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Abstract

For a graph G, the ABC-matrix of G was introduced and studied recently. A
natural idea is to introduce the Laplacian ABC-matrix L̃(G) of G. In this paper,
some basic properties for the eigenvalues of the Laplacian ABC-matrix of a graph
are explored. As one can see that they are not completely the same as those of the
Laplacian matrix of a graph. More properties for the eigenvalues can be obtained
by further study later.

1 Introduction

All graph considered in this paper are finite and simple. Let G be a graph of order n with

vertex set V (G) = {v1, v2, · · · , vn} and size m with edge set E(G) = {e1, e2, · · · , em}. For

vi ∈ V (G), we use di to denote the degree of vi. A dominating set in G is a subset X of

V (G), such that each vertex of V (G)−X is adjacent to at least one vertex of X. The size
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of a smallest dominating set of G is the dominating number γ(G). Let Pn, Cn, Kn and Sn

denote the path, cycle, complete graph and star of order n, respectively. The complete

bipartite graph is denoted by Ka,b. A graph is called r-regular if each of its vertices has

the same degree r. A graph is (r, s)-semiregular if it is bipartite with a bipartition {V1, V2}

in which each vertex of V1 has degree r and each one of V2 has degree s. The union of

two graphs G and H, denoted by G
⋃
H, is the graph with vertex set V (G)

⋃
V (H) and

edge set E(G)
⋃
E(H). kG stands for the vertex-disjoint union of k copies of G.

Estrada et al. [6] proposed a topological index named atom-bond connectivity (ABC)

index using a modification of Randić connectivity index. The ABC index of G is defined

as

ABC(G) =
∑

vivj∈E(G)

√
di + dj − 2

didj
,

which displays an excellent correlation with the heat of formation of alkanes. Estrada [5]

also provided a probabilistic interpretation for the ABC index, which indicates that the

term
di+dj−2
didj

represents the probability of visiting a nearest neighbor edge from one side

or the other of a given edge in a graph. Then a matrix was defined from the ABC index,

which is the square matrix Ã(G) = (ãij)n×n of order n, whose entries ãij are given as

ãij =


√

di+dj−2
didj

if vivj ∈ E(G),

0 otherwise.

The eigenvalues of Ã(G) are called the ABC eigenvalues of G. The largest eigenvalue is

called the ABC spectral radius of G. Actually, in 2015 Li proposed the idea to study the

matrices defined from topological or chemical indices in [13].

In 2018, Chen [3] presented some results on the ABC eigenvalues and the ABC energy

of a graph, which received quite a lot of attentions. Soon later, it was presented that, for

any tree of order n ≥ 3, Pn and K1,n−1 have the smallest and the largest ABC spectral

radii, respectively. Gao and Shao [8] showed that the star has the minimum ABC energy

among all trees. Li and Wang [14] proved that Cn and Sn + e have the smallest and

the largest ABC spectral radii among unicyclic graphs, respectively. Ghorbani et al. [9]

obtained some upper and lower bounds of ABC spectral radii and ABC energy.

The Laplacian matrix of graph G is defined as L(G) = D(G) − A(G), where D(G)

is the diagonal matrix of the vertex degrees of G, and A(G) is the adjacency matrix of
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G. The eigenvalues of L(G) are denoted by µ1 ≥ µ2 ≥ · · · ≥ µn. The largest eigenvalue

of the Laplacian matrix of G is called its Laplacian spectral radius. Since the Laplacian

matrix of a graph can reflect more information on graph structures than its adjacency

matrix, it is natural to generalize ABC-matrix of G to the Laplacian ABC-matrix.

Define the Laplacian ABC-matrix of G as L̃(G) = D̃(G) − Ã(G), where D̃(G) =

(d̃ij)n×n is the ABC-diagonal matrix, whose entry d̃ij is

d̃ij =


n∑
j=1

ãij if i=j,

0 otherwise.

The eigenvalues of L̃(G) are denoted by ξ1 ≥ ξ2 ≥ · · · ≥ ξn, which are called Laplacian

ABC-eigenvalues of G. The largest eigenvalue of Laplacian ABC-matrix of G is the Lapla-

cian ABC-spectral radius of G. Let D be an oriented graph. The vertex-arc incidence

matrix of D is an n×m matrix R(G) = (rie), where

rie =


−(

di+dj−2
didj

)1/4 if vi is the initial vertex of e,

0 if vi and e are not incident,

(
di+dj−2
didj

)1/4 if vi is the terminal vertex of e.

