a}^{\prime}\right)-V\left(T_{k}^{\prime}\right)$ are nonempty sets, which contradicts that H^{\prime} is the resulting graph of the algorithm. Therefore, there are at least k spanning trees of H^{\prime}, i.e., $e(G)=e\left(H^{\prime}\right) \geq k(n-1)$.

Now, we are ready to prove $\tau(G) \geq k$ by contradiction. Suppose that Γ is an $R M C_{k}$-coloring of G but $\tau(G)<k$. By Theorem 3, there exists a partition $\mathscr{P}=$ $\left\{V_{1}, \cdots, V_{t}\right\}$ of $V(G)(|\mathscr{P}|=t \geq 2)$, such that $e(G / \mathscr{P})<k(|\mathscr{P}|-1)$. Let $G^{*}=G / \mathscr{P}$ be the graph obtained from G by shrinking each V_{i} into a single vertex $v_{i}, 1 \leq i \leq t$.

Suppose that Γ^{*} is an edge-coloring of G^{*} obtained from Γ by keeping the color of every edge of G not being deleted (we only delete edges contained in each V_{i}). It is obvious that Γ^{*} is an $R M C_{k}$-coloring of G^{*}. However, $e\left(G^{*}\right)<k\left(\left|G^{*}\right|-1\right)$, a contradiction to Claim 3. So, $\tau(G) \geq k$.

We will turn to discuss simple graphs below. Because a simple graph is also a loopless graph, Theorem 5 holds for simple graphs. For a connected simple graph G, since $1 \leq \tau(G) \leq \tau\left(K_{n}\right)=\left\lfloor\frac{e\left(K_{n}\right)}{n-1}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$, we have the following result.

Corollary 1 If G is a simple graph of order n and G has an $R M C_{k}$-coloring, then $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

By Theorem 5, if $\tau(G) \geq k$, a trivial $R M C_{k}$-coloring of a graph G is a coloring that colors the edges of the k edge-disjoint spanning trees of G by colors in $[k]$, respectively, and then colors the other edges trivial. Since the edge-coloring wastes $k(n-2)$ colors, $r m c_{k}(G) \geq m-k(n-2)$. Thus, $m-k(n-2)$ is a lower bound of $r m c_{k}(G)$ if G has an $R M C_{k}$-coloring.

Corollary 2 If G is a graph with $\tau(G) \geq k$, then $r m c_{k}(G) \geq m-k(n-2)$.

4 Some graphs with rainbow monochromatic k-edge-connection number

 $m-k(n-2)$In this section, we mainly study the graphs with rainbow monochromatic k-edgeconnection number $m-k(n-2)$ (graphs in the following theorem).

Theorem 6 Let G be a graph with $\tau(G) \geq k$. If G satisfies any of the following properties, then $r m c_{k}(G)=m-k(n-2)$.

1. G is triangle-free;
2. $\operatorname{diam}(G) \geq 3$;
3. G has a cut vertex;
4. G is not $k+1$-edge-connected.

We will prove this theorem separately by four propositions below (the second result is a corollary of Proposition 3).

Proposition 2 If G is a triangle-free graph with $\tau(G) \geq k$, then $\operatorname{rmc}_{k}(G)=m-k(n-$ 2).

Proof By Theorem 1, the result holds for $k=1$. Therefore, let $k \geq 2$ (this requires $n \geq 4$). Since G is a triangle-free graph, by Turán's Theorem, $e(G) \leq \frac{n^{2}}{4}$. Then

$$
k \leq \tau(G) \leq \frac{e(G)}{|G|-1} \leq \frac{n+1}{4}+\frac{1}{4(n-1)}
$$

So, $n \geq 4 k-1-\frac{1}{n-1}$, i.e., $n \geq 4 k-1$.
Suppose Γ is an extremal $R M C_{k}$-coloring of G. If there is a color-induced tree, say T, that forms a spanning tree of G, then Γ is an extremal $R M C_{k-1}$-coloring restricted on $G-E(T)$. Otherwise, suppose Γ is not an extremal $R M C_{k-1}$-coloring restricted on $G-E(T)$. Since Γ is obviously an $R M C_{k-1}$-coloring restricted on $G-E(T)$, there is an $R M C_{k-1}$-coloring Γ^{\prime} of $G-E(T)$ such that $|\Gamma(G-E(T))|<\left|\Gamma^{\prime}(G-E(T))\right|$. Let $\Gamma^{\prime \prime}$ be an edge-coloring of G obtained from Γ^{\prime} by assigning $E(T)$ with a new color.

Then $\Gamma^{\prime \prime}$ is an $R M C_{k}$-coloring of G. However, $|\Gamma(G)|<\left|\Gamma^{\prime \prime}(G)\right|$, a contradiction. Since $G-E(T)$ is triangle-free, by induction on k,

$$
r m c_{k-1}(G-E(T))=e(G-E(T))-(k-1)(n-2)=m-k(n-2)-1 .
$$

Therefore,

$$
r m c_{k}(G)=1+|\Gamma(G-E(T))|=1+r m c_{k-1}(G-E(T))=m-k(n-2) .
$$

Now, suppose that each color-induced tree is not a spanning tree. We use \mathscr{S} to denote the set of nontrivial color-induced trees of G. We will prove that Γ wastes at least $k(n-2)$ colors below.

Case 1. There is a vertex v of G such that $d^{n}(v)=k$.
Suppose that $\mathscr{T}=\left\{T_{1}, \cdots, T_{k}\right\}$ is the set of the k nontrivial color-induced trees containing v. Since each vertex connects v by at least $k-1 \geq 1$ nontrivial rainbow monochromatic paths, $V(G)=\bigcup_{i \in[k]} V\left(T_{i}\right)$. Let $S=\bigcap_{i \in[k]} V\left(T_{i}\right)$ and $S_{i}=V\left(T_{i}\right)-S$.

