
Acyclic Edge Coloring of Chordal Graphs
with Bounded Degree

Yulai Ma, Yongtang Shi
Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, China

Weifan Wang ∗

Department of Mathematics
Zhejiang Normal University, Jinhua 321004, China

November 10, 2018

Abstract

An acyclic edge coloring of a graph G is a proper edge coloring such that no bichro-
matic cycles are produced. It was conjectured that every simple graph G with maximum
degree ∆ is acyclically edge-(∆+2)-colorable. In this paper, we confirm the conjecture
for chordal graphs G with ∆ ≤ 6.
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1 Introduction

Only simple graphs are considered in this paper. Let G be a graph with vertex set V (G) and
edge set E(G). A proper edge-k-coloring of a graph G is a mapping c : E(G) → {1, 2, . . . , k}
such that any two adjacent edges receive distinct colors. The graph G is edge-k-colorable if
it has a proper edge-k-coloring, and the chromatic index of G is the minimum k such that
G is edge-k-colorable, denoted by χ′(G).

A proper edge-k-coloring c of G is acyclic if there are no bichromatic cycles in G, i.e.,
the union of any two color classes induces a subgraph of G that is a forest. The acyclic
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chromatic index of G, denoted by a′(G), is the smallest integer k such that G is acyclically
edge-k-colorable.

Let ∆(G) (∆ for short) denote the maximum degree of a graph G. Fiamčik [9] and later
Alon, Sudakov and Zaks [3] independently conjectured the following.

Conjecture 1.1 For any graph G, a′(G) ≤ ∆+ 2.

In 1991, Alon, McDiarmid and Reed [2] proved that a′(G) ≤ 64∆ for any graph G.
Molloy and Reed [11] improved the bound to 16∆ in 1998, and this was improved to a′(G) ≤
⌈9.62(∆−1)⌉ in [12], and a′(G) ≤ 4∆−4 in [8], and a′(G) ≤ ⌈3.74(∆−1)⌉+1 in [10]. Some
special classes of graphs for this conjecture are also investigated, such as subcubic graphs
[4, 14], graphs with ∆ = 4 [5, 13, 16], 2-degenerate graphs [6], planar graphs [7, 17, 15].

A chord of a cycle is an edge not in the cycle whose endpoints are in the cycle. A hole
in a graph is an induced subgraph which is a cycle of length at least 4. A graph is a chordal
graph if it has no hole. A vertex is simplicial if its neighborhood induces a clique. A vertex
v is almost-simplicial in G if v has exactly one simplicial neighbor u, such that v is simplicial
in G− u. Two simplicial vertices u and v are simplicial twins, if they are adjacent.

The purpose of this paper is to investigate the acyclic edge coloring of chordal graphs
with smaller maximum degree. Main results are as follows:

Theorem 1.2 If G is a chordal graph with ∆ = 5, then a′(G) ≤ 7.

Theorem 1.3 If G is a chordal graph with ∆ = 6, then a′(G) ≤ 8.

Combining the known results stated as above, we know that Conjecture 1.1 holds for
chordal graphs with ∆ ≤ 6.

2 Lemmas

Let [k] = {1, 2, . . . , k}. Assume that c is a partial acyclic edge-k-coloring of a chordal graph
G using the color set C = [k]. For a vertex x in G, let NG(x) denote the neighborhood of x
in G and NG[x] = NG(x) ∪ {x}; let dG(x) denote the degree of a vertex x in G and CG(x)

denote the set of colors assigned to edges incident to x under c. When there is no scope
for ambiguity, we replace NG(x), NG[x], dG(x) and CG(x) with N(x), N [x], d(x) and C(x),
respectively. Moreover, we use Kn to denote a complete graph with n vertices.

If the edges of a cycle ux . . . vu are alternatively colored with colors i and j, then we call
the cycle an (i, j)(u,v)-cycle. Similarly, if the edges of a path ux . . . v are alternatively colored
with colors i and j, then we call the path an (i, j)(u,v)-path. We use (e1, e2, . . . , em)c =
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(a1, a2, . . . , am) to denote that c(ei) = ai for i ∈ [m]. Let (e1, e2, . . . , en) → (b1, b2, . . . , bn)

denote that ei is colored or recolored with the color bi for i ∈ [n]. In particular, when n = 1,
we write simply e1 → b1.

Let W0 denote the vertex set consisting of all simplicial vertices in G. Since G is a chordal
graph, we have W0 ̸= ∅. Let G1 = G − W0 and W1 denote the vertex set consisting of all
simplicial vertices in G1. Furthermore, it is easy to know that G1 is a chordal graph. Let
∆0 ∈ {5, 6} such that ∆(G) ≤ ∆0.

It should be explained that, in the following figures, all neighbors of black points have
been shown in the figures, whereas others may be not. Now we present some lemmas, which
will be useful in the following.

Lemma 2.1 ([1]) If G is a non-trivial chordal graph, then there exists a pair of vertices u

and v satisfying at least one of the following:
(i) u and v are both simplicial vertices but not adjacent, and N(u) ∩N(v) ̸= ∅;
(ii) u and v are simplicial twins;
(iii) u is simplicial, v is an almost-simplicial neighbor of u, and the degree of v in G is

at least 2.