For any orientation of G, we have L̃(G) = R(G)RT (G). Then L̃(G) is a positive semi-

definite matrix. It is easy to see that 0 is an eigenvalue of L̃(G) with eigenvector 1, which

is the all 1 vector.

In this paper, we explore some basic properties of the eigenvalues of the Laplacian

ABC-matrix of a graph. As one can see that they are not completely the same as those

of the Laplacian matrix. More properties for the eigenvalues can be obtained by further

study later.

2 Preliminary Results

Some lemmas are given as follows, which will be used in the sequel.

Lemma 2.1. Let G be a connected graph of order n ≥ 3. Then rank(R(G)) = n− 1.

Proof. Assume that x is a vector of the left zero vector space for R(G). That is,

xTR(G) = 0.
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where 0 is the zero vector. Suppose vivj ∈ E(G), whose corresponding direction is from

vj to vi in the digraph D obtained from G. By above equality, we have

(xi − xj)
(
di + dj − 2

didj

)1/4

= 0.

As G is connected and n ≥ 3, it yields that xi = xj and each component of x are equal,

which indicates that the dimension of the left zero vector space of R(G) is at most 1.

Then we have rank(R(G)) ≥ n− 1.

On the other hand, we find that the sum of elements in each column of matrix R(G)

is 0, which means the rows of R(G) are linearly dependent. So, rank(R(G)) ≤ n− 1.

Lemma 2.2. Let G be a connected graph with n ≥ 3 vertices. Then L̃(G) has t (2 ≤ t ≤ n)

distinct eigenvalues if and only if there exist t− 1 distinct nonzero numbers r1, r2, ..., rt−1

such that

t−1∏
i=1

(L̃(G)− riI) = (−1)t−1

t−1∏
i=1

ri

n
J, (2.1)

where I is the unit matrix of order n and J is the all 1 matrix of order n.

Proof. We first prove the sufficiency. Multiplying L̃(G) for both sides of the equality

(2.1), due to L̃(G)J = 0, we have

L̃(G)(L̃(G)− r1I)(L̃(G)− r2I)...(L̃(G)− rt−1I) = 0,

where 0 is zero matrix of size n. By the definition of minimal polynomial ϕ(x) of a matrix,

we get that the minimal polynomial of L̃(G) is

ϕ(x) = x(x− r1)(x− r2)...(x− rt−1).

Hence, L̃(G) has t distinct eigenvalues 0, r1, r2, ..., rt−1.

For the necessity, except the zero eigenvalue, let r1, r2, ..., rt−1 be the nonzero distinct

eigenvalues of L̃(G). Then we get the minimal polynomial ϕ(x) = x(x− r1)(x− r2)...(x−

rt−1) directly, which implies that

L̃(G)
t−1∏
i=1

(L̃(G)− riI) = 0.

Since G is connected, any eigenvector of L̃(G) corresponding to the 0 eigenvalue is a

scalar multiple of the vector 1. So the ith column vector of matrix
t−1∏
i=1

(L̃(G) − riI) can
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be written in the form ci1 for some ci(i = 1, 2, ..., n). Hence,

t−1∏
i=1

(L̃(G)− riI) = 1(c1, c2, ..., cn).

Multiplying 1T to both sides of the above equality, we get

(−1)t−1
t−1∏
i=1

ri1
T = n(c1, c2, ..., cn).

For i = 1, 2, ..., n, it is easy to see that

ci = (−1)t−1

t−1∏
i=1

ri

n
.

Then the result follows.

Lemma 2.3. [15] Let G be a graph of order n ≥ 2. Then

µn−1(G) ≤ n(n− 2γ(G) + 1)

n− γ(G)
,

and the equality holds if and only if G = K2,2.

Lemma 2.4. [2] Let G be a graph on n vertices. Then

ABC(G) ≤ n
√

2n− 4

2
,

and the equality holds if and only if G = Kn.

Lemma 2.5. [7] Let f(x, y) =
√

x+y−2
xy

, where n− 1 ≥ x ≥ 2, n− 1 ≥ y ≥ 1. Then

(i) f(x, 1) is an increasing function with respect to x, and hence

√
2

2
= f(2, 1) ≤ f(x, 1) ≤ f(n− 1, 1) =

√
n− 2

n− 1
;

(ii) f(x, 2) =
√
2
2

;

(iii) For x ≥ y ≥ 3, f(x, y) is a decreasing function with respect to x and y, and hence

√
2n− 4

n− 1
= f(n− 1, n− 1) ≤ f(x, y) ≤ f(3, 3) =

2

3
.

