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Abstract

The concept of rainbow disconnection number of graphs was introduced by Char-

trand et al. in 2018. Inspired by this concept, we put forward the concepts of

rainbow vertex-disconnection and proper disconnection in graphs. In this paper, we

first show that it is NP-complete to decide whether a given edge-colored graph G

has a proper edge-cut separating two specified vertices, even though the graph G

has ∆(G) = 4 or is bipartite. Then, for a graph G with ∆(G) ≤ 3 we show that

pd(G) ≤ 2 and distinguish the graphs with pd(G) = 1 and 2, respectively. We also

show that it is NP-complete to decide whether a given vertex-colored graph G is

rainbow vertex-disconnected, even though the graph G has ∆(G) = 3 or is bipartite.

Keywords: Edge-cut, Vertex-cut, Rainbow (vertex-)disconnection, Proper discon-

nection, NP-complete

AMS subject classification (2020): 05C15, 05C40, 68Q25, 68Q17, 68R10.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. LetG = (V (G), E(G))

be a nontrivial connected graph with vertex set V (G) and edge set E(G). For a vertex

v ∈ V , the open neighborhood of v in G is the set NG(v) = {u ∈ V (G)|uv ∈ E(G)} and the

degree of v is d(v) = |NG(v)|, and the closed neighborhood is the set NG[v] = NG(v)∪{v}.
∗Supported by NSFC No.11871034.

1



Generally, we say N(x) and N [x]. We use ∆(G) to denote the maximum degree of G.

Sometimes, we say ∆ briefly. For any notation and terminology not defined here, we

follow those used in [7, 9].

For a graph G and a positive integer k, let c : E(G)→ [k] (c : V (G)→ [k]) be an edge-

coloring (vertex-coloring) of G, where and in what follows [k] denotes the set {1, 2, ..., k}
of integers. For an edge e of G, we denote the color of e by c(e).

In graph theory, paths and cuts are two dual concepts. By Menger’s Theorem, paths

are in the same position as cuts are in studying graph connectivity. Chartrand et al.

in [11] introduced the concept of rainbow connection of graphs. Rainbow disconnection,

which is a dual concept of rainbow connection, was introduced by Chartrand et al. [10].

An edge-cut of a graph G is a set R of edges such that G − R is disconnected. If any

two edges in R have different colors, then R is a rainbow edge-cut. An edge-coloring is

called a rainbow disconnection coloring of G if for every two distinct vertices of G, there

exists a rainbow edge-cut in G separating them. For a connected graph G, the rainbow

disconnection number of G, denoted by rd(G), is the smallest number of colors required

for a rainbow disconnection coloring of G. A rainbow disconnection coloring using rd(G)

colors is called an rd-coloring of G. Chartrand et al. in [10] characterized the graphs with

specific rainbow disconnection numbers. Bai et al. in [2] gave the rainbow disconnection

numbers for several classes of graphs, and they also got the Nordhaus-Gaddum-type

theorem for the rainbow disconnection number of graphs. Furthermore, the authors in [5]

obtained some bounds for the rainbow disconnection number.

Inspired by the concept of rainbow disconnection, the authors in [4, 14] introduced the

concept of rainbow vertex-disconnection. For a connected and vertex-colored graph G,

let x and y be two vertices of G. If x and y are nonadjacent, then an x-y vertex-cut is a

subset S of V (G) such that x and y belong to different components of G− S. If x and y

are adjacent, then an x-y vertex-cut is a subset S of V (G) such that x and y belong to

different components of (G−xy)−S. A vertex subset S of G is rainbow if no two vertices

of S have the same color. An x-y rainbow vertex-cut is an x-y vertex-cut S such that if

x and y are nonadjacent, then S is rainbow; if x and y are adjacent, then S + x or S + y

is rainbow.

A vertex-colored graph G is called rainbow vertex-disconnected if for any two distinct

vertices x and y of G, there exists an x-y rainbow vertex-cut. In this case, the vertex-

coloring c is called a rainbow vertex-disconnection coloring of G. For a connected graph

G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum

number of colors that are needed to make G rainbow vertex-disconnected. A rainbow

vertex-disconnection coloring with rvd(G) colors is called an rvd-coloring of G.

Andrews et al. [1] and Borozan et al. [8] independently introduced the concept of prop-
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er connection of graphs. Inspired by the concept of rainbow disconnection and proper

connection of graphs, the authors in [3] and [12] introduced the concept of proper discon-

nection of graphs. For an edge-colored graph G, a set F of edges of G is a proper edge-cut

if F is an edge-cut of G and any pair of adjacent edges in F are assigned by different

colors. For any two vertices x, y of G, an edge set F is called an x-y proper edge-cut if F

is a proper edge-cut and F separates x and y in G. An edge-colored graph is called proper

disconnected if for each pair of distinct vertices of G there exists a proper edge-cut sep-

arating them. For a connected graph G, the proper disconnection number of G, denoted

by pd(G), is defined as the minimum number of colors that are needed to make G proper

disconnected, and such an edge-coloring is called a pd-coloring. From [3], we know that if

G is a nontrivial connected graph, then 1 ≤ pd(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1, where

χ′(G) denotes the chromatic index or edge-chromatic number of G.

These graph parameters are some kinds of chromatic numbers, which are used to char-

acterize the global property [6], i.e., the connectivity for colored graphs. At the same

time, they have some applications in the real world problems. As shown in papers [4, 12],

they can be used in the interception of smuggled goods, frequency assignment to feedback

locations and so on. So it is natural to ask how to calculate them? Are there any good

or efficient algorithms to compute them? or it is NP-hard to get them. For the rain-

bow disconnection number of graphs, the authors showed in [2] that it is NP-complete

to determine whether the rainbow disconnection number of a cubic graph is 3 or 4, and

moreover, they showed that given an edge-colored graph G and two vertices s, t of G,

deciding whether there is a rainbow cut separating s and t is NP-complete. In this paper

we will give the complexity results of proper (rainbow vertex-)disconnection of graphs.