The following lemma is frequently used in studying the acyclic edge coloring. For com-
pleteness, we give its proof here.

Lemma 2.2 Suppose that a graph G has an acyclic edge-(∆ + 2)-coloring c. Let P =

uv1v2 . . . vkvk+1 be a maximal (a, b)(u,vk+1)-path in G with c(uv1) = a and b /∈ C(u). If
w /∈ V (P ), then there does not exist an (a, b)(u,w)-path in G under c.

Proof. Suppose that there exists an (a, b)(u,w)-path P ′ in G under c and assume P ′ =

uw1 . . . wmwm+1 with m ≥ 1 and w = wm+1. Since w /∈ V (P ) and b /∈ C(u), let vi be the
first vertex such that vi+1 ̸= wi+1. Then c(vivi+1) = c(viwi+1), a contradiction. �

Lemma 2.3 Let G be a chordal graph and v a simplicial vertex of G. Then the graph G−uv

is a chordal graph, where u ∈ N(v).

Proof. If G − uv is not a chordal graph, then G − uv contains a cycle C without chords.
Note that u, v ∈ V (C). We claim that |C| ≥ 5, since otherwise, let C = uvivvj and then
vivj /∈ E(G), a contradiction. If |C| ≥ 5, then we can find a cycle C ′ in G such that
E(C ′) ⊆ E(C) ∪ {uv} and |C ′| ≥ 4, which also has no chords, a contradiction. �
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Lemma 2.4 Let G be a chordal graph and x a cut-vertex. Denote G′
1, G

′
2, . . . , G

′
k as the

components of G−x and Hi as the subgraph induced by V (G′
i)∪{x}, respectively. If a′(Hi) ≤

∆+ 2 for each i ∈ [k], then a′(G) ≤ ∆+ 2.

Proof. Let ci be an acyclic edge coloring of Hi using color set C(i) = [∆+2]. For each Hi, by
permuting colors in C(i), we can obtain a new acyclic edge-(∆+2)-coloring c′i using color set
C(i′) = [∆ + 2], such that C(1′)(x) = [dH1(x)] and C(i′)(x) = [

∑i
j=1 dHj

(x)] \ [
∑i−1

j=1 dHj
(x)],

where i ∈ [k] \ {1}. Then we obtain an acyclic edge-(∆ + 2)-coloring of G. �

Lemma 2.5 Let G be a chordal graph and C a cycle of G. If uv ∈ E(C), then N(u) ∩
N(v) ∩ V (C) ̸= ∅.

Proof. Let k be the length of C. By induction on k. If |C| ≤ 4, then the lemma holds
obviously. Suppose that |C| ≥ 5. And assume that C = u1u2 . . . uku1 and u = u1, v =

uk. By the definition of a chordal graph, let uiuj be a chord of C with 1 ≤ i < j ≤ k.
Then we obtain a cycle C1 = u1 . . . uiuj . . . uku1. By the induction hypothesis, we know
N(u) ∩N(v) ∩ V (C1) ̸= ∅. The proof is then complete. �

Lemma 2.6 Let G be a 2-connected chordal graph. If G contains a copy of K∆0, then
a′(G) ≤ ∆0 + 2. Furthermore, a′(K7) ≤ 7.

Proof. First suppose that G = K7. We complete this case by proving that K7 is acyclic
edge-7-colorable. It is easy to see that K8 is edge-7-colorable. Assume that V (K8) =

{v0, v1, . . . , v7}. Place the vertices v1, v2, . . . , v7 cyclically about a regular 7-gon and place v0

in the center of the 7-gon. Join every two vertices of K8 by a straight line segment. For each
i with 1 ≤ i ≤ 7, the edge v0vi and all edges perpendicular to v0vi form a 1-factor Fi of K8

and so F = {F1, F2, . . . , F7} is a 1-factorization of K8. Assign each edge of Fi the color i

for 1 ≤ i ≤ 7. Then we observe that the subgraph induced by any two colors classes in K8 is
C8. By deleting v0 from K8, we delete two edges of the C8 induced by any two colors classes
in K8. And it provides an acyclic edge-7-coloring of K7 with vertex set {v1, v2, . . . , v7}.

If we split one vertex in K7 to three vertices with degree 2, then we obtain a graph A1 as
shown in Figure 1. And by constructing a bijection between E(G) and E(A1), it is easy to
obtain a′(A1) ≤ 7 since a′(K7) ≤ 7. Similarly, we get a graph A2 and A3 as shown in Figure
1. Obviously, a′(A2) ≤ 7 and a′(A3) ≤ 7.

Now suppose that G contains a copy of K∆0 but G ̸= K7, denoted H. Let d(H, u) =

min{dG(v, u)|v ∈ V (H)} and S = {u|d(H, u) = 1 and u ∈ V (G) \ V (H)}. If |S| = 1, since
G is 2-connected, then G is a subgraph of K7. Suppose that |S| ≥ 2. By Lemma 2.5, for
any two vertices s1, s2 ∈ S, since ∆ ≤ ∆0, then s1s2 /∈ E(G) and there does not exist a
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(s1, s2)-path passing any vertex in V (G) \ (V (H) ∪ S). This means V (G) = V (H) ∪ S. If
|S| ≥ 4 or |S| ≥ 3 with ∆0 = 5, then there exists a vertex s ∈ S which is adjacent to exactly
one vertex y in V (H). And obviously, y is a 1-vertex or a cut-vertex, a contradiction. If
|S| = 3 with ∆0 = 6, then G = A1. Suppose that |S| = 2. Then G is a subgraph of K7 or
A2 or A3, and so we are done. �

Figure 1: The configurations used in the proof of Lemma 2.6.