Let A,B be real matrices of order n. We write A � B if the matrix A−B is positive

semi-definite.
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Lemma 2.6. [12] Let A,B be real matrices of order n. Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) be the ordered eigenvalues, respectively. If A � B,

then λi(A) ≥ λi(B) for each i = 1, 2, · · · , n.

Lemma 2.7. [11] LetM be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

Given a partition {1, 2, · · · , n} = ∆1

⋃
∆2

⋃
· · ·
⋃

∆m, where |∆i| = ni > 0. Considering

the corresponding blocking M = (Mij), such that Mij is an ni × nj block. Let eij be the

sum of the entries in Mij and put B = (
eij
ni

) (i.e.,
eij
ni

is an average row sum in Mij). The

eigenvalues of B are ν1 ≥ ν2 ≥ · · · ≥ νm. Then the inequalities

λi ≥ νi ≥ λn−m+i,

hold for each i = 1, 2, ...,m. Moreover, if for some integer k, 1 ≤ k ≤ m,λi = νi(i =

1, 2, · · · , k) and λn−m+i = νi(i = k + 1, k + 2, · · · ,m), then all the blocks Mij of M have

constant row and column sums.

Lemma 2.8. Let G be a connected graph of order n ≥ 2. Given a bipartition {v1, v2,

· · · , vn} = ∆1

⋃
∆2, with |∆1| = n1 > 0, |∆2| = n2 > 0, n1 + n2 = n. The matrix L̃(G) is

composed of the block L̃ij, which is an ni × nj block, for 1 ≤ i, j ≤ 2. Suppose

s1 =

n1∑
i=1

n∑
j=1,vi∼vj

√
di+dj−2
didj

n1

, t1 =

n1∑
i=1

n1∑
j=1,vi∼vj

√
di+dj−2
didj

n1

.

Then

ξ1 ≥
n(s1 − t1)

n2

.

Moreover, if the equality holds, then all the blocks L̃ij of L̃(G) have constant row and

column sums.

Proof. Assume that

s2 =
n∑

i=n1+1

n∑
j=1,vi∼vj

√
di+dj−2
didj

n2

, t2 =
n∑

i=n1+1

n∑
j=n1+1,vi∼vj

√
di+dj−2
didj

n2

.

By this partition of vertices, we rewrite L̃(G) as

L̃(G) =

(
L̃11 L̃12

L̃21 L̃22

)
=

(
D̃11 − Ã11 −Ã12

−Ã21 D̃22 − Ã22

)
.
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For 1 ≤ i, j ≤ 2, let eij be the sum of the entries in L̃ij and put B = (
eij
ni

). Then

B =

(
s1 − t1 t1 − s1
t2 − s2 s2 − t2

)
.

Thus, from det(νI − B) = ν(ν − s1 − s2 + t1 + t2), the two eigenvalues of B are ν1 =

s1 + s2 − t1 − t2 and ν2 = 0, respectively. From Lemma 2.7, we get

ξ1 ≥ s1 + s2 − t1 − t2.

Recall that L̃(G) is symmetric, the sum of the entries in L̃12 is equal to that for L̃21.

Then we have n1(s1 − t1) = n2(s2 − t2). Hence,

s1 + s2 − t1 − t2 =
n(s1 − t1)

n2

.

Then

ξ1 ≥
n(s1 − t1)

n2

.

If the equality holds, then ξ1 = ν1. Due to ξn = ν2 = 0, from Lemma 2.7 again, this

implies that all the blocks L̃ij of L̃(G) have constant row and column sums.

3 Main Results

To begin with, the Laplacian ABC-eigenvalues for several kinds of special graphs are

shown below.

Theorem 3.1. Let G be a graph of order n.

(1) If G is r-regular, then ξi =
√
2r−2
r

µi, for i = 1, 2, · · · , n. In particular, if G = Kn,

then ξ1 = ξ2 = · · · = ξn−1 = n
√
2n−4
n−1 , ξn = 0; If G = Cn, then ξi =

√
2 −
√

2 cos 2πi
n
, for

i = 0, 1, · · · , n− 1.

(2) If G is (r, s)-semiregular bipartite, then ξi =
√

r+s−2
rs

µi, for i = 1, 2, · · · , n. In par-

ticular, if G = Ka,b, where a + b = n, a ≥ b, then ξ1 = n
√

n−2
ab
, ξ2 = ξ3 = · · · = ξb =√

a2+ab−2a
b

, ξb+1 = ξb+2 = ... = ξn−1 =
√

b2+ab−2b
a

, ξn = 0.

