Laplacian ABC-Eigenvalues of Graphs*

Ning Yang ${ }^{1}$, Bo Deng ${ }^{1,3,4}$, Xueliang Li 1,2
${ }^{1}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{2}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
${ }^{3}$ Key laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province
Xining, Qinghai 810008, China
${ }^{4}$ Academy of Plateau, Science and Sustainability, Xining, Qinghai 810008, China yangning0304@163.com, dengbo450@163.com, lxl@nankai.edu.cn

(Received June 23, 2020)

Abstract

For a graph G, the ABC-matrix of G was introduced and studied recently. A natural idea is to introduce the Laplacian ABC-matrix $\tilde{L}(G)$ of G. In this paper, some basic properties for the eigenvalues of the Laplacian ABC-matrix of a graph are explored. As one can see that they are not completely the same as those of the Laplacian matrix of a graph. More properties for the eigenvalues can be obtained by further study later.

1 Introduction

All graph considered in this paper are finite and simple. Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and size m with edge set $E(G)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$. For $v_{i} \in V(G)$, we use d_{i} to denote the degree of v_{i}. A dominating set in G is a subset X of $V(G)$, such that each vertex of $V(G)-X$ is adjacent to at least one vertex of X. The size

[^0]of a smallest dominating set of G is the dominating number $\gamma(G)$. Let P_{n}, C_{n}, K_{n} and S_{n} denote the path, cycle, complete graph and star of order n, respectively. The complete bipartite graph is denoted by $K_{a, b}$. A graph is called r-regular if each of its vertices has the same degree r. A graph is (r, s)-semiregular if it is bipartite with a bipartition $\left\{V_{1}, V_{2}\right\}$ in which each vertex of V_{1} has degree r and each one of V_{2} has degree s. The union of two graphs G and H, denoted by $G \bigcup H$, is the graph with vertex set $V(G) \bigcup V(H)$ and edge set $E(G) \bigcup E(H)$. $k G$ stands for the vertex-disjoint union of k copies of G.

Estrada et al. [6] proposed a topological index named atom-bond connectivity (ABC) index using a modification of Randić connectivity index. The ABC index of G is defined as

$$
A B C(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}},
$$

which displays an excellent correlation with the heat of formation of alkanes. Estrada [5] also provided a probabilistic interpretation for the ABC index, which indicates that the term $\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}$ represents the probability of visiting a nearest neighbor edge from one side or the other of a given edge in a graph. Then a matrix was defined from the ABC index, which is the square matrix $\tilde{A}(G)=\left(\tilde{a}_{i j}\right)_{n \times n}$ of order n, whose entries $\tilde{a}_{i j}$ are given as

$$
\tilde{a}_{i j}=\left\{\begin{array}{lc}
\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}} & \text { if } v_{i} v_{j} \in E(G), \\
0 & \text { otherwise }
\end{array}\right.
$$

The eigenvalues of $\tilde{A}(G)$ are called the ABC eigenvalues of G. The largest eigenvalue is called the ABC spectral radius of G. Actually, in 2015 Li proposed the idea to study the matrices defined from topological or chemical indices in [13].

In 2018, Chen [3] presented some results on the ABC eigenvalues and the ABC energy of a graph, which received quite a lot of attentions. Soon later, it was presented that, for any tree of order $n \geq 3, P_{n}$ and $K_{1, n-1}$ have the smallest and the largest ABC spectral radii, respectively. Gao and Shao [8] showed that the star has the minimum ABC energy among all trees. Li and Wang [14] proved that C_{n} and $S_{n}+e$ have the smallest and the largest ABC spectral radii among unicyclic graphs, respectively. Ghorbani et al. [9] obtained some upper and lower bounds of ABC spectral radii and ABC energy.

The Laplacian matrix of graph G is defined as $L(G)=D(G)-A(G)$, where $D(G)$ is the diagonal matrix of the vertex degrees of G, and $A(G)$ is the adjacency matrix of
G. The eigenvalues of $L(G)$ are denoted by $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$. The largest eigenvalue of the Laplacian matrix of G is called its Laplacian spectral radius. Since the Laplacian matrix of a graph can reflect more information on graph structures than its adjacency matrix, it is natural to generalize ABC-matrix of G to the Laplacian ABC-matrix.