Lemma 2.7 Let G be a chordal graph and v a simplicial vertex in G. Suppose that d(v) = 3

and u ∈ NG(v) with d(u) ≤ 5. If a′(G− uv) ≤ ∆0 + 2, then a′(G) ≤ ∆0 + 2.

Proof. Let c be an acyclic edge-(∆0 + 2)-coloring of G − uv with color set C = [∆0 + 2].
Assume that {v, w, x} ⊆ NG(u), NG(v) = {u,w, x} and (vw, vx)c = (1, 2). Let S = C \
(C(u) ∪ C(v)).

If |C(u) ∩ C(v)| = 0, then let uv → a, where a ∈ S.
Suppose that |C(u) ∩ C(v)| = 1. By symmetry, assume that C(u) ∩ C(v) = {1} and

C(u) ⊆ {1, 3, 4, 5}. For any j ∈ S, G contains a (1, j)(u,v)-path, otherwise let uv → j. If
c(ux) = 1, then assume c(uw) = 5. Note that S ⊆ C(x) ∩ C(w). If there exists some
i ∈ {3, 4} \ (C(x) ∪ C(w)), then let (vx, uv) → (i, 2). WLOG, assume 3 ∈ C(x) and
4 ∈ C(w). We obtain C(w) = {1, 4, 5} ∪ S and C(x) = {1, 2, 3} ∪ S. For any i ∈ S,
G contains a (3, i)(u,w)-path, otherwise let (vw, uv) → (3, i); G contains a (4, i)(u,x)-path,
otherwise let (vw, vx, uv) → (2, 4, i). Hence assume {y, z} ⊆ NG(u) and (uy, uz)c = (3, 4).
If 1 /∈ C(z), then let (vx, uv) → (4, 2). If 5 /∈ C(y), then let (vw, vx, uv) → (3, 5, 2). Hence
({1, 4}∪S) ⊆ C(z) and ({3, 5}∪S) ⊆ C(y). If 2 /∈ C(z)∪C(y), then let (ux, vw, vx, uv) →
(2, 2, 4, 1); if 2 ∈ C(z), then let (uz, uw, vx, uv) → (5, 2, 5, 4); if 2 ∈ C(y) \ C(z), then let
(uy, ux, uw, uv) → (1, 5, 2, 3), we are done. Hence we suppose y ∈ NG(u) and c(uy) = 1.
Then assume (ux, uw)c = (3, 5). If 3 /∈ C(w), then let vw → 3, we are done by the proof
of the case of c(ux) = 1. Suppose 3 ∈ C(w). Then we obtain C(w) = {1, 3, 5} ∪ S. If
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i /∈ C(x) for some i ∈ S, then let (vx, uv) → (i, 2) by Lemma 2.2. Hence S ⊆ C(x) ∩ C(w).
If 4 /∈ C(x), then let (vx, uv) → (4, 2); if 4 ∈ C(x), then let (vw, vx, uv) → (4, 1, 2).

Now suppose that |C(u) ∩ C(v)| = 2 and C(u) ⊆ {1, 2, 3, 4}. For any j ∈ S, G contains
an (i, j)(u,v)-path for some i ∈ {1, 2}, otherwise let uv → j. If i /∈ C(w) for some i ∈ S,
then let vw → i by Lemma 2.2, the proof is reduced to the case of |C(u) ∩ C(v)| = 1.
Hence S ⊆ C(x) ∩ C(w) by symmetry. By symmetry, if c(ux) = 1 and c(uy) = 2, then
assume (uw,wx)c = (3, 5) and let (vw, uv) → (4, 5); if c(uz) = 1 and c(uy) = 2, then assume
(uw, ux, wx)c = (3, 4, 5) and let uv → 5. �

Lemma 2.8 Let G be a 2-connected chordal graph and u, v ∈ W0 with d(u) ≤ 4 and d(v) ≤
4. If uv ∈ E(G) and a′(G − uv) ≤ ∆0 + 2, then a′(G) ≤ ∆0 + 2. Furthermore, if w ∈ W1,
then NG(z) ⊆ NG1 [w] for every z ∈ NG(w) ∩W0 with dG(z) ≤ 4.

Proof. Let c be an acyclic edge-(∆0 + 2)-coloring of G− uv.
If d(u) = d(v) = 2, then let y ∈ NG(u) ∩ NG(v) and we see that y is a cut-vertex, a

contradiction. If d(u) = d(v) = 3, we are done by Lemma 2.7. Now suppose d(u) = d(v) = 4,
and let NG(u) ∩ NG(v) = {u1, u2, u3}. If ∆0 = 5, then G contains a copy of K∆0 , we are
done by Lemma 2.6. Suppose ∆0 = 6. If |C(u) ∩ C(v)| = 0, then let uv → a, where
a ∈ C \ (C(u) ∪ C(v)). Thus, 1 ≤ |C(u) ∩ C(v)| ≤ 3. Let S ⊆ C \ (C(u) ∪ C(v)) be a color
set such that G contains a (1, j)(u,v)-path for each j ∈ S but G contains no (1, j′)(u,v)-path
for any j′ ∈ C \ (C(u) ∪ C(v) ∪ S).