For any $i, j \in[k]$, both $S_{i}-S_{j}$ and $S_{j}-S_{i}$ are nonempty. Otherwise, suppose $S_{i} \subseteq$ S_{j}. Since T_{j} is not a spanning tree, there is a vertex $u^{\prime} \in V(G)-V\left(T_{j}\right)$. Then there are at most $k-2$ nontrivial rainbow monochromatic $u^{\prime} v$-paths, a contradiction.

According to the above discussion, S, S_{1}, \cdots, S_{k} are all nonempty sets. Moreover, since $k \geq 2,|V(G)-S| \geq 2$.

For each $i \in[k]$ and a vertex u in S_{i}, there is an $i_{u} \in[k]$ such that $u \notin V\left(T_{i_{u}}\right)$. Furthermore, $u \in V\left(T_{j}\right)$ for each $j \in[k]-\left\{i_{u}\right\}$; for otherwise, there are at most $k-2$ nontrivial rainbow monochromatic $u v$-paths, which contradicts that Γ is an $R M C_{k^{-}}$ coloring of G. Therefore, there are exactly $k-1$ nontrivial rainbow monochromatic $u v$-paths. This implies that $u v$ is a trivial edge of G. Thus, v connects each vertex of $V(G)-S$ by a trivial edge. Since G is triangle-free, $V(G)-S$ is an independent set. It is easy to verify that \mathscr{T} wastes

$$
\sum_{i \in[k]}\left(\left|T_{i}\right|-2\right)=\sum_{i \in[k]}\left|T_{i}\right|-2 k=k|S|+(k-1)(n-|S|)-2 k=k(n-2)+|S|-n
$$

colors.
Let $\mathscr{F}=\mathscr{S}-\mathscr{T}$ (recall that \mathscr{S} is the set of nontrivial trees of G). Since each two vertices of $V(G)-S$ are in at most $k-1$ trees of \mathscr{T} and $V(G)-S$ is an independent set, there is at least one tree of \mathscr{F} containing them. Moreover, such a tree contains at least one vertex of S. Suppose that F_{1}, \cdots, F_{t} are trees of \mathscr{F} with $\mid V\left(F_{i}\right) \cap(V(G)-$ $S) \mid=x_{i} \geq 2$ and $x_{1} \geq x_{2} \geq \cdots \geq x_{t}$. Let $w_{i} \in V\left(F_{i}\right) \cap S$ and $W_{i}=V\left(F_{i}\right) \cap(V(G)-S) \cup$ $\left\{w_{i}\right\}$. Then $3 \leq\left|W_{i}\right| \leq n-|S|+1$ for each $i \in[t]$, and

$$
\begin{equation*}
\sum_{i \in[t]}\binom{\left|W_{i}\right|-1}{2} \geq\binom{ n-|S|}{2} \tag{1}
\end{equation*}
$$

\mathscr{F} wastes at least $\sum_{i \in[t]}\left(\left|F_{i}\right|-2\right) \geq \sum_{i \in[t]}\left(\left|W_{i}\right|-2\right)$ colors.
For any $i, j \in[k]$, since both $S_{i}-S_{j}$ and $S_{j}-S_{i}$ are nonempty, there are at most $k-2$ rainbow monochromatic paths connecting every vertex of $S_{i}-S_{j}$ and every vertex of $S_{j}-S_{i}$ in \mathscr{T}. Thus there are at least two trees of \mathscr{F} containing the two vertices, i.e., $t \geq 2$.

If $k=2$ and $|S|-1=3$, then \mathscr{F} wastes at least two colors, and thus Γ wastes at least $k(n-2)$ colors. Otherwise, $|S|-1 \geq 4$. Then by Lemma 1, the expression $\sum_{i \in[t]}\left(\left|W_{i}\right|-2\right)$, subjects to (1), $n-|S|+1 \geq\left|W_{i}\right| \geq 3$ and $t \geq 2$, is minimum when $\left|W_{1}\right|=n-|S|+1$, and $\left|W_{i}\right|=3$ for $i=2,3 \cdots, t$. Then \mathscr{F} wastes at least $n-|S|$ colors, and thus Γ wastes at least $k(n-2)$ colors.

Case 2. each vertex v of G has $d^{n}(v) \geq k+1$.
Suppose $\mathscr{S}=\left\{T_{1}, \cdots, T_{r}\right\}$ and $\left|T_{i}\right| \geq\left|T_{i+1}\right|$ for $i \in[r-1]$. Since $d^{n}(v) \geq k+1$ for each vertex v of $G, \sum_{i \in[r]}\left|T_{i}\right| \geq(k+1) n$.

If $r \leq \frac{n}{2}+k$, then $\sum_{i \in[r]}\left(\left|T_{i}\right|-2\right) \geq k(n-2)$. This implies that Γ wastes at least $k(n-2)$ colors. Thus, we consider $r>\frac{n}{2}+k$.