Define the Laplacian ABC-matrix of G as $\tilde{L}(G)=\tilde{D}(G)-\tilde{A}(G)$, where $\tilde{D}(G)=$ $\left(\tilde{d}_{i j}\right)_{n \times n}$ is the ABC-diagonal matrix, whose entry $\tilde{d}_{i j}$ is

$$
\tilde{d}_{i j}= \begin{cases}\sum_{j=1}^{n} \tilde{a}_{i j} & \text { if } \mathrm{i}=\mathrm{j}, \\ 0 & \text { otherwise }\end{cases}
$$

The eigenvalues of $\tilde{L}(G)$ are denoted by $\xi_{1} \geq \xi_{2} \geq \cdots \geq \xi_{n}$, which are called Laplacian ABC-eigenvalues of G. The largest eigenvalue of Laplacian ABC-matrix of G is the Laplacian ABC-spectral radius of G. Let D be an oriented graph. The vertex-arc incidence matrix of D is an $n \times m$ matrix $R(G)=\left(r_{i e}\right)$, where

$$
r_{i e}= \begin{cases}-\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{1 / 4} & \text { if } v_{i} \text { is the initial vertex of } \mathrm{e}, \\ 0 & \text { if } v_{i} \text { and e are not incident } \\ \left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{1 / 4} & \text { if } v_{i} \text { is the terminal vertex of e. }\end{cases}
$$

For any orientation of G, we have $\tilde{L}(G)=R(G) R^{T}(G)$. Then $\tilde{L}(G)$ is a positive semidefinite matrix. It is easy to see that 0 is an eigenvalue of $\tilde{L}(G)$ with eigenvector $\mathbf{1}$, which is the all 1 vector.

In this paper, we explore some basic properties of the eigenvalues of the Laplacian ABC-matrix of a graph. As one can see that they are not completely the same as those of the Laplacian matrix. More properties for the eigenvalues can be obtained by further study later.

2 Preliminary Results

Some lemmas are given as follows, which will be used in the sequel.

Lemma 2.1. Let G be a connected graph of order $n \geq 3$. Then $\operatorname{rank}(R(G))=n-1$.

Proof. Assume that x is a vector of the left zero vector space for $R(G)$. That is,

$$
x^{T} R(G)=\mathbf{0} .
$$

where $\mathbf{0}$ is the zero vector. Suppose $v_{i} v_{j} \in E(G)$, whose corresponding direction is from v_{j} to v_{i} in the digraph D obtained from G. By above equality, we have

$$
\left(x_{i}-x_{j}\right)\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{1 / 4}=0
$$

As G is connected and $n \geq 3$, it yields that $x_{i}=x_{j}$ and each component of x are equal, which indicates that the dimension of the left zero vector space of $R(G)$ is at most 1 . Then we have $\operatorname{rank}(R(G)) \geq n-1$.

On the other hand, we find that the sum of elements in each column of matrix $R(G)$ is 0 , which means the rows of $R(G)$ are linearly dependent. So, $\operatorname{rank}(R(G)) \leq n-1$.

Lemma 2.2. Let G be a connected graph with $n \geq 3$ vertices. Then $\tilde{L}(G)$ has $t(2 \leq t \leq n)$ distinct eigenvalues if and only if there exist $t-1$ distinct nonzero numbers $r_{1}, r_{2}, \ldots, r_{t-1}$ such that

$$
\begin{equation*}
\prod_{i=1}^{t-1}\left(\tilde{L}(G)-r_{i} I\right)=(-1)^{t-1} \frac{\prod_{i=1}^{t-1} r_{i}}{n} J \tag{2.1}
\end{equation*}
$$

where I is the unit matrix of order n and J is the all 1 matrix of order n.
Proof. We first prove the sufficiency. Multiplying $\tilde{L}(G)$ for both sides of the equality (2.1), due to $\tilde{L}(G) J=\mathbf{0}$, we have