(3) If G has a vertex cover consisting of only the vertices of degree 2, then ξi =
√
2
2
µi, for

i = 1, 2, · · · , n. In particular, if G = Pn, then ξi =
√

2−
√

2 cos πi
n
, for i = 0, 1, · · · , n− 1.
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Proof. (1) If G is r-regular, then we can easily get L̃(G) =
√
2r−2
r

L(G), and hence

ξi =
√
2r−2
r

µi, for i = 1, 2, · · · , n. This together with the fact that if G = Kn, µ1 =

µ2 = · · · = µn−1 = n, µn = 0 and if G = Cn, µi = 2 − 2 cos 2πi
n

, for i = 0, 1, · · · , n − 1,

would yield the required result.

(2) If G is (r, s)-semiregular bipartite, it is also easy to see that L̃(G) =
√

r+s−2
rs

L(G) and

ξi =
√

r+s−2
rs

µi, for i = 1, 2, · · · , n. Then by the fact that, if G = Ka,b, µ1 = n, µ2 = µ3 =

µb = a, µb+1 = µb+2 = µn−1 = b, µn = 0, we obtain the desired result.

(3) If G has a vertex cover consisting of only the vertices of degree 2, it implies that

every edge of G has at least one endpoint of degree 2. So, L̃(G) =
√
2
2
L(G), showing that

ξi =
√
2
2
µi, for i = 1, 2, · · · , n. If G = Pn, then µi = 2−2 cos πi

n
, for i = 0, 1, · · · , n−1.

Theorem 3.2. Let G be a graph of order n. Then G has exactly one (distinct) Laplacian

ABC-eigenvalue if and only if G = rK2

⋃
(n− 2r)K1, where 0 ≤ r ≤ n

2
.

Proof. Note that L̃(G) is a positive semi-definite matrix. One can see that trL̃(G) = 0 if

and only if L̃(G) = 0. Then for each vertex of G, its degree is 0, or 1, which means that

G = rK2

⋃
(n− 2r)K1, with 0 ≤ r ≤ n

2
.

It is well-known that the multiplicity of eigenvalue zero for the Laplacian matrix of a

graph is the number of its components. Similarly, we obtain the following result.

Theorem 3.3. Let G be a connected graph of order n ≥ 3. Suppose G has s connected

components, which have ni vertices, respectively, where ni ≥ 3, i = 1, 2, ..., s. Then the

number of components of G is equal to the multiplicity of eigenvalue 0 for L̃(G).

Proof. It is easy to get that

rank(L̃(G)) = rank(R(G)R(G)T ) = rank(R(G)).

If G is connected, by Lemma 2.1, then rank(L̃(G)) = rank(R(G)) = n−1. Combining

with the fact that L̃(G) is a real symmetric matrix, the multiplicity of eigenvalue 0 is 1.

Otherwise, suppose G has s (> 1) connected components, which have ni vertices, respec-

tively, where ni ≥ 3, i = 1, 2, · · · , s. Applying Lemma 2.1, we can get rank(L̃(G)) = n−s,

which means that the multiplicity of eigenvalue 0 is s.
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Theorem 3.4. Let G be a graph with n ≥ 3 vertices. Then G has exactly two distinct

Laplacian ABC-eigenvalues if and only if G = Kn.

Proof. By Lemma 2.2, G has exactly two distinct Laplacian ABC-eigenvalues if and only

if there is a non-zero number r such that

L̃(G)− rI = − r
n
J.

That is,

L̃(G) = rI − r

n
J.

We can see that the off-diagonal entries of L̃(G) are all non-zero. Thus, we see that

G = Kn and r = n
√
2n−4
n−1 .

Next, we give two upper bounds on the second smallest Laplacian ABC-eigenvalue

ξn−1.

Theorem 3.5. Let G be a connected graph of order n ≥ 3. Suppose G has a vertex cover

only consisting of the vertices of degree 2. Then

ξn−1 ≤
n(n− 2γ(G) + 1)√

2(n− γ(G))
,

with equality holding if and only if G = K2,2.

Proof. Since G has a vertex cover only consisting of the vertices of degree 2, we get

L̃(G) =
√
2
2
L(G). It is easy to check that ξn−1 =

√
2
2
µn−1. By Lemma 2.3, the result

holds.

Theorem 3.6. Let G be a connected graph of order n ≥ 3. Then

ξn−1 ≤
n
√

2n− 4

n− 1
,

where the equality holds if and only if G = Kn.