Since each pair of non-adjacent vertices are connected by at least k rainbow monochromatic paths of order at least three, and each pair of adjacent vertices are connected by at least $k-1$ rainbow monochromatic paths of order at least three, there are at least $\left.k\left[\begin{array}{c}n \\ 2\end{array}\right)-e(G)\right]+(k-1) e(G)=k\binom{n}{2}-e(G)$ such paths. Since each T_{i} of \mathscr{S} provides $\binom{\left|T_{i}\right|-1}{2}$ paths of order at least three, we have

$$
\sum_{i \in[r]}\binom{\left|T_{i}\right|-1}{2} \geq k\binom{n}{2}-e(G)
$$

Since $e(G) \leq \frac{n^{2}}{4}$,

$$
\begin{equation*}
\sum_{i \in[r]}\binom{\left|T_{i}\right|-1}{2} \geq k\binom{n}{2}-\frac{n^{2}}{4} . \tag{2}
\end{equation*}
$$

If $\left|T_{i}\right|=n-1$ for each $i \in[r]$, since $r>\frac{n}{2}+k, \Gamma$ wastes $r(n-3)>k(n-2)$ colors. Thus, we assume that there are some trees of \mathscr{S} with order less than $n-1$. By Lemma 1, there are integers t, x with $t<r$ and $3 \leq x \leq n-2$, such that the expression $\sum_{i \in[r]}\left(\left|T_{i}\right|-2\right)$, subject to (2) and $3 \leq\left|T_{i}\right| \leq n-1$, is minimum when $\left|T_{i}\right|=n-1$ for $i \in[t],\left|T_{t+1}\right|=x$ and $\left|T_{j}\right|=3$ for $j \in\{t+1, \cdots, r\}$. By (2),

$$
\begin{equation*}
t\binom{n-2}{2}+\binom{x-1}{2}+r-t-1 \geq k\binom{n}{2}-\frac{n^{2}}{4} \tag{3}
\end{equation*}
$$

This implies that Γ wastes at least

$$
\begin{equation*}
w(\Gamma)=t(n-3)+x-2+r-t-1 \tag{4}
\end{equation*}
$$

colors.
If $t \geq k$, or $t=k-1$ and $x \geq \frac{n}{2}+k-1$, then Γ wastes at least

$$
(k-1)(n-3)+x-2+r-k=k(n-2)+(r+x+1-2 k-n) \geq k(n-2)
$$

colors.
If $t=k-1$ and $x<\frac{n}{2}+k-1$, then suppose y is a positive integer such that $x+y=\left\lceil\frac{n}{2}+k-1\right\rceil$. Let $z=\left\lceil\frac{n}{2}+k-1\right\rceil$. Recall that $n \geq 4 k-1$ and $x \geq 3$, and then
$x+z-3 \geq 7$. By Lemma 3, $\binom{z-1}{2}-\binom{x-1}{2} \geq y-1$. We have

$$
\begin{aligned}
\sum_{i \in[r]}\binom{\left|T_{i}\right|-1}{2} & =(k-1)\binom{n-2}{2}+\binom{x-1}{2}+r-k \\
& \leq(k-1)\binom{n-2}{2}+\binom{z-1}{2}-y+1+r-k \\
& \leq(k-1)\binom{n-2}{2}+\binom{\frac{n}{2}+k-1}{2}-y+1+r-k \\
& =\frac{4 k-3}{8} n^{2}-\frac{8 k-7}{4} n+\frac{(k-1)(k+2)}{2}+r-y \\
& =k\binom{n}{2}-\frac{n^{2}}{4}-\left(\frac{n^{2}}{8}+\frac{6 k-7}{4} n-\frac{(k+2)(k-1)}{2}\right)+r-y .
\end{aligned}
$$

By (2), we have

$$
-\left(\frac{n^{2}}{8}+\frac{6 k-7}{4} n-\frac{(k+2)(k-1)}{2}\right)+r-y \geq 0
$$

i.e., $r \geq \varepsilon+y$, where $\varepsilon=\frac{n^{2}}{8}+\frac{6 k-7}{4} n-\frac{(k+2)(k-1)}{2}$. Then Γ wastes

$$
\begin{aligned}
\sum_{i \in[r]}\left(\left|T_{i}\right|-2\right) & \geq(k-1)(n-3)+x-2+r-k \\
& \geq k(n-2)+(x+y-k+1)-n-k+\varepsilon \\
& \geq k(n-2)-\frac{n}{2}-k+\varepsilon
\end{aligned}
$$

colors. Let

$$
h(n)=-\frac{n}{2}-k+\varepsilon=\frac{1}{8}\left[n^{2}+(12 k-18) n-4\left(k^{2}+3 k-2\right)\right] .
$$

Then $h(n) \geq 0$ when $n \geq \frac{1}{2}\left(\sqrt{160 k^{2}-384 k+292}-12 k+18\right)$. Thus $h(n) \geq 0$ when $n \geq \frac{k}{2}+9$. Recall that $n \geq 4 k-1$, and then $n \geq \frac{k}{2}+9$ holds for $k \geq 3$. So Γ wastes at least $k(n-2)$ colors if $k \geq 3$. If $k=2$, then $h(n)=\frac{1}{8}\left(n^{2}+6 n-32\right)$. Since $n \geq$ $4 k-1=7, h(n) \geq 0$. Therefore, Γ wastes at least $k(n-2)$ colors when $k=2$.

If $t \leq k-2$, then the number of trees of order 3 is at least $r-t-1$. Recall that $n \geq 4 k-1 \geq 7$ and $k \geq 2$. By (3),

$$
\begin{aligned}
r-t-1 & \geq k\binom{n}{2}-\frac{n^{2}}{4}-t\binom{n-2}{2}-\binom{x-1}{2} \\
& \geq k\binom{n}{2}-\frac{n^{2}}{4}-(k-1)\binom{n-2}{2} \\
& \geq k(2 n-3)+\frac{1}{4}\left(n^{2}-10 n+12\right) \\
& \geq k(2 n-3)-\frac{9}{4} \geq k(n-2) .
\end{aligned}
$$

Thus, Γ wastes at least $k(n-2)$ colors.