Case 1 |C(u) ∩ C(v)| = 3, say C(u) ∩ C(v) = {1, 2, 3}.
By symmetry, assume (uu1, uu2, uu3)c = {1, 2, 3} and (vu1, vu2, vu3)c = {2, 3, 1}. For any

j ∈ {4, 5, 6, 7, 8}, G contains an (i, j)(u,v)-path for some i ∈ {1, 2, 3}, otherwise let uv → j.
If |S| = 4, then let uv → a, where a ∈ C \ ({1, 2, 3} ∪ S), we are done. If |S| = 3,

then WLOG, assume S = {4, 5, 6} and G contains a (2, 7)(u,v)-path and a (3, 8)(u,v)-path as
∆ ≤ 6. We obtain C(u1) = {1, 2, 4, 5, 6, 7} and {2, 3, 7, 8} ⊆ C(u2). Then let (uu1, uv) →
(8, a), where a ∈ {4, 5, 6} \ C(u2), we are done. If |S| = 2, then assume S = {4, 5}. By
symmetry and ∆ ≤ 6, we assume G contains a (3, 8)(u,v)-path and a (2, j)(u,v)-path for every
j ∈ {6, 7}. Then, we obtain C(u1) = {1, 2, 4, 5, 6, 7} and {2, 3, 6, 7, 8} ⊆ C(u2). Then let
(uu1, uv) → (8, a), where a ∈ {4, 5} \ C(u2), we are done.

Case 2 |C(u) ∩ C(v)| = 2, say C(u) ∩ C(v) = {1, 2}.
By symmetry, assume (uu1, uu2, uu3)c = {1, 2, 3} and (vu1, vu2, vu3)c = {2, 4, 1}. For

any j ∈ {5, 6, 7, 8}, G contains an (i, j)(u,v)-path for some i ∈ {1, 2}, otherwise let uv → j.
Thus, we know C(u1) = {1, 2, 5, 6, 7, 8}. If 4 /∈ C(u3), then let uu3 → 4 and the proof is
reduced to Case 1. Suppose 4 ∈ C(u3). Let a be a color in {5, 6, 7, 8} \ C(u3). We know
there is a (2, a)(u,v)-path. Let (uu3, uv) → (a, 3), then we are done by Lemma 2.2.
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Case 3 |C(u) ∩ C(v)| = 1, say C(u) ∩ C(v) = {1}.
By symmetry, assume (uu1, uu2, uu3)c = {1, 2, 3} and (vu1, vu2, vu3)c = {5, 4, 1}. For

any j ∈ {6, 7, 8}, G contains a (1, j)(u,v)-path, otherwise uv → j.
If 4 /∈ C(u3), then 4 ∈ C(u1) and 1 ∈ C(u2), otherwise let uu3 → 4; 2 ∈ C(u3), otherwise

let vu1 → 2. The proof is reduced to Case 2. Hence, C(u1) = {1, 4, 5, 6, 7, 8} and C(u3) =

{1, 2, 3, 6, 7, 8}. Since c(u1u2) ̸= 4 and c(u2u3) ̸= 2, we know {c(u1u2), c(u2u3)} ⊆ {6, 7, 8}.
WLOG, assume (c(u1u2), c(u2u3))c = {7, 8}. If 3 /∈ C(u2), then let vu2 → 3; if 3 ∈ C(u2),
then let uu2 → 5. Then the proof is reduced to Case 2.

Suppose 4 ∈ C(u3) and 2 ∈ C(u1) by symmetry. If 3 /∈ C(u2), then let vu2 → 3;
if 5 /∈ C(u2), then let uu2 → 5. Then the proof is reduced to Case 2. Hence suppose
3 ∈ C(u2) and 5 ∈ C(u2). Since c(u1u2) ̸= 2 and c(u2u3) ̸= 4, we know {c(u1u2), c(u2u3)} ⊆
{6, 7, 8}. Assume (c(u1u3), c(u1u2), c(u2u3))c = {6, 7, 8}, then C(u2) = {2, 3, 4, 5, 7, 8}. Let
(vu2, uv) → (6, 4), we are done. �

3 Proof of Theorem 1.2

The proof is proceeded by induction on |E(G)|. If |E(G)| = 0, then G is trivial and the
theorem holds naturally. If |V (G)| ≤ 5, then ∆(G) ≤ 4 and we have a′(G) ≤ 6 by previously
known results. So |E(G)| ≥ 1 and |V (G)| ≥ 6. If G is disconnected, then denote G1, . . . , Gk

as the components of G. And we know a′(G) ≤ max{a′(Gi)|i ∈ [k]}. Hence combining
Lemma 2.4, WLOG, assume that G is 2-connected. For each x ∈ W0 and y ∈ NG(x), G−xy

is a chordal graph by Lemma 2.3. Then by the induction hypothesis, G− xy has an acyclic
edge-7-coloring c using the color set C = [7].