Our paper is organized as follows. In Section 2, we show that it is NP-complete to decide

whether a given edge-colored graph G has a proper edge-cut separating two specified

vertices, even though the graph has ∆(G) = 4 or is bipartite. Then for a graph G with

∆(G) ≤ 3, we show that pd(G) ≤ 2, and distinguish the graphs with pd(G) = 1 and

2, respectively. In Section 3, we show that it is NP-complete to decide whether a given

vertex-colored graph G is rainbow vertex-disconnected, even though the graph G has

∆(G) = 3 or is bipartite.

2 Hardness results for proper disconnection of graph-

s

In this section, we show that it is NP-complete to decide whether a given edge-colored

graph G has a proper edge-cut separating two specified vertices, even though the graph
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has ∆(G) = 4 or is bipartite. Then we give the proper disconnection numbers of graphs

with ∆(G) ≤ 3, and propose an unsolved question.

2.1 Hardness results for graphs with maximum degree four

We first give some notations. For an edge-colored graph G, let F be a proper edge-cut

of G. If F is a matching, then F is called a matching cut. Furthermore, if F is an x-y

proper edge-cut for vertices x, y ∈ G, then F is called an x-y matching cut. For a vertex

v of G, let Ev denote the set of all edges incident with v in G.

We can obtain the following results by means of a reduction from the NAE-3-SAT

problem. At first we present the NAE-3-SAT problem, which is NP-complete; see [13, 17].

Problem: Not-All-Equal 3-Sat (NAE-3-SAT)

Instance: A set C of clauses, each containing 3 literals from a set of boolean variables.

Question: Can truth value be assigned to the variables so that each clause contains

at least one true literal and at least one false literal?

Given a formula φ with variable x1, · · · , xn, let φ = c1 ∧ c2 ∧ · · · ∧ cm, where ci =

(li1 ∨ li2 ∨ li3). Then lij ∈ {x1, x̄1, · · · , xn, x̄n} for each i ∈ [m] and j ∈ [3].

aj

bj

li1

li2

an+2i−1

bn+2i−1

an+2i

bn+2i

xj
x̄j ui

Ij Ci

li3

Figure 1: The graphs Ij and Ci.

We will construct a graph Gφ below. We first introduce a variable-gadget Ij for each

boolean variable xj (j ∈ [n]) and a clause-gadget Ci for each clause ci (i ∈ [m]), as shown

in Figure 1. The graph Ij is a cycle of length 4 with V (Ij) = {xj, aj, x̄j, bj}. The graph

Ci is obtained by joining three cycles of length 4 using two pairs of parallel edges. The

three black vertices of Ci in Figure 1 correspond to the literals li1, l
i
2 and li3 of the clause

ci = (li1 ∨ li2 ∨ li3). The graph Gφ (see Figure 2) is obtained from mutually disjoint graphs

Ij and Ci by adding a pair of parallel edges between z and w if z, w satisfy one of the

following conditions:

1. z = ai and w = ai+1 for some i ∈ [n+ 2m− 1];

2. z = bi and w = bi+1 for some i ∈ [n+ 2m− 1];
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3. z = xj, w = lit and xj = lit for some j ∈ [n], t ∈ [3] and i ∈ [m];

4. z = x̄j, w = lit and x̄j = lit for some j ∈ [n], t ∈ [3] and i ∈ [m].

x2
x̄1

l12

l13 l21

l22

l23x1
x̄2

a1
a2

an+1
an+2 an+3 an+4

an+2m

bn+2m

bn+4bn+3
bn+2

bn+1b2b1

l11

Figure 2: The graph Gφ with l13 = l21 = x̄1.

In fact, the graph Gφ was constructed in [16] (in Section 3.2). It is obvious that each

vertex of Gφ with degree greater than four is a vertex with even degree. Moreover, there

are two simple edges incident with this kind of vertex, and the other edges incident with

the vertex are some pairs of parallel edges. The authors proved that Gφ has a matching

cut if and only if the corresponding instance φ of NAE-3-SAT problem has a solution.

We present a star structure as shown in Figure 3 (1). Each vertex zi is called a tentacle.

A star structure is a k-star structure if it has k tentacles.

y

w1
w1

w2

w2

w3

w3

w4 w4

w5
w5

w6

w6

w7
w7

w8
w8

w9

w9 z1
z2

z3

z4
z5

z6

z7

z8

z1
z2

z3

z4z5

z6

(1) (2)

Figure 3: (1) A 6-star structure with tentacles z1, · · · , z6, and (2) the operation O on

vertex y with degree 16.

For a vertex y of Gφ with dGφ(y) = 2t + 2 > 4, assume N(y) = {w1, · · · , wt+2} such

that wt+1, wt+2 connect y by a simple edge respectively, and wi connects y by a pair of

parallel edges for i ∈ [t]. Now we define an operation O on vertex y: replace y by a

(t+ 1)-star structure with tentacles z1, · · · , zt+1 such that wi and zt+1 for i ∈ {t+ 1, t+ 2}
are connected by a simple edge, and zi and wi are connected by parallel edges for i ∈ [t].

As an example, Figure 3 (2) shows the operation O on vertex y with degree 16. We apply
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the operation O on each vertex of degree greater than four, and then subdivide one of

each pair of parallel edges by a new vertex in Gφ. Denote the resulting graph by G′φ,

which is a simple graph. The graph G′φ was also defined in [16], and the authors showed

that G′φ has a matching cut if and only if the corresponding instance φ of NAE-3-SAT

problem has a solution.