For a graph G, we use $N_{u v}$ to denote the set of common neighbors of u and v, and let $n_{u v}=\left|N_{u v}\right|, n_{G}=\min \left\{n_{u v}: u, v \in V(G)\right.$ and $\left.u \neq v\right\}$.
Proposition 3 If G is a graph with $\tau(G) \geq k$, then $r m c_{k}(G) \leq m-k(n-2)+n_{G}$.
Proof Suppose Γ is an extremal $R M C_{k}$-coloring of G. Let u, v be two vertices of G with $n_{u v}=n_{G}$. Let $V(G)-N[v]-\{u\}=A, N_{u v}=C$ and $N(v)-\{u\}=B$. Then $C \subseteq B$. Suppose that \mathscr{T} is the set of nontrivial trees containing u and v, \mathscr{F} is the set of nontrivial trees containing u and at least one vertex of B but not v, and \mathscr{H} is the set of nontrivial trees containing v and at least one vertex of A but not u. Thus, \mathscr{T}, \mathscr{F} and \mathscr{H} are pairwise disjoint.

The vertex set A is partitioned into $k+1$ pairwise disjoint subsets A_{0}, \cdots, A_{k} (some sets may be empty) such that every vertex of A_{i} is in exactly i nontrivial trees of \mathscr{T} for $i \in\{0, \cdots, k-1\}$ and every vertex of A_{k} is in at least k nontrivial trees of \mathscr{T}. The vertex set B can also be partitioned into $k+1$ pairwise disjoint subsets B_{0}, \cdots, B_{k} (some sets may be empty) such that every vertex of B_{i} is in exactly i nontrivial trees of \mathscr{T} for $i \in\{0, \cdots, k-1\}$ and every vertex of B_{k} is in at least k nontrivial trees of \mathscr{T}. Then \mathscr{T} wastes

$$
w_{1}=\Sigma_{T \in \mathscr{T}}(|T|-2) \geq \Sigma_{i=0}^{k} i\left(\left|A_{i}\right|+\left|B_{i}\right|\right)
$$

colors.
For every vertex w of A_{i}, since $N(v) \cap A=\emptyset$, there are at least k nontrivial trees containing v and w. Since there are i such trees in \mathscr{T} for $i \neq k$, there are at least $k-i$ nontrivial trees connecting v and w in \mathscr{H}. Since every nontrivial tree of \mathscr{H} must contain v and a vertex of B, \mathscr{H} wastes

$$
w_{2}=\Sigma_{H \in \mathscr{H}}(|H|-2) \geq \Sigma_{i=0}^{k}(k-i)\left|A_{i}\right|
$$

colors.
Let $C_{i}=\left\{w: w \in B_{i} \cap C\right.$ and $u w$ is a trivial edge $\}$. For each vertex w of B, if $w \in$ $B_{i}-C_{i}$, then there are at least k nontrivial trees containing u and w; if $w \in C_{i}$, there are at least $k-1$ nontrivial trees containing u and w. This implies that each vertex of $B_{i}-C_{i}, i \in\{0, \cdots, k-1\}$, is in at least $k-i$ nontrivial trees of \mathscr{F}, and each vertex of C_{i} is in at least $k-i-1$ nontrivial trees of \mathscr{F}. Now we partition \mathscr{F} into two parts, \mathscr{F}_{1} and \mathscr{F}_{2}, such that

$$
\mathscr{F}_{1}=\{F \in \mathscr{F}: V(F) \subseteq B \cup\{u\}\}
$$

and

$$
\mathscr{F}_{2}=\mathscr{F}-\mathscr{F}_{1} .
$$

Then for every F of \mathscr{F}_{1}, u connects a vertex of C in F. Thus, there are at most $|C|-\sum_{i=0}^{k}\left|C_{i}\right|$ trees in \mathscr{F}_{1}. Therefore, \mathscr{F} wastes

$$
\begin{aligned}
w_{3} & =\Sigma_{F \in \mathscr{F}}(|F|-2) \\
& \geq \Sigma_{i=0}^{k}(k-i)\left|B_{i}-C_{i}\right|+\Sigma_{i=0}^{k-1}(k-i-1)\left|C_{i}\right|-\left(|C|-\sum_{i=0}^{k-1}\left|C_{i}\right|\right) \\
& =-|C|+\Sigma_{i=0}^{k}(k-i)\left|B_{i}\right|
\end{aligned}
$$

colors.
According to the above discussion, Γ wastes at least

$$
w_{1}+w_{2}+w_{3} \geq-|C|+\Sigma_{i=0}^{k}\left[k\left(\left|A_{i}\right|+\left|B_{i}\right|\right)\right]=k(n-2)-n_{G}
$$

colors. Therefore, $\operatorname{rmc}_{k}(G) \leq m-k(n-2)+n_{G}$.
If G is not an $s+1$-connected graph, then $n_{G} \leq s$. Thus, we have the following result.

Corollary 3 If G is a graph with $\tau(G) \geq k$ and G is not $s+1$-connected, then $r m c_{k}(G) \leq$ $m-k(n-2)+s$.

The next theorem decreases this upper bound by one when $s=1$.
Proposition 4 If G has a cut vertex and $\tau(G) \geq k \geq 2$, then $r m c_{k}(G)=m-k(n-2)$.
Proof Let Γ be an extremal $R M C_{k}$-coloring of G. Suppose that a is a vertex cut of G and A_{1}, \cdots, A_{t} are components of $G-\{a\}$. Let w be a vertex of A_{1}, and let $\mathscr{T}=$ $\left\{T_{1}, \cdots, T_{r}\right\}$ be the set of nontrivial trees connecting w and some vertices of $\bigcup_{i=2}^{t} A_{i}$. Then each T_{i} contains a. Suppose $\left\{S_{0}, S_{1}, \cdots, S_{k}\right\}$ is a vertex partition of $A_{1}-w$ such that each vertex of S_{i} is in exactly i nontrivial trees of \mathscr{T} for $i=0,1 \cdots, k-1$ and each vertex of S_{k} is in at least k nontrivial trees of \mathscr{T}. Since each vertex of $\bigcup_{i=2}^{t} A_{i}$ connects w by at least k trees of \mathscr{T}, \mathscr{T} wastes