Let u be a simiplicial vertex in G, we have dG(u) = 2 by Lemmas 2.6 and 2.7. Let
N(u) = {v, u1} and c be an acyclic edge-7-coloring of G−uv. By Lemma 2.5, u1 and v have
a common neighbor different from u, denoted w. If C(u)∩C(v) = ∅, then let uv → a, where
a ∈ C \ (C(u) ∪ C(v)). Suppose |C(u) ∩ C(v)| = 1 and WLOG, let C(u) ∩ C(v) = {1} and
C(v) ⊆ S = {1, 2, 3, 4}.

Case 1 c(vw) ̸= 1, say (vu1, vw, vv1)c = (3, 4, 1).
We know that G contains a (1, i)(u,v)-path for each i ∈ {5, 6, 7}, otherwise let uv → i.

Hence {5, 6, 7} ⊆ C(u1). By symmetry, assume c(u1w) = 5. For any i ∈ {5, 6, 7}, G

contains a (4, i)(u1,v)-path, otherwise let (uu1, uv) → (4, i). Hence C(w) = {1, 4, 5, 6, 7}. Let
(uu1, uv) → (2, 5).

Case 2 c(vw) = 1, say c(vu1) = 4.
We obtain G contains a (1, i)(u,v)-path for every i ∈ {5, 6, 7}, otherwise let uv → i. Hence

{5, 6, 7} ⊆ C(u1). Let uu1 → 2, the proof is reduced to case 1 or the case of C(u)∩C(v) = ∅.
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4 Proof of Theorem 1.3

The proof is proceeded by induction on |E(G)|. With the similar proof of Theorem 1.2, we
assume that |E(G)| ≥ 1, |V (G)| ≥ 6 and G is 2-connected. For each x′ ∈ W0 and y′ ∈ NG(x

′),
G − x′y′ is a chordal graph by Lemma 2.3. By the induction hypothesis, G − x′y′ has an
acyclic edge-8-coloring c using the color set C = [8]. Then we have 2 ≤ dG(x

′) ≤ 4 by
Lemma 2.6. And if y′ is an almost-simplicial neighbor of x′, then 2 ≤ dG(y

′) ≤ 5 by Lemma
2.6.

By Lemma 2.1, we can find a pair of vertices u0 and v0 satisfying at least one of (i), (ii)
and (iii). WLOG, let u0 be a simplicial vertex and call v0 a partner of u0. Then, let W2

denote the vertex set consisting of all vertices which can be a candidate for u0.
Case 1 There exists a vertex u with dG(u) = 2 and u ∈ W2.
If there is a partner v′ of u such that v′ ∈ N(u), then let v = v′. Otherwise, for some

partner v′ of u, let v be a vertex in N(v′) ∩ N(u). Let N(u) = {v, u1} and c be an acyclic
edge-8-coloring of G − uv. By Lemmas 2.4 and 2.5, u1 and v have a common neighbor
different from u, denoted w. And we denote {u, u1, w, v1, . . . , vl}, {u, v, w, u11, . . . , u1k} and
{u1, v, w1, . . . , wm} as neighborhood of v, u1 and w, respectively.

If C(u)∩C(v) = ∅, then let uv → a, where a ∈ C\(C(u)∪C(v)). Suppose |C(u)∩C(v)| =
1. WLOG, assume C(u) ∩ C(v) = {1} and C(v) ⊆ S = {1, 2, 3, 4, 5}.

Subcase 1.1 c(vw) ̸= 1, say (vu1, vw, vv1)c = (4, 5, 1).
Subcase 1.1.1 c(u1w) = 3 or c(u1w) = 2.
By symmetry, assume c(u1w) = 3. It is obvious that {6, 7, 8} ⊆ C(u1), otherwise let

uv → a, where a ∈ {6, 7, 8} \ C(u1). If G contains no (5, i)(u1,v)-path for some i ∈ {6, 7, 8},
then let (uu1, uv) → (5, i). Similarly, we know G contains a (2, i)(u1,v)-path for each i ∈
{6, 7, 8}. Assume (ww1, ww2, ww3)c = (6, 7, 8), then 5 ∈ C(w1) ∩ C(w2) ∩ C(w3).

• The graph G contains no (4, j)(w,u1)-path for some j ∈ {1, 2}.
If 4 ∈ C(w), then let (u1w, uu1, uv) → (j, 3, i); if 4 /∈ C(w), then let (u1w, uu1, uv) →

(a, 3, i), where a ∈ {1, 2} \C(w). Then we obtain that G contains a (3, i)(u1,v)-path for each
i ∈ {6, 7, 8}, otherwise we are done by Lemma 2.2. Thus, {6, 7, 8} ⊆ C(v1)∩C(v2)∩C(v3) and
{1, 2, 3, 5} ⊆ C(u11)∩C(u12)∩C(u13). Since d(w) ≥ 5 and d(v) = 6, then v′ /∈ (N [u]∪{w})
and v′ ∈ {v1, v2, v3} ∩ W0. And we know w ∈ N(v′) or u1 ∈ N(v′) as d(v) = 6. Then
|C(v′)| ≥ 5 and d(v′) ≥ 5, a contradiction.

• The graph G contains a (4, j)(w,u1)-path for each j ∈ {1, 2}.
If 3 /∈ C(v), then let uv → 3. Suppose 3 ∈ C(v) and assume (vv2, vv3)c = (2, 3).