$$
\tilde{L}(G)\left(\tilde{L}(G)-r_{1} I\right)\left(\tilde{L}(G)-r_{2} I\right) \ldots\left(\tilde{L}(G)-r_{t-1} I\right)=\mathbf{0}
$$

where $\mathbf{0}$ is zero matrix of size n. By the definition of minimal polynomial $\varphi(x)$ of a matrix, we get that the minimal polynomial of $\tilde{L}(G)$ is

$$
\varphi(x)=x\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{t-1}\right)
$$

Hence, $\tilde{L}(G)$ has t distinct eigenvalues $0, r_{1}, r_{2}, \ldots, r_{t-1}$.
For the necessity, except the zero eigenvalue, let $r_{1}, r_{2}, \ldots, r_{t-1}$ be the nonzero distinct eigenvalues of $\tilde{L}(G)$. Then we get the minimal polynomial $\varphi(x)=x\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots(x-$ r_{t-1}) directly, which implies that

$$
\tilde{L}(G) \prod_{i=1}^{t-1}\left(\tilde{L}(G)-r_{i} I\right)=\mathbf{0}
$$

Since G is connected, any eigenvector of $\tilde{L}(G)$ corresponding to the 0 eigenvalue is a scalar multiple of the vector 1 . So the i th column vector of matrix $\prod_{i=1}^{t-1}\left(\tilde{L}(G)-r_{i} I\right)$ can
be written in the form $c_{i} \mathbf{1}$ for some $c_{i}(i=1,2, \ldots, n)$. Hence,

$$
\prod_{i=1}^{t-1}\left(\tilde{L}(G)-r_{i} I\right)=\mathbf{1}\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Multiplying $\mathbf{1}^{T}$ to both sides of the above equality, we get

$$
(-1)^{t-1} \prod_{i=1}^{t-1} r_{i} \mathbf{1}^{T}=n\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

For $i=1,2, \ldots, n$, it is easy to see that

$$
c_{i}=(-1)^{t-1} \frac{\prod_{i=1}^{t-1} r_{i}}{n}
$$

Then the result follows.
Lemma 2.3. [15] Let G be a graph of order $n \geq 2$. Then

$$
\mu_{n-1}(G) \leq \frac{n(n-2 \gamma(G)+1)}{n-\gamma(G)}
$$

and the equality holds if and only if $G=K_{2,2}$.
Lemma 2.4. [2] Let G be a graph on n vertices. Then

$$
A B C(G) \leq \frac{n \sqrt{2 n-4}}{2}
$$

and the equality holds if and only if $G=K_{n}$.
Lemma 2.5. [7] Let $f(x, y)=\sqrt{\frac{x+y-2}{x y}}$, where $n-1 \geq x \geq 2, n-1 \geq y \geq 1$. Then
(i) $f(x, 1)$ is an increasing function with respect to x, and hence

$$
\frac{\sqrt{2}}{2}=f(2,1) \leq f(x, 1) \leq f(n-1,1)=\sqrt{\frac{n-2}{n-1}}
$$

(ii) $f(x, 2)=\frac{\sqrt{2}}{2}$;
(iii) For $x \geq y \geq 3, f(x, y)$ is a decreasing function with respect to x and y, and hence

$$
\frac{\sqrt{2 n-4}}{n-1}=f(n-1, n-1) \leq f(x, y) \leq f(3,3)=\frac{2}{3} .
$$

Let A, B be real matrices of order n. We write $A \succeq B$ if the matrix $A-B$ is positive semi-definite.

Lemma 2.6. [12] Let A, B be real matrices of order n. Let $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$ and $\lambda_{1}(B) \geq \lambda_{2}(B) \geq \cdots \geq \lambda_{n}(B)$ be the ordered eigenvalues, respectively. If $A \succeq B$, then $\lambda_{i}(A) \geq \lambda_{i}(B)$ for each $i=1,2, \cdots, n$.