$$
\sum_{i \in[r]}\left(\left|T_{i}\right|-2\right) \geq k \sum_{i=2}^{t}\left|A_{i}\right|+\sum_{i=0}^{k} i\left|S_{i}\right|
$$

colors.
Let $\mathscr{F}=\left\{F_{1}, \cdots, F_{l}\right\}$ be the set of nontrivial trees connecting at least one vertex of $\bigcup_{i=2}^{t} A_{i}$ and at least one vertex of A_{1} but not w. Then $\mathscr{T} \cap \mathscr{F}=\emptyset$. Since a is a cut vertex of G, each F_{i} of \mathscr{F} contains a. Since \mathscr{T} provides at most i rainbow monochromatic paths connecting every vertex of S_{i} and every vertex of $\bigcup_{i=2}^{t} A_{i}$, each vertex of S_{i} is in at least $k-i$ trees of \mathscr{F}. Then \mathscr{F} wastes at least

$$
\sum_{i \in[l]}\left(\left|F_{i}\right|-2\right) \geq \sum_{i=0}^{k}(k-i)\left|S_{i}\right|
$$

colors. Thus, Γ wastes at least

$$
\sum_{i \in[r]}\left(\left|T_{i}\right|-2\right)+\sum_{i \in[l]}\left(\left|F_{i}\right|-2\right) \geq k\left(\sum_{i=2}^{t}\left|A_{i}\right|+\sum_{i=0}^{k}\left|S_{i}\right|\right)=k(n-2)
$$

colors, $r m c_{k}(G)=m-k(n-2)$.
Proposition 5 If G is not a $k+1$-edge-connected graph and $\tau(G) \geq k \geq 2$, then $r m c_{k}(G)=m-k(n-2)$.

Proof Since $\tau(G) \geq k, G$ is k-edge-connected. Thus, G has an edge cut S such that $|S|=k$. Then $G-S$ has two components, say D_{1} and D_{2}. Let $x \in V\left(D_{1}\right)$ and $y \in$ $V\left(D_{2}\right)$. For an extremal $R M C_{k}$-coloring of G, there are k color-induced trees (say T_{1}, \cdots, T_{k}) containing x and y, i.e., each T_{i} contains exactly one edge of S. For each $u \in V\left(D_{1}\right)$, since there are k rainbow monochromatic uy-paths, each path contains exactly one edge of S. Thus each T_{i} contains u. By the same reason, each T_{i} contains each vertex of V_{2}. Therefore, each T_{i} is a spanning tree of G, and so $r m c_{k}(G)=$ $m-k(n-2)$.
Proposition 6 ([4]) If G is a cycle of order n, then $m c(\bar{G}) \geq e(\bar{G})-\left\lceil\frac{2 n}{3}\right\rceil$.
By Proposition 6, if P is a Hamiltonian path of K_{n} with $n \geq 4$, then $m c(G \backslash P) \geq$ $e(G \backslash P)-\left\lceil\frac{2 n}{3}\right\rceil$. The following result is obvious.
Corollary $4 r m c_{2}\left(K_{n}\right) \geq\left\lfloor\frac{3 n^{2}-13 n}{6}\right\rfloor+2, n \geq 4$.
Remark 1: The above corollary implies that there are indeed some graphs with rainbow monochromatic k-edge-connection number greater that the lower bound. In fact, for any $k \geq 2$ and $s \geq 2$, there exist graphs with rainbow monochromatic k -edge-connection number greater than or equal to $m-k(n-2)+s-1$. We construct the (k, s)-perfectly-connected graphs below. A graph G is called a (k, s)-perfectlyconnected graph if $V(G)$ can be partitioned into $s+1$ parts $\{v\}, V_{1}, \cdots, V_{s}$, such that $\tau\left(G\left[V_{i}\right]\right) \geq k, V_{1}, \cdots, V_{s}$ induces a corresponding complete s-partite graph (call it K^{s}), and v has precisely k neighbors in each V_{i}. Since $\tau\left(G\left[V_{i}\right]\right) \geq k$, each $G\left[V_{i}\right]$ has k edgedisjoint spanning trees (say $T_{1}^{i}, \cdots, T_{k}^{i}$). Let the k neighbors of v in V_{i} be $u_{1}^{i}, \cdots, u_{k}^{i}$ and let $e_{1}^{i}=v u_{1}^{i}, \cdots, e_{k}^{i}=v u_{k}^{i}$. Let $T_{j}=\bigcup_{i \in[s]} e_{j}^{i} \cup \bigcup_{i \in[s]} T_{j}^{i}$ for $j \in\{2, \cdots, k\}$. Let Γ be an edge-coloring of G such that $\Gamma\left(T_{1}^{i} \cup e_{1}^{i}\right)=i$ for $i \in[s], \Gamma\left(T_{j}\right)=s+j-1$ for $j \in\{2, \cdots, k\}$, and the other edges are trivial. Then Γ is an $R M C_{k}$-coloring of G and $|\Gamma(G)|=m-k(n-2)+s-1$, and thus $r m c_{k}(G) \geq m-k(n-2)+s-1$.

We propose an open problem below. If the answer for the problem is true, then it will cover our main Theorem 6.

Problem 1 For an integer $k \geq 2$ and a graph G with $\tau(G) \geq k$, does $r m c_{k}(G) \leq$ $m c(G)-(k-1)(n-2)$ hold ? More generally, does $r m c_{k}(G) \leq r m c_{t}(G)-(k-t)(n-$ 2) hold for any integer $1 \leq t<k$?