Now we construct a graph, denoted by Hφ, obtained from Gφ by operations as follows.

Add two new vertices u and v. Connect u and each vertex of {a1, an+2m} by a pair of

parallel edges, and connect v and each vertex of {b1, bn+2m} by a pair of parallel edges.

We apply the operation O on each vertex of degree greater than four in Hφ, and then

subdivide one of each pair of parallel edges by a new vertex. Denote the resulting graph

by H ′φ (see Figure 4), which is a simple graph. Observe that ∆(H ′φ) = 4. Since a minimal

matching cut cannot contain any edge in a triangle, we know that there is a u-v matching

cut in H ′φ if and only if there is a matching cut in G′φ. Thus, there is a u-v matching cut

in H ′φ if and only if the instance φ of NAE-3-SAT problem has a solution.

x1
x̄1 l11

l12

l13 l21 l23

b1 bn+1 bn+2
bn+3 bn+4

l22

u

v

Figure 4: The graph H ′φ with l13 = l21 = x̄1.

Theorem 1. For a fixed positive integer k, let G be a k-edge-colored graph with maximum

degree ∆(G) = 4, and let u, v be any two specified vertices of G. Then deciding whether

there is a u-v proper edge-cut in G is NP-complete.

Proof. For a connected graph G with an edge-coloring c : E(G) → [k] and an edge-cut

D of G, let Mi = {e | e ∈ D and c(e) = i} for i ∈ [k]. Then D is a proper edge-cut if

and only if each Mi is a matching. Therefore, deciding whether a given edge-cut of an

edge-colored graph is a proper edge-cut is in P .

For an instance φ of the NAE-3-SAT problem, we can obtain the corresponding graph

H ′φ as defined above. Then there is a vertex, say y′, of H ′φ with degree two. Let G be a

graph obtained from H ′φ and a path P of order k by identifying y′ and one of the ends of
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P . Then ∆(G) = 4. We color each edge of G − E(P ) by 1 and color k − 1 edges of P

by 2, 3, · · · , k, respectively. Then the edge-coloring is a k-edge-coloring of G, and there

is a u-v proper edge-cut in G if and only if there is a u-v matching cut in H ′φ. Thus, we

get that there is a u-v proper edge-cut in G if and only if the instance φ of NAE-3-SAT

problem has a solution.

Remark: For the k-edge-colored graph G in Theorem 1, we can see there exists another

pair of vertices (not u, v) which have no proper cut, for example, two vertices in the same

triangle. So it is easy to know that G is not proper disconnected. Thus, we can not

conclude that the complexity of deciding whether a given edge-colored graph is proper

disconnected from Theorem 1. We are working on it further.

2.2 Results for graphs with maximum degree less four

Now, we consider the graphs with maximum degree at most three. We will show that

pd(G) ≤ 2 for a graph G with maximum degree ∆(G) ≤ 3 and then distinguish the graphs

with pd(G) = 1 and 2, respectively. Some preliminary results are given as follows, which

will be used in the sequel.

Theorem 2. [3] If G is a tree, then pd(G) = 1.

Theorem 3. [3] If Cn be a cycle, then

pd(Cn) =

{
2, if n = 3,

1, if n ≥ 4.

Theorem 4. [3] For any integer n ≥ 2, pd(Kn) = dn
2
e.

Theorem 5. [3] Let G be a nontrivial connected graph. Then pd(G) = 1 if and only if

for any two vertices of G, there is a matching cut separating them.

Theorem 6. [7] (Petersen’s Theorem) Every 3-regular graph without cut edges has a

perfect matching.

For a simple connected graph G, if ∆(G) = 1, then G is the graph K2, a single edge.

If ∆(G) = 2, then G is a path of order n ≥ 3 or a cycle. By Theorems 2 and 3, for a

connected graph G with ∆(G) ≤ 2, we have pd(G) = 1 if and only if G is a path or a

cycle of order n ≥ 4, and pd(G) = 2 if and only if G is a triangle.

Next, we will present the proper disconnection numbers of graphs with maximum degree

3. At first we give the proper disconnection numbers of 3-regular graphs.

Lemma 1. If G is a 3-regular connected graph without cut edges, then pd(G) ≤ 2.
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Figure 5: The graph G0

Proof. Let G0 be a graph by connecting two triangles with 3 matching (or independent)

edges, and we color G0 with two colors as shown in Figure 5. Obviously, it is a proper

disconnection coloring ofG0. Now we consider 2-edge-connected 3-regular graphsG except

G0. By Theorem 6, there exists a perfect matching M in G. We define an edge-coloring

c of G as follows. Let c(M) = 2. If E(G) \ M contains triangles, then we color one

of the edges in each triangle by color 2. We then color the remaining edges by color

1. Since G \M is the union of some disjoint cycles, we denote these disjoint cycles by

C1, C2, · · ·Ct. Let x and y be two arbitrary vertices of G. If x and y belong to different

cycles of C1, C2, · · ·Ct, then M is an x-y proper edge-cut. If x and y belong to the same

cycle Ci (i ∈ [t]), then there are two cases to discuss.

Case 1. |Ci| ≥ 4.

Since |Ci| ≥ 4, there exist two x-y paths P1, P2 in Ci. We choose two nonadjacent edges

e1, e2 respectively from P1, P2. Then M ∪{e1, e2} is an edge-cut separating x and y. Since

c(M) = 2 and c(e1) = c(e2) = 1, M ∪ {e1, e2} is an x-y proper edge-cut.