Proof. Note that

tr(L̃(G)) = ξ1 + ξ2 + ...+ ξn = 2ABC(G). (3.2)

As ξn = 0, we have

ξn−1 ≤
2ABC(G)

n− 1
.
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From Lemma 2.4, we obtain

ξn−1 ≤
n
√

2n− 4

n− 1
.

Then we discuss the case that the upper bound is tight. Suppose the equality holds,

it means that

ξn−1 =
2ABC(G)

n− 1
=
n
√

2n− 4

n− 1
. (3.3)

By (3.2) and ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1, we get ξ1 = ξ2 = · · · = ξn−1. Combing with the

condition that G is a connected graph of order n ≥ 3 and Theorem 3.4, it yields G = Kn.

From the latter equality of (3.3) and Lemma 2.4, it is easy to check that G is a complete

graph. Conversely, if G = Kn, the equality holds by direct computation.

For the largest Laplacian ABC-eigenvalue ξ1, we have that L(G)− L̃(G) is a positive

semi-definite matrix. By Lemma 2.6, we get ξ1 ≤ µ1. It is well know that µ1 ≤ n, and

thus ξ1 ≤ n. Meantime, a lower bound on the largest Laplacian ABC-eigenvalue ξ1 of a

connected graph is obtained.

Theorem 3.7. Let G be a connected graph of order n ≥ 2. Then

ξ1 ≥
n
√

2n− 4

(n− 1)γ(G)
,

with equality holding if and only if G = Kn.

Proof. Let X be a dominating set of G and suppose |X| = γ(G). Assume that EX is the

set of all edges with one end vertex in X and the other one in V −X. According to the

definition of a dominating set, we have

|EX | ≥ n− γ(G).

By Lemma 2.8, we know

ξ1 ≥
n(s1 − t1)
n− γ(G)

,

where

s1 =

γ(G)∑
i=1

n∑
j=1,vi∼vj

√
di+dj−2
didj

γ(G)
, t1 =

γ(G)∑
i=1

γ(G)∑
j=1,vi∼vj

√
di+dj−2
didj

γ(G)
.

Since G is connected, by Lemma 2.5 we get
√

di+dj−2
didj

≥
√
2n−4
n−1 . So, we can see that

s1 − t1 =

1

γ(G)

γ(G)∑
i=1

 n∑
j=γ(G)+1,vi∼vj

√
di + dj − 2

didj

 ≥ 1

γ(G)

√
2n− 4

n− 1
|EX | ≥

(n− γ(G))
√

2n− 4

γ(G)(n− 1)
.
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Thus,

ξ1 ≥
n
√

2n− 4

γ(G)(n− 1)
.

Now we show that the upper bound is tight. Suppose the equality holds. Then by

Lemma 2.8, we have ξ1 = n(s1−t1)
n−γ(G)

, which implies that it is according to the vertex partition

V (G) = X
⋃

(V (G) −X), in which every block L̃ij of the blocking matrix L̃(G) = (L̃ij)

has constant row and column sums, respectively. That is, L̃12 and L̃21 have constant

row and column sums, respectively. Due to |EX | = n − γ(G), every column of L̃12

has exactly one non-zero entry (i.e., every row of L̃21 has exactly one non-zero entry.)

Obviously, each column of L̃12 has the same non-zero value, which is
√
2n−4
n−1 . Thus, we

obtain dγ(G)+1 = dγ(G)+2 = ... = dn = n − 1. Combining with the fact that X is the

smallest dominating set, we get γ(G) = 1, d1 = n − 1 and G = Kn. Conversely, it is not

hard to check that it holds for the case G = Kn.

At last, we survey the interlacing property of the Laplacian ABC-eigenvalues. It is

well-known that the Laplacian eigenvalues of a graph G possess the interlacing property

when one of its edge is deleted.

Theorem 3.8. [10] Let G be a graph of order n. Suppose e is an edge of G and G
′
= G−e.

Then

0 = µn(G
′
) = µn(G) ≤ µn−1(G

′
) ≤ µn−1(G) ≤ ... ≤ µ2(G) ≤ µ1(G

′
) ≤ µ1(G).

However, by the example below, we find that it does not hold for our Laplacian ABC-

eigenvalues of a graph.

Example. Let G1 be the graph obtained from the star S6 by adding an edge. By

direct computation, we get ξ1(G1) ≈ 4.9292 < ξ1(S6) ≈ 5.3666.
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