Lemma 2.7. [11] Let M be a real symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Given a partition $\{1,2, \cdots, n\}=\Delta_{1} \bigcup \Delta_{2} \bigcup \cdots \bigcup \Delta_{m}$, where $\left|\Delta_{i}\right|=n_{i}>0$. Considering the corresponding blocking $M=\left(M_{i j}\right)$, such that $M_{i j}$ is an $n_{i} \times n_{j}$ block. Let $e_{i j}$ be the sum of the entries in $M_{i j}$ and put $B=\left(\frac{e_{i j}}{n_{i}}\right)$ (i.e., $\frac{e_{i j}}{n_{i}}$ is an average row sum in $M_{i j}$). The eigenvalues of B are $\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{m}$. Then the inequalities

$$
\lambda_{i} \geq \nu_{i} \geq \lambda_{n-m+i},
$$

hold for each $i=1,2, \ldots, m$. Moreover, if for some integer $k, 1 \leq k \leq m, \lambda_{i}=\nu_{i}(i=$ $1,2, \cdots, k)$ and $\lambda_{n-m+i}=\nu_{i}(i=k+1, k+2, \cdots, m)$, then all the blocks $M_{i j}$ of M have constant row and column sums.

Lemma 2.8. Let G be a connected graph of order $n \geq 2$. Given a bipartition $\left\{v_{1}, v_{2}\right.$, $\left.\cdots, v_{n}\right\}=\Delta_{1} \bigcup \Delta_{2}$, with $\left|\Delta_{1}\right|=n_{1}>0,\left|\Delta_{2}\right|=n_{2}>0, n_{1}+n_{2}=n$. The matrix $\tilde{L}(G)$ is composed of the block $\tilde{L}_{i j}$, which is an $n_{i} \times n_{j}$ block, for $1 \leq i, j \leq 2$. Suppose

$$
s_{1}=\sum_{i=1}^{n_{1}} \frac{\sum_{j=1, v_{i} \sim v_{j}}^{n} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{n_{1}}, \quad t_{1}=\sum_{i=1}^{n_{1}} \frac{\sum_{j=1, v_{i} \sim v_{j}}^{n_{1}} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{n_{1}} .
$$

Then

$$
\xi_{1} \geq \frac{n\left(s_{1}-t_{1}\right)}{n_{2}}
$$

Moreover, if the equality holds, then all the blocks $\tilde{L}_{i j}$ of $\tilde{L}(G)$ have constant row and column sums.

Proof. Assume that

$$
s_{2}=\sum_{i=n_{1}+1}^{n} \frac{\sum_{j=1, v_{i} \sim v_{j}}^{n} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{n_{2}}, \quad t_{2}=\sum_{i=n_{1}+1}^{n} \frac{\sum_{j=n_{1}+1, v_{i} \sim v_{j}}^{n} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{n_{2}} .
$$

By this partition of vertices, we rewrite $\tilde{L}(G)$ as

$$
\tilde{\mathbf{L}}(\mathbf{G})=\left(\begin{array}{cc}
\tilde{L}_{11} & \tilde{L}_{12} \\
\tilde{L}_{21} & \tilde{L}_{22}
\end{array}\right)=\left(\begin{array}{cc}
\tilde{D}_{11}-\tilde{A}_{11} & -\tilde{A}_{12} \\
-\tilde{A}_{21} & \tilde{D}_{22}-\tilde{A}_{22}
\end{array}\right) .
$$

For $1 \leq i, j \leq 2$, let $e_{i j}$ be the sum of the entries in $\tilde{L}_{i j}$ and put $B=\left(\frac{e_{i j}}{n_{i}}\right)$. Then

$$
\mathbf{B}=\left(\begin{array}{ll}
s_{1}-t_{1} & t_{1}-s_{1} \\
t_{2}-s_{2} & s_{2}-t_{2}
\end{array}\right)
$$