Case 2. |Ci| = 3.

Since x, y ∈ Ci, we can assume Ci = xyz. Let N(x) = {y, z, x0} and N(x0) =

{x, x1, x2}. Assume x0 ∈ Ck, k ∈ [t] \ {i}.
Subcase 2.1. c(xy) = 1.

Assume c(yz) = 1 and c(xz) = 2. Note that x1 /∈ N(z) or x2 /∈ N(z), without loss of

generality, say x2 /∈ N(z).

For |Ck| ≥ 4, we have c(x0x2) = 1. Then Ex2 \ {x0x2} have different colors. So,

{xy, xz, x0x1} ∪ Ex2 \ {x0x2} is an x-y proper edge-cut.

For |Ck| = 3, if c(x0x1) 6= c(x0x2), we get that {xy, xz, x0x1, x0x2} is an x-y proper

edge-cut. Now consider c(x0x1) = c(x0x2) = 1. If x1 ∈ N(z), then c(x1z) = 2. Since

G 6= G0, we have x2 /∈ N(y) ∪ N(z). So, (Ey \ {yz}) ∪ {xz, x0x1, x1x2} is an x-y proper

edge-cut. If x1 /∈ N(z), then denote Ex1 \{x0x1, x1x2} by e1 and denote Ex2 \{x0x2, x1x2}
by e2. It is clear that e1, e2 ∈M . So, c(e1) = c(e2) = 2. We get that {xy, xz, e1, e2} is an

x-y proper edge-cut.

Subcase 2.2. c(xy) = 2.
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In Subcase 2.1, if c(xy) = 1, then the x-y proper edge-cut is also an x-z proper edge-cut.

So, we have proved Subcase 2.2.

Let H(v) be a connected graph with one vertex v of degree two and the remaining

vertices of degree three. We assume that the neighbors of v in H(v) are v1 and v2,

respectively. If v1, v2 are adjacent, then denote it by H1(v). Otherwise, denote it by

H2(v). Let H ′1(v) be the graph obtained by replacing the vertex v by a diamond. Let

H ′2(v) be the graph obtained by replacing the path v1vv2 of H2(v) by an new edge v1v2;

see Figure 6.

v

v1 v2 v1 v2

v

v1 v2 v1 v2

H1(v) H ′
1(v) H2(v) H ′

2(v)

Figure 6: The graph process

Lemma 2. If G is a 3-regular graph of order n (n ≥ 4), then pd(G) ≤ 2.

Proof. We proceed by induction on the order n of G. Since a 3-regular graph of order 4

is K4 and pd(K4) = 2 from Theorem 4, the result is true for n = 4. Suppose that if H

is a 3-regular graph of order n (n ≥ 4), then pd(H) ≤ 2. Let G be a 3-regular graph of

order n+ 1. We will show pd(G) ≤ 2. If G has no cut edge, then pd(G) ≤ 2 from Lemma

1. So, we consider G having a cut edge, say uv (u, v ∈ V (G)). We delete the cut edge

uv, then there are two components containing u and v, respectively, say G1, G2. Since

G is 3-regular, we have |V (G1)| ≥ 5 and |V (G2)| ≥ 5. Thus, 5 ≤ |V (G1)| ≤ n − 4 and

5 ≤ |V (G2)| ≤ n− 4. Obviously, G1 and G2 are the graphs H(u), H(v), respectively. We

first show the following claims.

Claim 1. pd(H1(u)) ≤ 2.

Proof. Let u1 and u2 be two neighbors of u in H1(u). Assume that the neighbors of u1 and

u2 in H1(u) are {u, u2, w1}, {u, u1, w2}, respectively. The edges u1w1, u1u2 and u2w2 are

denoted by e1, e2, e3. Let A = {u, u1, u2} and B = V (H1(u)) \ A. Since |V (G1)| ≤ n− 4,

we have |V (H ′1(u))| ≤ n − 1. Obviously, H ′1(u) is 3-regular. Then pd(H ′1(u)) ≤ 2 by the

induction hypothesis. Let c′ be a proper disconnection coloring of H ′1(u) with two colors.
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For any two vertices p and q of H ′1(u), let Rpq be a p-q proper edge-cut of H ′1(u). There

are two cases to discuss.

Case 1. c′(e1) = c′(e2) or c′(e2) = c′(e3).

Without loss of generality, we assume c′(e1) = c′(e2) = 1. We define an edge-coloring

c of H1(u) as follows. Let c(uu1) = 2, c(uu2) = 1 and c(e) = c′(e) (e ∈ E(H1(u)) \
{uu1, uu2}). Let x and y be two vertices of H1(u). If they are both in H1(u) \ {u}, then

(Rxy ∩ E(H1(u))) ∪ {uu1} is an x-y proper edge-cut of H1(u). If x = u or y = u, then

Eu is an x-y proper edge-cut of H1(u). So, c is a proper disconnection coloring of H1(u).

Thus, pd(H1(u)) ≤ 2.

Case 2. c′(e1) = c′(e3) 6= c′(e2).

Assume c′(e1) = c′(e3) = 1 and c′(e2) = 2. Define an edge-coloring c of H1(u) as

follows. Let c(uu1) = 2, c(uu2) = 1 and c(e) = c′(e) (e ∈ E(H1(u)) \ {uu1, uu2}). Let

x and y be two vertices of H1(u). If x = u or y = u, then Eu is an x-y proper edge-cut

of H1(u). If x, y ∈ A \ {u}, then {uu2, e1, e2} is an x-y proper edge-cut of H1(u). If

x ∈ A \ {u}, y ∈ B or x ∈ B, y ∈ A \ {u}, then {e1, e3} is an x-y proper edge-cut of

H1(u). Considering x, y ∈ B, if e1, e3 /∈ Rxy, then (Rxy ∩ E(H1(u))) ∪ {uu2} is an x-y

proper edge-cut of H1(u). Otherwise, i.e., e1 ∈ Rxy or e3 ∈ Rxy, then Rxy ∩ E(H1(u)) is

an x-y proper edge-cut of H1(u). So, c is a proper disconnection coloring of H1(u). Thus,

pd(H1(u)) ≤ 2.