5 Random results

The following result can be found in text books.
Lemma 5 ([1], Chernoff Bound) If X is a binomial random variable with expectation μ, and $0<\delta<1$, then

$$
\operatorname{Pr}[X<(1-\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right)
$$

and if $\delta>0$,

$$
\operatorname{Pr}[X>(1+\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

Let $p=\frac{\log n+a}{n}$. The authors in [5] proved that

$$
\operatorname{Pr}[G(n, p) \text { is connected }] \rightarrow \begin{cases}1, & a \longrightarrow+\infty \\ e^{-e^{-a}}, & |a|=O(1) \\ 0, & a \longrightarrow-\infty\end{cases}
$$

Thus, $p=\frac{\log n}{n}$ is the threshold function for $G(n, p)$ being connected.
A sufficient condition for $G(n, p)$ to have an $R M C_{k}$-coloring almost surely is that $T(G(n, p)) \geq k$ almost surely. For the STP number problem of $G(n, p)$, Gao et al. proved the following results.

Lemma 6 ([7]) For every $p \in[0,1]$, we have

$$
T(G(n, p))=\min \left\{\delta(G(n, p)),\left\lfloor\frac{e(G(n, p))}{n-1}\right\rfloor\right\}
$$

almost surely.
In this section, we denote $\beta=\frac{2}{\log e-\log 2} \approx 6.51778$.
Lemma 7 ([7]) If

$$
p \geq \frac{\beta(\log n-\log \log n / 2)+\omega(1)}{n-1}
$$

then $T(G(n, p))=\left\lfloor\frac{e(G(n, p))}{n-1}\right\rfloor$ almost surely; if

$$
p \leq \frac{\beta(\log n-\log \log n / 2)-\omega(1)}{n-1}
$$

then $T(G(n, p))=\delta(G(n, p))$ almost surely.
We knew that $m-k(n-2)$ is a lower bound of $r m c_{k}(G)$. Next is an upper bound of $r m c_{k}(G)$. Although the upper bound is rough, it is useful for the subsequent proof.

Proposition 7 If G is a graph with $\tau(G) \geq k$, then $r m c_{k}(G) \leq m-(k-1)(n-2)$.
Proof Since the result holds for $k=1$, we only consider $k \geq 2$. Suppose Γ is an extremal $R M C_{k}$-coloring of G and $\mathscr{T}=\left\{T_{1}, \cdots, T_{r}\right\}$ is the set of nontrivial colorinduced trees with $\left|T_{1}\right| \geq \cdots \geq\left|T_{r}\right|$. Then

$$
\begin{equation*}
k\binom{n}{2}-e(G) \leq \sum_{i \in[r]}\binom{\left|T_{i}\right|-1}{2} . \tag{5}
\end{equation*}
$$

Case 1. T_{1} is a spanning tree of G.
Then Γ is an extremal $R M C_{k-1}$-coloring restricted on $G^{\prime}=G-E\left(T_{1}\right)$ (this result has been proved in Theorem 2). By induction on k,

$$
\left|\Gamma\left(G^{\prime}\right)\right|=r m c_{k-1}\left(G^{\prime}\right) \leq e\left(G^{\prime}\right)-(k-2)(n-2) .
$$

Then
$r m c_{k}(G)=1+\left|\Gamma\left(G^{\prime}\right)\right|=1+r m c_{k-1}\left(G^{\prime}\right) \leq 1+e\left(G^{\prime}\right)-(k-2)(n-2) \leq m-(k-1)(n-2)$.
Case 2. $\left|T_{i}\right| \leq n-1$ for each $i \in[r]$.
By Lemmas 1 and 2, the expression $\sum_{i \in[r \mid}\left(\left|T_{i}\right|-2\right)$, subjects to (5) and $3 \leq\left|T_{i}\right| \leq$ $n-1$, is minimum when $\left|T_{1}\right|=\cdots=\left|T_{r-1}\right|=n-1$ and $\left|T_{r}\right|=x+1$, where x is an integer with $3 \leq x+1 \leq n-2$.

If $r \leq k-1$, then $\sum_{i \in[r]}\binom{\left|T_{i}\right|-1}{2}<(k-1)\binom{n-2}{2}<k\binom{n}{2}-e(G)$, a contradiction to (5).

If $r>k$, then Γ wastes at least $k(n-3) \geq(k-1)(n-2)$ colors. Thus $r m c_{k}(G) \leq$ $m-(k-1)(n-2)$.

If $r=k$, then

$$
(k-1)\binom{n-2}{2}+\binom{x}{2} \geq k\binom{n}{2}-e(G) .
$$

So, $x^{2}-x-\alpha \geq 0$, where

$$
\alpha=2\left[\binom{n}{2}+(2 n-3)(k-1)-e(G)\right]=2[(2 n-3)(k-1)+e(\bar{G})] .
$$

The inequality holds when $x \geq \frac{1+\sqrt{1+4 \alpha}}{2} \geq \sqrt{\alpha}$. Thus, Γ wastes at least

$$
\Sigma_{i \in[k]}\left(\left|T_{i}\right|-2\right)=(k-1)(n-2)+x-1 \geq(k-1)(n-2)+\sqrt{\alpha}-1 .
$$