Thus, from $\operatorname{det}(\nu I-B)=\nu\left(\nu-s_{1}-s_{2}+t_{1}+t_{2}\right)$, the two eigenvalues of B are $\nu_{1}=$ $s_{1}+s_{2}-t_{1}-t_{2}$ and $\nu_{2}=0$, respectively. From Lemma 2.7, we get

$$
\xi_{1} \geq s_{1}+s_{2}-t_{1}-t_{2}
$$

Recall that $\tilde{L}(G)$ is symmetric, the sum of the entries in \tilde{L}_{12} is equal to that for \tilde{L}_{21}. Then we have $n_{1}\left(s_{1}-t_{1}\right)=n_{2}\left(s_{2}-t_{2}\right)$. Hence,

$$
s_{1}+s_{2}-t_{1}-t_{2}=\frac{n\left(s_{1}-t_{1}\right)}{n_{2}}
$$

Then

$$
\xi_{1} \geq \frac{n\left(s_{1}-t_{1}\right)}{n_{2}}
$$

If the equality holds, then $\xi_{1}=\nu_{1}$. Due to $\xi_{n}=\nu_{2}=0$, from Lemma 2.7 again, this implies that all the blocks $\tilde{L}_{i j}$ of $\tilde{L}(G)$ have constant row and column sums.

3 Main Results

To begin with, the Laplacian ABC-eigenvalues for several kinds of special graphs are shown below.

Theorem 3.1. Let G be a graph of order n.
(1) If G is r-regular, then $\xi_{i}=\frac{\sqrt{2 r-2}}{r} \mu_{i}$, for $i=1,2, \cdots, n$. In particular, if $G=K_{n}$, then $\xi_{1}=\xi_{2}=\cdots=\xi_{n-1}=\frac{n \sqrt{2 n-4}}{n-1}, \xi_{n}=0$; If $G=C_{n}$, then $\xi_{i}=\sqrt{2}-\sqrt{2} \cos \frac{2 \pi i}{n}$, for $i=0,1, \cdots, n-1$.
(2) If G is (r, s)-semiregular bipartite, then $\xi_{i}=\sqrt{\frac{r+s-2}{r s}} \mu_{i}$, for $i=1,2, \cdots, n$. In particular, if $G=K_{a, b}$, where $a+b=n, a \geq b$, then $\xi_{1}=n \sqrt{\frac{n-2}{a b}}, \xi_{2}=\xi_{3}=\cdots=\xi_{b}=$ $\sqrt{\frac{a^{2}+a b-2 a}{b}}, \xi_{b+1}=\xi_{b+2}=\ldots=\xi_{n-1}=\sqrt{\frac{b^{2}+a b-2 b}{a}}, \xi_{n}=0$.
(3) If G has a vertex cover consisting of only the vertices of degree 2 , then $\xi_{i}=\frac{\sqrt{2}}{2} \mu_{i}$, for $i=1,2, \cdots, n$. In particular, if $G=P_{n}$, then $\xi_{i}=\sqrt{2}-\sqrt{2} \cos \frac{\pi i}{n}$, for $i=0,1, \cdots, n-1$.

Proof. (1) If G is r-regular, then we can easily get $\tilde{L}(G)=\frac{\sqrt{2 r-2}}{r} L(G)$, and hence $\xi_{i}=\frac{\sqrt{2 r-2}}{r} \mu_{i}$, for $i=1,2, \cdots, n$. This together with the fact that if $G=K_{n}, \mu_{1}=$ $\mu_{2}=\cdots=\mu_{n-1}=n, \mu_{n}=0$ and if $G=C_{n}, \mu_{i}=2-2 \cos \frac{2 \pi i}{n}$, for $i=0,1, \cdots, n-1$, would yield the required result.
(2) If G is (r, s)-semiregular bipartite, it is also easy to see that $\tilde{L}(G)=\sqrt{\frac{r+s-2}{r s}} L(G)$ and $\xi_{i}=\sqrt{\frac{r+s-2}{r s}} \mu_{i}$, for $i=1,2, \cdots, n$. Then by the fact that, if $G=K_{a, b}, \mu_{1}=n, \mu_{2}=\mu_{3}=$ $\mu_{b}=a, \mu_{b+1}=\mu_{b+2}=\mu_{n-1}=b, \mu_{n}=0$, we obtain the desired result.
(3) If G has a vertex cover consisting of only the vertices of degree 2 , it implies that every edge of G has at least one endpoint of degree 2. So, $\tilde{L}(G)=\frac{\sqrt{2}}{2} L(G)$, showing that $\xi_{i}=\frac{\sqrt{2}}{2} \mu_{i}$, for $i=1,2, \cdots, n$. If $G=P_{n}$, then $\mu_{i}=2-2 \cos \frac{\pi i}{n}$, for $i=0,1, \cdots, n-1$.