Claim 2. pd(H2(u)) ≤ 2.

Proof. Assume that the neighbors of u inH2(u) are u1 and u2. Since |V (H ′2(u))| < |V (G2)|
and H ′2(u) is 3-regular, pd(H ′2(u)) ≤ 2 by the induction hypothesis. Let c′ be a proper

disconnection coloring of H ′2(u) with two colors. We define an edge-coloring c of H2(u)

as follows: c(uu1) = 1, c(uu2) = 2 and c(e) = c′(e) (e ∈ E(H2(u)) \ {uu1, uu2}). Assume

c′(u1u2) = c(uui) (i = 1 or 2). Then for any two vertices x and y of H2(u), if x = u or

y = u, then Eu forms an x-y proper edge-cut. Otherwise, assume that the x-y proper

edge-cut in H ′2(u) is R. If u1u2 /∈ R, then R is an x-y proper edge-cut. If u1u2 ∈ R, then

(R ∪ {uui}) \ {u1u2} is an x-y proper edge-cut. So, c is a proper disconnection coloring

of H2(u). Thus, pd(H2(u)) ≤ 2.

So, from the above claims we have pd(G1) ≤ 2. Similarly, we have pd(G2) ≤ 2. Then,

there exists a proper disconnection coloring c0 of G1 ∪G2 with two colors. Now we assign

color 1 to the cut edge uv. It is a proper disconnection coloring of G. So, pd(G) ≤ 2.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex.

It is obvious that a block is a K2 or a 2-connected subgraph with at least three vertices.

Let {B1, B2, ..., Bt} be the set of blocks of G.
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Lemma 3. [3] Let G be a nontrivial connected graph. Then pd(G) = max{pd(Bi)|i =

1, 2, . . . , t}.

Theorem 7. If G is a graph of order n with maximum degree ∆(G) = 3, then pd(G) ≤
2. Particularly, if G satisfies the condition of Theorem 5, then pd(G) = 1; otherwise,

pd(G) = 2.

v

H

Figure 7: The graph H.

Proof. If G is a tree, then pd(G) = 1 by Theorem 2. Suppose G is not a tree. Let H be a

graph as shown in Figure 8, where v is called the key vertex of H. Suppose G is a graph

with maximum degree three. Let G′ be a graph obtained from G by deleting pendent

edges one by one. Then ∆(G′) ≤ 3 and pd(G) = pd(G′) by Lemma 3. Let {u1, · · · , ut}
be the set of 2-degree vertices in G′ and H1, · · · , Ht be t copies of H such that the key

vertex of Hi is vi (i ∈ [t]). We construct a new graph G′′ obtained by connecting vi and

ui for each i ∈ [t]. Then G′′ is a 3-regular graph. By Lemma 2, pd(G′′) ≤ 2. Since G′ is a

subgraph of G′′, pd(G′) ≤ 2.

Theorem 8. Let G be a connected graph with maximum degree ∆ = 3 such that the set

of vertices with degree 3 in G forms an independent set. If G contains a triangle or K2,3,

then pd(G) = 2; otherwise, pd(G) = 1.

Proof. If G contains a triangle or a K2,3, then there exist two vertices such that no

matching cut separates them. So, pd(G) = 2 by Theorem 7. Now consider that G is

both triangle-free and K2,3-free. We proceed by induction on the order n of G. Since

∆(G) = 3, we have n ≥ 4. If n = 4, then the graph G is K1,3 and pd(G) = 1 by Theorem

2. The result holds for n = 4. Assume pd(G) = 1 for triangle-free and K2,3-free graphs

with order n satisfying the condition. Now, consider a graph G with order n + 1. Let x

and y be two vertices of G.

For d(x) = 1, the edge set Ex is an x-y matching cut.

For d(x) = d(y) = 2, if x and y are adjacent, let x1, y1 be another neighbor of x and

y, respectively. Let G′ = G − xy. Then by the induction hypothesis, there exist an
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x1-y1 matching cut R in G′. Thus, R ∪ {xy} is an x-y matching cut in G. If x and

y are nonadjacent, then assume N(x) = {x1, x2}. Since G contains no triangles, then

x1 and x2 are nonadjacent. There are two cases to consider. If d(x1) = 2, then let u1

be another neighbor of x1, and then {xx2, x1u1} is an x-y matching cut. If d(x1) =

d(x2) = 3, let N(x1) = {x, u1, u2} and N(x2) = {x, v1, v2}. There are two cases to

consider. If {u1, u2} ∩ {v1, v2} 6= ∅, assume u1 = v1. Let w, q be another neighbor of u2

and v2, respectively. If y 6= v2, then {xx1, x2u1, v2q} is an x-y matching cut. Otherwise,

{xx2, x1u1, u2w} is an x-y matching cut. Assume {u1, u2} ∩ {v1, v2} = ∅. Let w, q be

another neighbor of u1 and u2, respectively. If y = u1, then {xx2, x1u1, u2q} is an x-y

matching cut. Otherwise, {xx2, x1u2, u1w} is an x-y matching cut.