Since $k \geq 2, \sqrt{\alpha} \geq 1$. Thus $r m c_{k}(G) \leq m-(k-1)(n-2)$.
Theorem 7 Let $k=k(n)$ be an integer such that $\left\lfloor\frac{n}{2}\right\rfloor>k \geq 1$ and let $\operatorname{rmc}_{k}\left(K_{n}\right)>$ $f(n) \geq k(n-1)$. Then

$$
p= \begin{cases}\frac{f(n)+k n}{n^{2}}, & f(n) \geq O(n \log n) \text { and } k=o(n) ; \\ \min \left\{\frac{k}{n}, \frac{\log n}{n}\right\}, & f(n)=o(n \log n) \text { and } k=o(n) ; \\ 1, & k=O(n) \text { and } f(n)<r m c_{k}\left(K_{n}\right) .\end{cases}
$$

is a sharp threshold function for the property $\operatorname{rmc}_{k}(G(n, p)) \geq f(n)$.
Proof Let c be a positive constant and let $E(\|G(n, c p)\|)$ be the expectation of the number of edges in $G(n, c p)$. Then
$E(\|G(n, c p)\|)= \begin{cases}\frac{c(n-1)}{2 n} f(n)+\frac{c \cdot k(n-1)}{2}, & f(n) \geq O(n \log n) \text { and } k=o(n) ; \\ \frac{c \cdot k(n-1)}{2}, & f(n)=o(n \log n), k=o(n) \text { and } k>\log n ; \\ \frac{c \log n(n-1)}{2}, & f(n)=o(n \log n), k=o(n) \text { and } k \leq \log n ; \\ c\binom{n}{2}, & k=O(n) \text { and } f(n)<r m c_{k}\left(K_{n}\right) .\end{cases}$
By Lemma 5, both inequalities

$$
\operatorname{Pr}\left[\|G(n, c p)\|<\frac{1}{2} E(\|G(n, c p)\|)\right] \leq \exp \left(-\frac{1}{8} E(\|G(n, c p)\|)\right)=o(1)
$$

and

$$
\operatorname{Pr}\left[\|G(n, c p)\|>\frac{3}{2} E(\|G(n, c p)\|)\right] \leq \exp \left(-\frac{1}{10} E(\|G(n, c p)\|)\right)=o(1)
$$

hold for each p.
Case 1. $k=O(n)$, i.e., there is an $l \in \mathbb{R}^{+}$such that $l \cdot n \leq k<\left\lfloor\frac{n}{2}\right\rfloor$.
Since $G(n, p)=K_{n}, r m c_{k}(G(n, p)) \geq f(n)$ always holds. On the other hand, we have

$$
\|G(n, l \cdot p)\| \leq \frac{3}{2} E(\|G(n, l \cdot p)\|)=\frac{3 l}{2} \cdot\binom{n}{2}<k(n-2)
$$

almost surely. By Claim 3, $G(n, l \cdot p)$ does not have $R M C_{k}$-colorings almost surely.
Case 2. $k=o(n)$.
Case 2.1. $f(n) \geq O(n \log n)$.
Then, there is an $s \in \mathbb{R}^{+}$and $f(n) \geq s \cdot n \log n$. Let

$$
c_{1}= \begin{cases}\beta+1, & s \geq 1 \\ \frac{\beta+1}{s}, & 0<s<1\end{cases}
$$

Since $f(n) \geq s \cdot n \log n$, we have

$$
c_{1} p \geq \frac{(\beta+1)(\log n+k n)}{n} \geq \frac{\beta(\log n-\log \log n / 2)+\omega(1)}{n-1} .
$$

Since

$$
\left\|G\left(n, c_{1} p\right)\right\| \geq \frac{1}{2} E\left(\left\|G\left(n, c_{1} p\right)\right\|\right)=\frac{\beta+1}{2} \cdot \frac{n-1}{2 n} f(n)+\frac{k(n-1)(\beta+1)}{4}
$$

almost surely, by Lemma 7, $T\left(G\left(n, c_{1} p\right)\right)=\left\lfloor\frac{\left\|G\left(n, c_{1} p\right)\right\|}{n-1}\right\rfloor>k$ almost surely, i.e., $G\left(n, c_{1} p\right)$ has $R M C_{k}$-colorings almost surely. Therefore,

$$
\begin{aligned}
\operatorname{rmc}_{k}\left(G\left(n, c_{1} p\right)\right) & \geq\left\|G\left(n, c_{1} p\right)\right\|-k(n-2) \\
& \geq \frac{\beta+1}{2} \cdot \frac{n-1}{2 n} f(n)+\frac{k(n-1)(\beta+1)}{4}-k(n-2) \\
& >\frac{(\beta+1)(n-1)}{4 n} f(n) \\
& >f(n)
\end{aligned}
$$

almost surely.
Let $c_{2}=\frac{2}{3}$. Then

$$
\begin{aligned}
\left\|G\left(n, c_{2} p\right)\right\| & \leq \frac{3}{2} E\left(\left\|G\left(n, c_{2} p\right)\right\|\right) \\
& \leq \frac{3 c_{2}}{2} \cdot \frac{n-1}{2 n} f(n)+\frac{3 c_{2}}{2} \cdot \frac{k(n-1)}{2} \\
& <\frac{1}{2}[f(n)+k(n-1)]
\end{aligned}
$$

almost surely. Thus, either $G\left(n, c_{2} p\right)$ does not have $R M C_{k}$-colorings almost surely, or

$$
\operatorname{rmc}_{k}\left(G\left(n, c_{2} p\right)\right)<\left\|G\left(n, c_{2} p\right)\right\|-(k-1)(n-2)<\frac{1}{2} f(n)
$$

almost surely (recall that $r m c_{k}(G) \leq m-(k-1)(n-2)$ by Proposition 7).
Case 2.2. $f(n)=o(n \log n)$.
If $k \leq \log n$, then $p=\frac{\log n}{n}$. Let $c_{1}=\beta+1$ and $c_{2}=\frac{1}{2}$ be two constants. Since

$$
c_{1} p>\frac{(\beta+1) \log n}{n} \geq \frac{\beta(\log n-\log \log n / 2)+\omega(1)}{n-1},
$$

by Lemma 7, $T\left(G\left(n, c_{1} p\right)\right)=\left\lfloor\frac{\left\|G\left(n, c_{1} p\right)\right\|}{n-1}\right\rfloor$ almost surely. Since