If a ∈ {6, 7, 8} \ C(v3), then let (vv3, vu1, u1w, uv) → (a, 3, 2, 4) by Lemma 2.2. Hence
{6, 7, 8} ⊆ C(v3). Then {1, 2, 5} ⊆ C(u11)∩C(u12)∩C(u13) and {4, 6, 7, 8} ⊆ C(v1)∩C(v2).
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Since d(w) ≥ 5 and d(v) = 6, we obtain v′ /∈ (N [u] ∪ {w}) and v′ = v3 as d(v1) ≥ 5 and
d(v2) ≥ 5. Then we claim that C(v′) = {3, 6, 7, 8}. Hence {u1, w} ∩ N(v′) = ∅. Then we
have d(v) ≥ 7, a contradiction.

Subcase 1.1.2 c(u1w) ∈ {6, 7, 8}, say c(u1w) = 6 by symmetry.
We know G contains a (1, i)(u,v)-path for each i ∈ {6, 7, 8}, otherwise let uv → i.
• 5 ∈ C(u1).
If G contains no (i, j)(u1,v)-path for some i ∈ {2, 3} and some j ∈ {6, 7, 8}, then let

(uu1, uv) → (i, j). WLOG, assume (u1u11, u1u12, u1u13)c = (5, 7, 8), (vv1, vv2, vv3)c =

(1, 2, 3) and (ww1, ww2, ww3)c = (1, 2, 3). Then 6 ∈ C(w1) ∩ C(w2) ∩ C(w3). And we
have {1, 2} ⊆ C(u12) ∩ C(u13) and {6, 7, 8} ⊆ C(v1) ∩ C(v2) ∩ C(v3). Since d(w) ≥ 5

and d(v) = 6, we obtain v′ /∈ (N [u] ∪ {w}) and v′ ∈ {v1, v2, v3} ∩ W0. Then we know
w ∈ N(v′) or u1 ∈ N(v′) as d(v) = 6. If 4 ∈ C(w), then |C(v′)| ≥ 5 and d(v′) ≥ 5, a
contradiction. Suppose 4 /∈ C(w). By Lemma 2.2, we know G contains an (i, 5)(u1,v)-path
for each i ∈ {1, 2, 3}, otherwise let (uu1, vw, uv) → (i, a, 5), where a ∈ {7, 8} \ C(w). Then
5 ∈ C(v1) ∩ C(v2) ∩ C(v3) and |C(v′)| ≥ 5. So we obtain d(v′) ≥ 5, a contradiction.

• 5 /∈ C(u1).
Since ∆ ≤ 6, there is a color a ∈ {2, 3} \ C(u1). WLOG, assume a = 3. we know

G contains an (i, j)(u1,v)-path for each i ∈ {3, 5} and each j ∈ {6, 7, 8}, otherwise let
(uu1, uv) → (i, j). If 2 /∈ C(v), then let (uu1, uv) → (5, 2). Suppose 2 ∈ C(v). Assume
(u1u11, u1u12, vv1, vv2, vv3)c = (7, 8, 1, 2, 3) and (ww1, ww2, ww3, ww4)c = (1, 3, 7, 8). Then
6 ∈ C(w1) ∩ C(w2), 5 ∈ C(w3) ∩ C(w4), C(w) = {1, 3, 5, 6, 7, 8}, {1, 3, 5} ⊆ C(u11) ∩ C(u12)

and {6, 7, 8} ⊆ C(v1)∩C(v3). And we have 6 ∈ C(v2), otherwise let (vv2, uu1, uv) → (6, 5, 2).
Note that for {i, j} = {7, 8}, if i ∈ C(v2) but j /∈ C(v2), then 4 ∈ C(v2), otherwise let
(vv2, uu1, uv) → (j, 5, 2) by Lemma 2.2.

Suppose 7 ∈ C(v2) or 8 ∈ C(v2). Since d(w) ≥ 5 and d(v) = 6, then v′ /∈ (N [u] ∪ {w})
and v′ ∈ {v1, v2, v3} ∩ W0. And we know w ∈ N(v′) or u1 ∈ N(v′) as d(v) = 6. Then
|C(v′)| ≥ 5 and d(v′) ≥ 5, a contradiction.

Now suppose 7 /∈ C(v2) and 8 /∈ C(v2). We know G contains a (4, j)(v,v2)-path for
each j ∈ {7, 8}, otherwise let (uu1, uv, vv2) → (5, 2, j). And G contains a (6, j)(v2,u1)-path
for each j ∈ {7, 8}, otherwise let (u1v, uu1, u1w, uv, vv2) → (6, 5, 4, 2, j). Then we obtain
{1, 3, 4, 5, 6} ⊆ C(u11) ∩ C(u12). Since 4 /∈ C(w), the (4, 7)(v,v2)-path will not pass the
vertex w, then there exists a vertex s ∈ (N(u1) ∩N(v)) \ {u,w} such that 4 ∈ C(s) by the
Lemma 2.5. Since |C(x) ∪ C(y)| ≥ 7 for each x ∈ {u11, u12} and each y ∈ {v1, v2, v3}, we
have s = u13 = vi, where i = 1 or i = 3, such that d(u13) = 6 and c(u1u13) = 2. Thus
C(s) = {i, 2, 4, 6, 7, 8}, where i = 1 or i = 3. Let u1u13 → 5 by the Lemma 2.2, the proof is
reduced to the case of 5 ∈ C(u1).
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Subcase 1.2 c(vw) = 1, say c(vu1) = 4.
If d(v) = 3, then |(C(u1) ∪ C(v))| ≤ 7, let uv → a, where a ∈ C \ (C(u1) ∪ C(v)).