For d(x) = 3 (or d(y) = 3), assume N(x) = {x1, x2, x3}. Since the set of vertices

with degree 3 in G forms an independent set, the neighbors of x have degree at most

two. Since G is K2,3-free, there exists at least one vertex in N(x) which has only one

common neighbor x with the others in N(x). Without loss of generality, say x1. Let

N(x1) = {x, s1}, N(x2) = {x, s2} and N(x3) = {x, s3} (s2 = s3 is possible ). If x and y

are nonadjacent, then {x1s1, x2s2, xx3} is an x-y matching cut. If x and y are adjacent,

there are three cases to consider. When y = x2 (or x3), we have {x1s1, xy, x3s3} (or

{x1s1, xy, x2s2}) is an x-y matching cut. When y = x1 and s2 = s3, if d(s2) = 2, then

{xy} is an x-y matching cut; if d(s2) = 3, then assume N(s2) = {x2, x3, p1}, and then

{xy, s2p1} is an x-y matching cut. When y = x1 and s2 6= s3, we have {xy, x2s2, x3s3} is

an x-y matching cut. Thus, pd(G) = 1 by Theorem 5.

Corollary 1. Let G be a connected graph with ∆ = 3. If the set of vertices with degree 3

in G forms an independent set, then deciding whether pd(G) = 1 is solvable in polynomial

time.

Naturally, we can ask the following question.

Question 1. Let G be a connected graph with ∆ = 3. Is it true that deciding whether

pd(G) = 1 is solvable in polynomial time?

2.3 Hardness results for bipartite graphs

Let G be a simple connected graph. We employ the idea used in [15] to construct a new

graph G∗, which is constructed as follows: G∗ is obtained from G by replacing each edge

by a 4-cycle. Then G∗ has two types of vertices: old vertices, which are vertices of G,

and new vertices, which are not vertices of G. For example, for an edge e = uv ∈ E(G),

replace it by a 4-cycle Ce = uxvyu. Then u, v are old vertices and x, y are new vertices.

Observe that all new vertices of G∗ have degree two, and each edge of G∗ connects an old
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vertex to a new vertex. Clearly, G∗ is a bipartite graph with one side of the bipartition

consisting only of vertices of degree 2.

Theorem 9. Given an edge-colored bipartite graph G∗ and two vertices x, y of G∗, deciding

whether there is an x-y proper edge-cut is NP-complete.

Proof. For a graph G, suppose x, y are two old vertices in G∗. We color edges of G∗ (and

also G) monochromatic. If there is an x-y proper edge-cut in G∗, then there exists an x-y

matching cut F in G∗. Thus, F consists of pairs of matching edges in the same 4-cycle.

Let F ′ be the edge set obtained by replacing each pair of matching edges of F in the same

4-cycle by the edge to which the 4-cycle corresponds in G. Then F ′ is an x-y matching

cut in G. If there is an x-y matching cut Fxy in G, then we choose two matching edges

from each 4-cycle to which each edge of Fxy corresponds in G∗. Denote the edge set by

F ∗xy. Then F ∗xy is an x-y matching cut in G∗. Therefore, there is an x-y proper edge-cut

in G∗ if and only if there is an x-y matching cut in G. Since G is monochromatic, there

is an x-y proper edge-cut in G∗ if and only if there is an x-y proper edge-cut in G. By

Theorem 1, the proof is complete.

3 Hardness results for rainbow vertex-disconnection

of graphs

In this section, we show that it is NP-complete to decide whether a given vertex-colored

graph G is rainbow vertex-disconnected, even though the graph G has maximum degree

∆(G) = 3 or is bipartite.

Lemma 4. Let G be a k-vertex-colored graph where k is a fixed positive integer. Deciding

whether G is rainbow vertex-disconnected under this coloring is in P .

Proof. Let x and y be any two vertices of G. Since G is a vertex-colored graph, any

rainbow vertex-cut S have no more than k vertices. There are at most
(
n−2
k

)
choices for

S, which is a polynomial of n for a fixed k. For any two nonadjacent (or adjacent) vertices

x, y of G, it is polynomial time to check whether x and y are in different components

of G − S (or (G − xy) − S). There are at most
(
n
2

)
pairs of vertices in G. Thus, it is

polynomial time to deciding whether G is rainbow vertex-disconnected.

Lemma 5. Let G be a vertex-colored graph and s and t be two vertices of G. Deciding

whether there is a rainbow vertex-cut between s and t is NP-complete.
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Proof. This problem is NP from Lemma 4. We now show that the problem is NP-complete

by giving a polynomial reduction from the 3-SAT problem to this problem. Given a

3CNF formula φ = ∧mi=1ci over n variables x1, x2, · · · , xn, we construct a graph Gφ with

two special vertices s, t and a vertex-coloring f such that there is a rainbow vertex-cut

between s, t in Gφ if and only if φ is satisfied. Let θci(xj) denote the location of literal xj

in clause ci for i ∈ [m] and j ∈ [n].

We define Gφ as follows:

V (Gφ) = {ci, ui,k, vi,k, wi,k : i ∈ [m], k ∈ [3]} ∪ {xj, x̄j : j ∈ [n]} ∪ {s, t}.
E(Gφ) = {xjui,k, x̄jwi,k : If xj ∈ ci and θci(xj) = k, i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}}

∪ {xjwi,k, x̄jui,k : If x̄j ∈ ci and θci(x̄j) = k, i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}}
∪ {ui,kvi,k : i ∈ [m], k ∈ {1, 2, 3}} ∪ {sxj, sx̄j : j ∈ [n]}
∪ {civi,k, ciwi,k : i ∈ [m], k ∈ {1, 2, 3}} ∪ {tci : i ∈ [m]}
∪ {st}.