$$
\left\|G\left(n, c_{1} p\right)\right\| \geq \frac{1}{2} E\left(\left\|G\left(n, c_{1} p\right)\right\|\right)=\frac{\log n(n-1)(\beta+1)}{4}
$$

almost surely, $T\left(G\left(n, c_{1} p\right)\right) \geq \log n \geq k$ almost surely, i.e., $G\left(n, c_{1} p\right)$ has $R M C_{k}$ coloring almost surely. Therefore,

$$
\begin{aligned}
r m c_{k}\left(G\left(n, c_{1} p\right)\right) & \geq\left\|G\left(n, c_{1} p\right)\right\|-k(n-2) \\
& \geq \frac{\log n(n-1)(\beta+1)}{4}-k(n-2) \\
& \geq \frac{3 \log n(n-1)}{4}>f(n)
\end{aligned}
$$

almost surely. For $G\left(n, c_{2} p\right)$, since $c_{2} p=\frac{\log n}{2 n}, G\left(n, c_{2} p\right)$ is not connected almost surely, i.e., $G\left(n, c_{2} p\right)$ does not have $R M C_{k}$-colorings almost surely.

If $k>\log n$ and $k=o(n)$, then $p=\frac{k}{n}$. Let $c_{1}=\beta+1$ and $c_{2}=1$. Then

$$
c_{1} p=\frac{(\beta+1) k}{n}>\frac{(\beta+1) \log n}{n} \geq \frac{\beta(\log n-\log \log n / 2)+\omega(1)}{n-1}
$$

i.e., $T\left(G\left(n, c_{1} p\right)\right)=\left\lfloor\frac{\left\|G\left(n, c_{1} p\right)\right\|}{n-1}\right\rfloor$ almost surely. Since

$$
\left\|G\left(n, c_{1} p\right)\right\| \geq \frac{1}{2} E\left(\left\|G\left(n, c_{1} p\right)\right\|\right)=\frac{k(n-1)(\beta+1)}{4}
$$

almost surely, $T\left(G\left(n, c_{1} p\right)\right) \geq k$ almost surely, i.e., $G\left(n, c_{1} p\right)$ has $R M C_{k}$-colorings almost surely. Thus

$$
\operatorname{rmc}_{k}\left(G\left(n, c_{1} p\right)\right) \geq\left\|G\left(n, c_{1} p\right)\right\|-k(n-2)>\frac{3}{4} k(n-1)>\frac{3}{4}(n-1) \log n>f(n)
$$

almost surely. For $G\left(n, c_{2} p\right)$, since

$$
\left\|G\left(n, c_{2} p\right)\right\| \leq \frac{3}{2} E\left(\left\|G\left(n, c_{2} p\right)\right\|\right)=\frac{3}{4} k(n-1)<k(n-2)
$$

almost surely. By Claim 3, $G\left(n, c_{2} p\right)$ does not have $R M C_{k}$-colorings almost surely.

Remark 2. Since $r m c_{k}(G)=r m c_{k}\left(K_{n}\right)$ if and only if $G=K_{n}$, we only concentrate on the case $1 \leq f(n)<r m c_{k}\left(K_{n}\right)$. If n is odd, then G has $R M C_{\left\lfloor\frac{n}{2}\right\rfloor}$-colorings if and only if $G=K_{n}$. So, we are not going to consider the case $k=\left\lfloor\frac{n}{2}\right\rfloor$.

Acknowledgement. The authors would like to thank the reviewers for helpful comments and suggestions.

References

1. Alon, N., Spencer, J.: The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd Ed., Wiley, Hoboken, (2008)
2. Bondy, J.A., Murty, U.S.R.: Graph Theory, Springer, London (2008)
3. Cai, Q., Li, X., Wu, D.: Erdös-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1), 123-131 (2017)
4. Caro, Y., Yuster, R.: Colorful monochromatic connectivity, Discrete Math. 311(16), 1786-1792 (2011)
5. Erdös, P., Rényi, A.: On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17-60 (1960)
6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124, 2993-3002 (1996)
7. Gao, P., Pérez-Giménez, X., Sato, C.M.: Arboricity and spanningtree packing in random graphs. Random Struct Alg. 52(3), 495-535 (2017)
8. Gonzaléz-Moreno, D., Guevara, M., Montellano-Ballesteros, J.J.: Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340(4), 578-584 (2017)
9. Gu, R., Li, X., Qin, Z., Zhao, Y.: More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40(4), 1769-1779 (2017)
10. Huang, Z., Li, X.: Hardness results for three kinds of colored connections of graphs, Theoret. Comput. Sci. 841, 27-38 (2020)
11. Jin, Z., Li, X., Wang, K.: The monochromatic connectivity of some graphs, Taiwanese J. Math. 24(4), 785-815 (2020)
12. Li, P., Li, X.: Monochromatic k-edge-connection colorings of graphs, Discrete Math. 343(2), 111679 (2020)
13. Li, X., Wu, D.: A survey on monochromatic connections of graphs, Theory Appl. Graphs (1), Art.4. (2018)
14. Mao, Y., Wang, Z., Yanling, F., Ye, C.: Monochromatic connectivity and graph products, Discrete Math., Algorithm. Appl. 8(1), 1650011.19 (2016)
15. Nash-Williams, C.St.J.A.: Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 1(1), 445-450 (1961)
16. Tutte, W.T.: On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 1(1), 221-230 (1961)

[^0]: Supported by NSFC No. 11871034 and 11531011.
 Ping Li
 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, People's Republic of China
 E-mail: wjlpqdxs@163.com
 Xueliang Li*
 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
 E-mail: lx1@nankai.edu.cn

 * Corresponding author.