Theorem 3.2. Let G be a graph of order n. Then G has exactly one (distinct) Laplacian $A B C$-eigenvalue if and only if $G=r K_{2} \bigcup(n-2 r) K_{1}$, where $0 \leq r \leq \frac{n}{2}$.

Proof. Note that $\tilde{L}(G)$ is a positive semi-definite matrix. One can see that $\operatorname{tr} \tilde{L}(G)=0$ if and only if $\tilde{L}(G)=\mathbf{0}$. Then for each vertex of G, its degree is 0 , or 1 , which means that $G=r K_{2} \bigcup(n-2 r) K_{1}$, with $0 \leq r \leq \frac{n}{2}$.

It is well-known that the multiplicity of eigenvalue zero for the Laplacian matrix of a graph is the number of its components. Similarly, we obtain the following result.

Theorem 3.3. Let G be a connected graph of order $n \geq 3$. Suppose G has s connected components, which have n_{i} vertices, respectively, where $n_{i} \geq 3, i=1,2, \ldots, s$. Then the number of components of G is equal to the multiplicity of eigenvalue 0 for $\tilde{L}(G)$.

Proof. It is easy to get that

$$
\operatorname{rank}(\tilde{L}(G))=\operatorname{rank}\left(R(G) R(G)^{T}\right)=\operatorname{rank}(R(G))
$$

If G is connected, by Lemma 2.1, then $\operatorname{rank}(\tilde{L}(G))=\operatorname{rank}(R(G))=n-1$. Combining with the fact that $\tilde{L}(G)$ is a real symmetric matrix, the multiplicity of eigenvalue 0 is 1 . Otherwise, suppose G has $s(>1)$ connected components, which have n_{i} vertices, respectively, where $n_{i} \geq 3, i=1,2, \cdots, s$. Applying Lemma 2.1, we can get $\operatorname{rank}(\tilde{L}(G))=n-s$, which means that the multiplicity of eigenvalue 0 is s.

Theorem 3.4. Let G be a graph with $n \geq 3$ vertices. Then G has exactly two distinct Laplacian ABC-eigenvalues if and only if $G=K_{n}$.

Proof. By Lemma 2.2, G has exactly two distinct Laplacian ABC-eigenvalues if and only if there is a non-zero number r such that

$$
\tilde{L}(G)-r I=-\frac{r}{n} J .
$$

That is,

$$
\tilde{L}(G)=r I-\frac{r}{n} J .
$$

We can see that the off-diagonal entries of $\tilde{L}(G)$ are all non-zero. Thus, we see that $G=K_{n}$ and $r=\frac{n \sqrt{2 n-4}}{n-1}$.

Next, we give two upper bounds on the second smallest Laplacian ABC-eigenvalue ξ_{n-1}.

Theorem 3.5. Let G be a connected graph of order $n \geq 3$. Suppose G has a vertex cover only consisting of the vertices of degree 2. Then

$$
\xi_{n-1} \leq \frac{n(n-2 \gamma(G)+1)}{\sqrt{2}(n-\gamma(G))}
$$

with equality holding if and only if $G=K_{2,2}$.

Proof. Since G has a vertex cover only consisting of the vertices of degree 2, we get $\tilde{L}(G)=\frac{\sqrt{2}}{2} L(G)$. It is easy to check that $\xi_{n-1}=\frac{\sqrt{2}}{2} \mu_{n-1}$. By Lemma 2.3, the result holds.