Now we define a vertex-coloring f of Gφ as follows. For i ∈ [m], j ∈ [n] and k ∈ [3], let

f(xj) = f(x̄j) = rj, f(wi,k) = ri,k, f(ui,k) = ri,4, f(vi,k) = ri,5, f(s) = f(t) = f(ci) = r.

All those colors are distinct.

s ci

x̄j

xj

xl

x̄l

ui,1

vi,1
wi,1

wi,2

ui,2

vi,2

r r

t

rj

rj

rl

rl

ri,1

ri,2

ri,3

wi,3

ui,3

vi,3

ri,4

ri,4

ri,4

ri,5

ri,5

ri,5

r

Figure 8: The variables xj, x̄l ∈ ci and xj, x̄l are the first and second literature respectively.

We claim that there is a rainbow vertex-cut between s and t in Gφ if and only if φ is

satisfied.

Suppose that there is an s-t rainbow vertex-cut S in Gφ. Since s and t are adjacent in

Gφ, S+s or S+t is rainbow and so ci /∈ S for i ∈ [n]. Thus S also separates s and ci. Note
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that there are three s-ci paths of length 4. Since f(ui,k) = ri,4 and f(vi,k) = ri,5 for k ∈ [3],

there exists at least one j (j ∈ [n]) such that xj ∈ S or x̄j ∈ S. Since f(xj) = f(x̄j) = rj,

xj and x̄j can not belong to S simultaneously. If xj ∈ S, set xj = 1. If x̄j ∈ S, set xj = 0.

Then the literature associated with xj in clause ci is satisfied and ci is true. Since S is an

s-t rainbow vertex-cut, there are no conflicts on the truth assignments of the variables.

Therefore, φ is satisfied.

Suppose that φ is satisfied. We now try to find an s-t rainbow vertex-cut S in Gφ under

the coloring f . Since f(s) = f(t) = f(ci) = r and s, t are adjacent, then ci /∈ S. For

any variable xj(j ∈ [n]), if xj = 0, let the vertex x̄j ∈ S. In this case, if xj ∈ ci, then

xj is adjacent to ui,k in Gφ and let one vertex of {ui,k, vi,k} belong to S for i ∈ [m], j ∈
[n], k ∈ {1, 2, 3}. If x̄j ∈ ci, then xj is adjacent to wi,k in Gφ and let vertex {wi,k} ∈ S
for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. For any variable xj (j ∈ [n]), if xj = 1, let the vertex

xj ∈ S. In this case, if xj ∈ ci, then let vertex {wi,k} ∈ S for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}.
If x̄j ∈ ci, then let one vertex of {ui,k, vi,k} belong to S for i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}.
By the choice of S, we know that if a literal of ci is false, then a vertex-colored with ri,4

or ri,5 is in S. So if two literals of some clause ci are false, we put two vertices colored

with ri,4 and ri,5 respectively to S. Since each clause ci is satisfied, the vertex set S is

rainbow. Thus S is an s-t rainbow vertex-cut.

Theorem 10. Given a vertex-colored graph G, deciding whether G is rainbow vertex-

disconnected is NP-complete.

Proof. For the vertex-colored graph Gφ defined above, we can get that Gφ is rainbow

vertex-disconnection if and only if Gφ has an s-t rainbow vertex-cut. Since the necessity

is obvious, we show the sufficiency below. Let y ∈ {xj, x̄j, ui,k, vi,k, wi,k : j ∈ [n], i ∈
[m], k ∈ [3]}. Then the vertex set N(y) is rainbow. For any vertex x /∈ N(y), vertex set

N(y) forms an x-y rainbow vertex-cut. For any vertex x ∈ N(y), vertex setN(y)\{x} is an

x-y rainbow vertex-cut. For any clause ci (i ∈ [m]), suppose that xl ∈ ci and θci(xl) = 1.

Then vertex set Fi = {wi,1, wi,2, wi,3, ui,2, vi,3, xl, t} is a ci-cj (i 6= j) rainbow vertex-cut.

Furthermore, Fi is also an s-ci rainbow vertex-cut and Fi\{t} is a t-ci rainbow vertex-cut.

Thus, any pair of vertices have a rainbow vertex-cut in Gφ. From above lemma, the proof

is complete.

Theorem 11. Let G be a vertex-colored graph with maximum degree ∆ = 3 and s and

t be two vertices of G. Then deciding whether there is a rainbow vertex-cut between s

and t is NP-complete. Moreover, deciding whether the vertex-coloring is a rainbow vertex-

disconnection coloring is NP-complete.
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Proof. Let N1 = {s, t, c1, · · · , cm, x1, x̄1, · · · , xn, x̄n} and N2 = V (Gφ) − N1. Then each

vertex with degree greater than three is in N1. Based on the vertex-colored graph Gφ in

Lemma 5, we can obtain a new graph G∗φ by doing the following operation on Gφ. We

change each vertex v of N1 to a path Pv with d(v) new vertices. The new vertices in the

path will connect the neighbors of v, respectively. We color all the new vertices of Pv

using the same color with v. Let S =
⋃
a∈N1

V (Pa). Then V (G∗φ) = S ∪ N2. We relabel

each vertex of S by doing the following operation. For each a ∈ N1 and w ∈ V (Pa), w

has only one neighbor w′ not in Pa. If w′ ∈ V (Pb) for some b ∈ N1, then relabel w by nâb.

If w′ ∈ N2, then relabel w by nâw′ .

