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We consider the skew Laplacian matrix of a digraph
−→
G obtained by giving an arbitrary

direction to the edges of a graph G having n vertices and m edges. With ν1, ν2, . . . , νn

to be the skew Laplacian eigenvalues of
−→
G , the skew Laplacian energy SLE(

−→
G ) of

−→
G

is defined as SLE(
−→
G ) =

Pn
i=1 |νi|. In this paper, we analyze the effect of changing the

orientation of an induced subdigraph on the skew Laplacian spectrum. We obtain bounds

for the skew Laplacian energy SLE(
−→
G ) in terms of various parameters associated with

the digraph
−→
G and the underlying graph G and we characterize the extremal digraphs

attaining these bounds. We also show these bounds improve some known bounds for some
families of digraphs. Further, we show the existence of some families of skew Laplacian
equienergetic digraphs.
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1. Introduction

Consider a simple graph G with n vertices and m edges and having the vertex
set V = {v1, v2, . . . , vn}. Let

−→
G be a digraph obtained by assigning arbitrarily a

direction to each of the edges of G. The digraph
−→
G is called an orientation of G

or oriented graph corresponding to G. Also, the graph G is called the underlying
graph of

−→
G . Let d+

i = d+(vi), d−i = d−(vi) and di = d+
i + d−i , i = 1, 2, . . . , n

be respectively the out-degree, in-degree and degree of the vertices of
−→
G . The out-

adjacency matrix of the digraph
−→
G is the n×n matrix A+ = A+(

−→
G ) = (aij), where

aij = 1, if (vi, vj) is an arc and aij = 0, otherwise. The in-adjacency matrix of the

digraph
−→
G is the n×n matrix A− = A−(

−→
G ) = (aij), where aij = 1, if (vj , vi) is an

arc and aij = 0, otherwise. We note that A− = (A+)t. The skew adjacency matrix

of a digraph
−→
G is the n× n matrix S = S(

−→
G ) = (sij), where

sij =

⎧⎪⎪⎨⎪⎪⎩
1, if there is an arc from vi to vj ,

−1, if there is an arc from vj to vi,

0, otherwise.

Clearly, S(
−→
G ) is a skew symmetric matrix, so all its eigenvalues are zero

or purely imaginary. The energy of the matrix S(
−→
G ) is defined as Es(

−→
G ) =∑n

i=1 |ξi|, where ξ1, ξ2, . . . , ξn are the eigenvalues of S(
−→
G ). This energy of a

digraph
−→
G is called the skew energy [1]. For recent developments on the the-

ory of skew spectrum and skew energy, we refer to the survey paper [11]. Let

D+ = D+(
−→
G ) = diag(d+

1 , d+
2 , . . . , d+

n ), D− = D−(
−→
G ) = diag(d−1 , d−2 , . . . , d−n ) and

D(
−→
G ) = diag(d1, d2, . . . , dn) be respectively the diagonal matrix of vertex out-

degrees, vertex in-degrees and vertex degrees of
−→
G . Further, let A+ and A− be

respectively the out-adjacency and in-adjacency matrix of a digraph
−→
G . If S(

−→
G ) is

the skew adjacency matrix of
−→
G and A(G) is the adjacency matrix of the underlying

graph G of the digraph
−→
G , then it clear that A(G) = A++A− and S(

−→
G ) = A+−A−.

Analogous to the definition of Laplacian matrix of a graph, Cai et al. [3] called the

matrix S̃L(
−→
G ) = D̃(

−→
G ) − S(

−→
G ), where D̃(

−→
G ) = D+(

−→
G ) − D−(

−→
G ), as the skew

Laplacian matrix of the digraph
−→
G . Clearly, the matrix S̃L(

−→
G ) is not symmetric

and so its eigenvalues need not be real. The characteristic polynomial

Psl(
−→
G, x) = xn + a1x

n−1 + a2x
n−2 + · · ·+ an,

of the matrix S̃L(
−→
G ) is called the skew Laplacian characteristic polynomial of the

digraph
−→
G . The zeros of the polynomial Psl(

−→
G, x), that is, the eigenvalues of the

matrix S̃L(
−→
G ) are the skew Laplacian eigenvalues of the digraph

−→
G and are denoted

by ν1, ν2, . . . , νn. The skew Laplacian spectrum of the digraph
−→
G is denoted by

Spectsl(
−→
G ). The sign of the even cycle Ck = u1u2 . . . uku1, denoted by sgn(Ck), is
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defined as sgn(Ck) = s12s23 . . . sk−1ksk1. An even oriented cycle Ck is called evenly-

oriented (oddly-oriented) if its sign is positive (negative). If every even cycle in
−→
G

is evenly-oriented,
−→
G is called evenly-oriented. An even oriented cycle C2k is said

to be uniformly oriented if sgn(C2k) = (−1)k.
The following observations are immediate from the definition of S̃L.