Theorem 3.6. Let G be a connected graph of order $n \geq 3$. Then

$$
\xi_{n-1} \leq \frac{n \sqrt{2 n-4}}{n-1}
$$

where the equality holds if and only if $G=K_{n}$.

Proof. Note that

$$
\begin{equation*}
\operatorname{tr}(\tilde{L}(G))=\xi_{1}+\xi_{2}+\ldots+\xi_{n}=2 A B C(G) \tag{3.2}
\end{equation*}
$$

As $\xi_{n}=0$, we have

$$
\xi_{n-1} \leq \frac{2 A B C(G)}{n-1}
$$

From Lemma 2.4, we obtain

$$
\xi_{n-1} \leq \frac{n \sqrt{2 n-4}}{n-1}
$$

Then we discuss the case that the upper bound is tight. Suppose the equality holds, it means that

$$
\begin{equation*}
\xi_{n-1}=\frac{2 A B C(G)}{n-1}=\frac{n \sqrt{2 n-4}}{n-1} \tag{3.3}
\end{equation*}
$$

By (3.2) and $\xi_{1} \geq \xi_{2} \geq \cdots \geq \xi_{n-1}$, we get $\xi_{1}=\xi_{2}=\cdots=\xi_{n-1}$. Combing with the condition that G is a connected graph of order $n \geq 3$ and Theorem 3.4, it yields $G=K_{n}$. From the latter equality of (3.3) and Lemma 2.4, it is easy to check that G is a complete graph. Conversely, if $G=K_{n}$, the equality holds by direct computation.

For the largest Laplacian ABC-eigenvalue ξ_{1}, we have that $L(G)-\tilde{L}(G)$ is a positive semi-definite matrix. By Lemma 2.6, we get $\xi_{1} \leq \mu_{1}$. It is well know that $\mu_{1} \leq n$, and thus $\xi_{1} \leq n$. Meantime, a lower bound on the largest Laplacian ABC-eigenvalue ξ_{1} of a connected graph is obtained.

Theorem 3.7. Let G be a connected graph of order $n \geq 2$. Then

$$
\xi_{1} \geq \frac{n \sqrt{2 n-4}}{(n-1) \gamma(G)},
$$

with equality holding if and only if $G=K_{n}$.
Proof. Let X be a dominating set of G and suppose $|X|=\gamma(G)$. Assume that E_{X} is the set of all edges with one end vertex in X and the other one in $V-X$. According to the definition of a dominating set, we have

$$
\left|E_{X}\right| \geq n-\gamma(G)
$$

By Lemma 2.8, we know

$$
\xi_{1} \geq \frac{n\left(s_{1}-t_{1}\right)}{n-\gamma(G)}
$$

where

$$
s_{1}=\sum_{i=1}^{\gamma(G)} \frac{\sum_{j=1, v_{i} \sim v_{j}}^{n} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{\gamma(G)}, t_{1}=\sum_{i=1}^{\gamma(G)} \frac{\sum_{j=1, v_{i} \sim v_{j}}^{\gamma(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}}{\gamma(G)} .
$$

Since G is connected, by Lemma 2.5 we get $\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}} \geq \frac{\sqrt{2 n-4}}{n-1}$. So, we can see that $s_{1}-t_{1}=$
$\frac{1}{\gamma(G)}\left(\sum_{i=1}^{\gamma(G)}\left(\sum_{j=\gamma(G)+1, v_{i} \sim v_{j}}^{n} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}\right)\right) \geq \frac{1}{\gamma(G)} \frac{\sqrt{2 n-4}}{n-1}\left|E_{X}\right| \geq \frac{(n-\gamma(G)) \sqrt{2 n-4}}{\gamma(G)(n-1)}$.