Suppose d(v) ≥ 4. Let uu1 → a, where a ∈ C \ C(u1). If a /∈ C(v), then let uv → b, where
b ∈ C \ ({a} ∪ C(v)); if a ∈ C(v), the proof is reduced to Subcase 1.1. �

For an edge uv ∈ E(G), if {u, v} is a separating set of G and Q1, Q2, . . . , Qk are the
components of G− {u, v}, then let Hi = G[V (Qi) ∪ {u, v}] and j = dG(u)− dH1(u).

Claim 1 If a′(H1) + j ≤ ∆+ 2 and j ≤ 2, then a′(G) ≤ ∆+ 2.

Proof. Let T = G\V (Q1). By the induction hypothesis, the subgraph T has an acyclic edge-
(∆+2)-coloring c′. And H1 has an acyclic edge coloring c with colors of {c′(uv)}∪(C ′\C ′

T (u)).
Permuting the colors in {c′(uv)} ∪ (C ′ \ C ′

T (u)) in H1 such that CH1(v) ∩ C ′
T (v) = c′(uv),

then we obtain an acyclic edge-(∆ + 2)-coloring of G and a′(G) ≤ ∆+ 2. �

For the graph classes C1, . . . ,C8 as shown in the Figure 2, let H1 be the subgraph induced
by the vertices that have been shown in the square marked with dotted lines.

Claim 2 If G is a subgraph of B1 or B2 or G ∈ ∪8
i=1Ci, then a′(G) ≤ 8.

Proof. For graph B1, let F1 = {ae, bd, cg}, F2 = {ab, ce}, F3 = {ad, bc, eh}, F4 = {be, cd},
F5 = {ac, de, bf}, F6 = {bg, dh, ef} and F7 = {af, ch, dg}. Assign each edge of Fi the color
i for 1 ≤ i ≤ 7, then we obtain a′(B1) ≤ 7. And it is easy to know a′(B2) ≤ 8 since B1 is a
subgraph of B2 and |E(B2)| = |E(B1)|+ 1.

If G ∈ ∪4
i=1Ci∪C8, since H1 is a subgraph of K7 and dG(u)−dH1(u) = 1, then a′(G) ≤ 8 by

a′(K7) ≤ 7 and Claim 1. If G ∈ C6∪C7, since H1 is a subgraph of B1 and dG(u)−dH1(u) = 1,
then a′(G) ≤ 8 by a′(B1) ≤ 7 and Claim 1.

Suppose that G ∈ C5 and furthermore assume that V (H1) = {u, v, a, b, c, d, e} as shown
in C5. Let T = G \ (V (H1) \ {u, v}). By the induction hypothesis, the subgraph T has
an acyclic edge-8-coloring c. WLOG, assume CT (u) \ c(uv) ⊆ {1, 2} and c(uv) = 6. Then
let F1 = {ad, bc}, F2 = {bd, ce}, F3 = {vb, ue}, F4 = {ua, ve}, F5 = {va, be}, F6 = {ab},
F7 = {ub, ae} and F8 = {ac, de}. Assign each edge of Fi the color i for 1 ≤ i ≤ 8, then we
obtain a′(G) ≤ 8. �

Case 2 3 ≤ dG(u) ≤ 4 for each u ∈ W2.
It is obvious V (G1) ̸= ∅ since a′(Kt) ≤ t + 1 for t ≤ 7. By Lemma 2.1, Let x and y

be a pair of vertices in G1 satisfying at least one of (i), (ii) and (iii). WLOG, assume x

is a simplicial vertex, then 2 ≤ dG1(x) ≤ 4 by Lemma 2.6. Denote S = NG1(y) ∩ NG1(x)

and s0 = max{d(s)|s ∈ S}. If z ∈ NG(x) ∩ W0, then 3 ≤ dG(z) ≤ 4, otherwise the
proof is reduced to Case 1. Let n3(w) = |{z|z ∈ NG(w) ∩ W0 and dG(z) = 3}| and
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Figure 2: Configurations used in the proof of Claim 2.
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n4(w) = |{z|z ∈ NG(w) ∩ W0 and dG(z) = 4}| for any vertex w in G. If dG1(x) = 2, then
d(v) = 3 for each v ∈ N(x) ∩W0 by Case 1, Lemmas 2.6 and 2.8. If d(x) ≤ ∆ − 1, then
a′(G) ≤ ∆(G) + 2 by Lemma 2.7; if d(x) = ∆, then G is a subgraph of K7, we are done by
Lemma 2.6. Hence suppose 3 ≤ dG1(x) ≤ 4. Note that if dG1(x) = 4, then n3(x)+n4(x) ≥ 1;
if dG1(x) = 3 and n4(x) = 0, then n3(x) = 3; if dG1(x) = 3 and n4(x) = 1, then n3(x) = 2;
otherwise, dG1(x) = 3 and n4(x) ≥ 2 by Lemma 2.7. Now we have to handle with three
possibilities:

Subcase 2.1 The vertex y satisfies condition (i).
Since y is a simplicial vertex in G1, we have 3 ≤ dG1(y) ≤ 4 and n3(y) + n4(y) ≥ 1.
Suppose dG1(x) = 4 and dG1(y) = 3. If |S| ≤ 2 or |S| = 3 with d(y) ≥ 5, since

n3(y) + n4(y) ≥ 1, then d(s0) ≥ 7 by Lemma 2.8, a contradiction. Hence |S| = 3 and
d(y) = 4. By Lemmas 2.7 and 2.8, we are done. Hence suppose dG1(x) = 4 and dG1(y) = 4.
If |S| ≤ 3, since n3(y) + n4(y) ≥ 1, then d(s0) ≥ 7, a contradiction. Hence |S| = 4. Since
∆ = 6, we have n3(y) = 0, n4(y) = 1 or n3(y) = 2, n4(y) = 0 by Lemmas 2.7 and 2.8. Then
NG(x) ∩W0 = ∅, a contradiction.

Now suppose dG1(x) = 3 and dG1(y) = 3 by symmetry. We know n3(x) + n4(x) ≥ 2

and n3(y) + n4(y) ≥ 2. If |S| = 1, then n4(x) = 0 and n3(x) = 3 by Lemmas 2.7 and
2.8. And we know there is a cut-vertex s1 ∈ S, a contradiction. Suppose |S| ≥ 2. Since
n3(x) + n4(x) + n3(y) + n4(y) ≥ 4, then d(s0) ≥ 7 by Lemmas 2.7 and 2.8, a contradiction.

Subcase 2.2 The vertex y satisfies condition (iii).
It is obvious that dG1(y) > dG1(x).
Suppose dG1(x) = 4. If dG1(y) = 6, then NG(x) ∩ W0 = ∅, a contradiction. Hence

dG1(y) = 5. If n4(x) + n3(x) = 2 with n4(x) ≥ 1, then d(s0) ≥ 7 by Lemma 2.8, a
contradiction. If n4(x) = 1 and n3(x) = 0, then G is a subgraph of K7 or G ∈ C1. Suppose
n4(x) = 0 and n3(x) = 2, then G = B2.

Now suppose dG1(x) = 3. If dG1(y) ≥ 5, since n4(x)+n3(x) ≥ 2, then NG(x)∩W0 = ∅, a
contradiction. Now suppose dG1(y) = 4. If n4(x)+n3(x) = 3 with n4(x) ≥ 1, then d(s0) ≥ 7

by Lemma 2.8, a contradiction. If n4(x) = 0 and n3(x) = 3, then dG1(y) = 3, a contradiction.
Hence suppose n4(x) = 2 and n3(x) = 0, then G is a subgraph of K7.

Subcase 2.3 The vertex y satisfies condition (ii).
Note that for each z ∈ {x, y}, if n4(z) = 0, then n3(z) ≥ 2 by Lemma 2.7. Note that

n3(y) + n4(y) ≥ 1. Let T = {t|t ∈ W0 ∩NG(x) ∩NG(y)}.
Subcase 2.3.1 dG1(x) = 4.
Suppose |T | = 0. If n4(x) + n3(x) + n4(y) + n3(y) ≥ 3, then d(s0) ≥ 7 by Lemma 2.8, a

contradiction. Hence n4(x) = 1 and n4(y) = 1, then G is a subgraph of K7.
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Suppose |T | = 1 and assume t1 ∈ T . Note that 3 ≤ dG(t1) ≤ 4. Suppose d(t1) = 4. If
4 ≥ n4(x) + n3(x) + n4(y) + n3(y) ≥ 3, then G is a subgraph of K7 or B2; if n4(x) + n3(x) +

n4(y) + n3(y) = 2, then G ∈ C2 ∪ C3 or G is a subgraph of K7 or B2 by Lemma 2.5. Now
suppose d(t1) = 3. We obtain n3(x) = n3(y) = 2 and G is a subgraph of B2 by Lemmas 2.7
and 2.8.

Suppose |T | = 2 and assume T = {t1, t2}. If d(t1) = 4 or d(t2) = 4, then G ∈ C4 or G is
a subgraph of K7 or B2 by Lemma 2.5 and Case 1. Suppose d(t1) = d(t2) = 3. We obtain
G ∈ C5 ∪ C6 ∪ C7 or G is a subgraph of K7 or B1 by Lemma 2.5.

Subcase 2.3.2 dG1(x) = 3.
By Lemmas 2.7 and 2.8, we have n4(x) + n3(x) ≥ 2 and n4(y) + n3(y) ≥ 2. If |T | = 0,

then d(s0) ≥ 7, a contradiction; if |T | = 1, then G is a subgraph of K7; Suppose |T | = 3. If
n4(x) ≥ 2, then G is a subgraph of K7; if n4(x) = 1, then G is a subgraph of K7 by Case
1; if n4(x) = 0, then G ∈ C8 or G is a subgraph of K7 by Case 1. Now suppose |T | = 2. If
n4(x) ≥ 2, then G is a subgraph of K7. Hence suppose n4(x) + n3(x) = 3 by Lemmas 2.7.
And we know G is a subgraph of K7 by Case 1. �
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