If D is an nŝt-nt̂s rainbow vertex-cut of V (G∗φ), then we can obtain an s-t rainbow

vertex-cut of Gφ from D by replacing nx̂iw (nˆ̄xiw) with xi (x̄i). If T is an s-t rainbow

vertex-cut of V (Gφ), then we can obtain an nŝt-nt̂s rainbow vertex-cut of V (G∗φ) from T

by replacing xi (x̄i) with nx̂is (nˆ̄xis). Thus, deciding whether there is a rainbow vertex-cut

between nŝt and nt̂s in graph G∗φ is NP-complete.

Next, we can get that G∗φ is rainbow vertex-disconnected if and only if G∗φ has an nŝt-nt̂s
rainbow vertex-cut. Since the necessity is obviously, we prove sufficiency below. Suppose

R is an nŝt-nt̂s rainbow vertex-cut of G∗φ. Choose two vertices x and y from G∗φ. If x ∈ N2,

then NG∗φ
(x) is an x-y rainbow vertex-cut if x, y are nonadjacent and NG∗φ

(x)\{y} is an

x-y rainbow vertex-cut if x, y are adjacent. Thus, suppose {x, y} ⊆ S, where x ∈ V (Pa),

y ∈ V (Pb) and a, b ∈ N1.

Case 1 a 6= b.

Suppose a = xi and b ∈ N1. If x is adjacent to y (x = nx̂is and y = nŝxi), then

NGφ(xi)\{s} is an x-y rainbow vertex-cut. If x is not adjacent to y, one x-y rainbow

vertex-cut is in {(NGφ(xi) ∪ {nx̂is})\{s}, (NGφ(xi) ∪ {nŝxi})\{s}}.
Suppose a = s and b ∈ {t, c1, · · · , cm}. If x is adjacent to y (x = nŝt and y =

nt̂s), then R is an x-y rainbow vertex-cut. Otherwise, one x-y rainbow vertex-cut is in

{R ∪ {nŝt}, R ∪ {nt̂s}}.
Suppose a = ci and b ∈ {t, c1, · · · , cm}. If x is adjacent to y (x = nĉit and y = nt̂ci),

then F ′i\{t} is an x-y rainbow vertex-cut, where F ′i is a vertex-set obtained from Fi (see

proof of Theorem 10) by replacing xl with nx̂lul,1 . Otherwise, one x-y rainbow vertex-cut

is in {(F ′i ∪ {nt̂ci})\{t}, (F ′i ∪ {nĉit})\{t}}.
Case 2 a = b.

Suppose x is adjacent to y. If a ∈ {s, t}, then R is an x-y rainbow vertex-cut. If a = ci,

then F ′i\{t} is an x-y rainbow vertex-cut. If a = xi, then NGφ(xi)\{s} is an x-y rainbow

vertex-cut.

Suppose x is not adjacent to y. Let z be an internal vertex of xPay. If a ∈ {s, t}, then
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R ∪ {z} is an x-y rainbow vertex-cut. If a = ci, then (F ′i ∪ {z})\{t} is an x-y rainbow

vertex-cut. If a = xi, then (NGφ(xi) ∪ {z})\{s} is an x-y rainbow vertex-cut.

Theorem 12. Let G be a vertex-colored bipartite graph and s and t be two vertices of G.

Deciding whether there is a rainbow vertex-cut between s and t is NP-complete. Moreover,

deciding whether the vertex-coloring is a rainbow vertex-disconnection coloring is NP-

complete.

Proof. By Lemma 5, we know that there is a rainbow vertex-cut between s and t in Gφ

if and only if φ is satisfied. Construct a graph G′φ by subdividing all edges of Gφ. Then

assign the new vertices with color r and the other vertices with the same color as in Gφ.

It is easy to show that there is a rainbow vertex-cut between s and t in G′φ if and only if

φ is satisfied.

Next, we can get that G′φ is rainbow vertex-disconnected if and only if G′φ has an s-t

rainbow vertex-cut. Since the necessity is obvious, we show the sufficiency below. Let

x be a new vertex. If NG′φ
(x) is rainbow, then NG′φ

(x) forms an x-y rainbow vertex-cut

for any vertex y /∈ NG′φ
(x) and NG′φ

(x) \ {y} is an x-y rainbow vertex-cut for any vertex

y ∈ NG′φ
(x). Otherwise, {xt, xci} ⊂ E(G′φ) for some i ∈ [m] or {xs, xt} ⊂ E(G′φ). For

any vertex y ∈ {xj, x̄j, ui,k, vi,k, wi,k : j ∈ [n], i ∈ [m], k ∈ [3]}, vertex set NGφ(y) forms

an x-y rainbow vertex-cut. Let Fi (i ∈ [m]) be the vertex set as defined in Theorem 10.

If {xt, xci} ⊂ E(G′φ) for some i ∈ [m], then Fi is an x-cj (or x-s) rainbow vertex-cut for

j 6= i, and Fi \ {t} is an x-ci (or x-t) rainbow vertex-cut. If {xs, xt} ⊂ E(G′φ), then Fi is

an x-ci rainbow vertex-cut, and the s-t rainbow vertex-cut in G′φ is also an x-s (or x-t)

rainbow vertex-cut. If y is also a new vertex, then there is at least one vertex of {x, y}
adjacent to cl (l ∈ [m]). Then Fl is an x-y rainbow vertex-cut. Let xci be the new vertex

subdividing the edge tci of Gφ. Then Fi ∪ {xci} \ {t} is a t-ci rainbow vertex-cut. Vertex

set NGφ(xi)∪{xs} \ {s} (NGφ(x̄i)∪{x̄s} \ {s}) is an s-xi (s-x̄i) rainbow vertex-cut, where

xs (x̄s) is the new vertex subdividing the edge sxi (sx̄i) of Gφ. The rainbow vertex-cuts

of the remaining vertex pairs can be obtained by the corresponding vertex sets defined in

Theorem 10.
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