Thus,

$$
\xi_{1} \geq \frac{n \sqrt{2 n-4}}{\gamma(G)(n-1)}
$$

Now we show that the upper bound is tight. Suppose the equality holds. Then by Lemma 2.8, we have $\xi_{1}=\frac{n\left(s_{1}-t_{1}\right)}{n-\gamma(G)}$, which implies that it is according to the vertex partition $V(G)=X \bigcup(V(G)-X)$, in which every block $\tilde{L}_{i j}$ of the blocking matrix $\tilde{L}(G)=\left(\tilde{L}_{i j}\right)$ has constant row and column sums, respectively. That is, \tilde{L}_{12} and \tilde{L}_{21} have constant row and column sums, respectively. Due to $\left|E_{X}\right|=n-\gamma(G)$, every column of \tilde{L}_{12} has exactly one non-zero entry (i.e., every row of \tilde{L}_{21} has exactly one non-zero entry.) Obviously, each column of \tilde{L}_{12} has the same non-zero value, which is $\frac{\sqrt{2 n-4}}{n-1}$. Thus, we obtain $d_{\gamma(G)+1}=d_{\gamma(G)+2}=\ldots=d_{n}=n-1$. Combining with the fact that X is the smallest dominating set, we get $\gamma(G)=1, d_{1}=n-1$ and $G=K_{n}$. Conversely, it is not hard to check that it holds for the case $G=K_{n}$.

At last, we survey the interlacing property of the Laplacian ABC-eigenvalues. It is well-known that the Laplacian eigenvalues of a graph G possess the interlacing property when one of its edge is deleted.

Theorem 3.8. [10] Let G be a graph of order n. Suppose e is an edge of G and $G^{\prime}=G-e$. Then

$$
0=\mu_{n}\left(G^{\prime}\right)=\mu_{n}(G) \leq \mu_{n-1}\left(G^{\prime}\right) \leq \mu_{n-1}(G) \leq \ldots \leq \mu_{2}(G) \leq \mu_{1}\left(G^{\prime}\right) \leq \mu_{1}(G)
$$

However, by the example below, we find that it does not hold for our Laplacian ABCeigenvalues of a graph.

Example. Let G_{1} be the graph obtained from the star S_{6} by adding an edge. By direct computation, we get $\xi_{1}\left(G_{1}\right) \approx 4.9292<\xi_{1}\left(S_{6}\right) \approx 5.3666$.

References

[1] A. E. Brouwer, W. H. Haemers, Spectral of Graphs, Springer, New York, 2012.
[2] J. Chen, X. Guo, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 713-722.
[3] X. Chen, On $A B C$ eigenvalues and ABC energy, Lin. Algebra Appl. 544 (2018) 141-157.
[4] X. Chen, On extremality of $A B C$ spectral radius of a tree, Lin. Algebra Appl. 564 (2019) 159-169.
[5] E. Estrada, The ABC matrix, J. Math. Chem. 55 (2017) 1021-1033.
[6] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[7] L. Gan, H. Hou, B. Liu, Some results on atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 669-680.
[8] Y. Gao, Y. Shao, The minimum ABC energy of trees, Lin. Algebra. Appl. 577 (2019) 186-203.
[9] M. Ghorbani, X. Li, M. Hakimi-Nezhaad, J. Wang, Bounds on the $A B C$ spectral radius and $A B C$ energy of graphs, Lin. Algebra. Appl. 598 (2020) 145-164.
[10] R. Grone, R. Merris, V. S. Sunder, The laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[11] W. H. Haemers, Interlacing eigenvalues and graphs, Lin. Algebra. Appl. 226-228 (1995) 593-616.
[12] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, New York, 2013.
[13] X. Li, Indices, polynomials and matrices - A unified viewpoint, Invited talk at the 8th Slovinian Conf. Graph Theory, Kranjska Gora, June 21-27, 2015.
[14] X. Li, J. Wang, On the $A B C$ spectra radius of unicyclic graphs, Lin. Algebra Appl. 596 (2020) 71-81.
[15] M. Lu, H. Liu, F. Tian, Bounds of Laplacian spectrum of graphs based on the domination number, Lin. Algebra. Appl. 402 (2005) 390-396.

[^0]: *Supported by NSFQH No.2018-ZJ-925Q; NSFC No.11701311, NSFGD No.2016A030310307.