Theorem 1.1 ([3]). (i) If ν1, ν2, . . . , νn are the eigenvalues of S̃L(
−→
G ), then∑n

i=1 νi = 0.

(ii) 0 is an eigenvalue of S̃L(
−→
G ) with multiplicity at least p, where p is the num-

ber of components of
−→
G with all ones vector (1, 1, . . . , 1) as the corresponding

eigenvector.

(iii) If Psl(
−→
G, x) = xn +

∑n
i=1 aix

n−i is the skew Laplacian characteristic polyno-

mial of the digraph
−→
G, then a1 = 0, a2 = m +

∑
i<j(d

+
i − d−i )(d+

j − d−j ),
an = 0.

Evidently much research has been done on spectral theory of skew matrices
of oriented graphs, see [11], but the research on the skew Laplacian spectrum of

a digraph
−→
G has recently started and it will be of great interest to develop the

theory in this direction. Although the skew Laplacian matrix of a digraph was so
defined that it uses the structure of the digraph and at the same time enjoys the
same characteristics as possessed by the Laplacian matrix of a graph, it seems the
definition of S̃L uses the structure of the digraph, but not all the properties of
L(G) are possessed by S̃L. It is well known that 0 is an eigenvalue of L(G) with
multiplicity equal to the number of components of G. In fact, the eigenvalue 0 in
the spectrum of L(G) decides the connectedness of the graph G. This need not be
true for the matrix S̃L, as is clear from the following observation, the proof of which
follows from [15, Theorem 2.1].

Theorem 1.2. Let G be a bipartite graph and let
−→
G be the corresponding digraph of

G. If
−→
G is an Eulerian digraph such that each even cycle of G is oriented uniformly

in
−→
G, then the multiplicity of 0 in the spectrum of S̃L is same as the multiplicity of

0 in the spectrum of A(G).

As usual, we denote the complete graph on n vertices by Kn, the complete
bipartite graph on s + t vertices by Ks,t, the cycle on n vertices by Cn. For other
undefined notations and terminology from graphs and spectral graph theory, the
readers are referred to [2, 10, 13]. Let Kr,s be the complete bipartite graph with both

r and s even. Orient the edges of Kr,s in such a way that in the resulting digraph
−→
G

all the even cycles are oriented uniformly. Since 0 is an adjacency eigenvalue of Kr,s

of multiplicity r + s − 2, from Theorem 2, it follows that 0 is the skew Laplacian
eigenvalue of

−→
G of multiplicity r + s− 2.
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The rest of the paper is organized as follows. In Sec. 2, we see the effect of
changing the orientation of an induced subdigraph on the skew Laplacian spectrum.

In Sec. 3, we obtain bounds for the skew Laplacian energy SLE(
−→
G ) in terms of

various parameters associated with the digraph
−→
G and the underlying graph G. We

show that these bounds improve some known bounds for certain families of digraphs.
In Sec. 4, we show the existence of some families of skew Laplacian equienergetic
digraphs.

2. Some Observations Regarding Skew Laplacian Spectrum

Let S̃L be the skew Laplacian matrix of the digraph
−→
G . If we reverse the direction

of all the edges of
−→
G , we obtain a new digraph

←−
G , which we call the converse

digraph of
−→
G . Clearly −S̃L is the skew Laplacian matrix of

←−
G . Therefore, we have

the following observation.

Theorem 2.1. If
←−
G is the converse digraph of the digraph

−→
G, then

Spectsl(
←−
G ) = −Spectsl(

−→
G ).

Let
−→
H be an induced subdigraph of

−→
G corresponding to the induced subgraph

H of G and let
−→
H ∗ =

−→
H ∪(n−n(H))K1, that is,

−→
H together with n−n(H) isolated

vertices. Let
−→
G −E(

−→
H ) be the subdigraph obtained by removing the arcs of

−→
H in−→

G and
−→
G − −→H be the subdigraph obtained by deleting the vertices together with

the arcs of
−→
H . Suppose both

−→
H and

−→
G − −→H are Eulerian subdigraphs of

−→
G . Let−→

G 1 be the digraph obtained by reversing the direction of all the arcs in
−→
H and

keeping the other arcs unchanged. Let
−→
G 2 be the digraph obtained by reversing the

direction of all the arcs in
−→
G − E(

−→
H ) and keeping the other arcs unchanged.

Again, let both
−→
H and

−→
G − −→H be Eulerian subdigraphs of

−→
G , and

−→
G 3 be the

digraph obtained by reversing the direction of the arcs having one end in
−→
H and

other end in
−→
G − −→H . Let

−→
G 4 be the digraph obtained from

−→
G by reversing the

direction of the arcs in both
−→
H and

−→
G −−→H and keeping the other arcs unchanged.

Therefore, we have the following result.

Theorem 2.2. Let
−→
G be an orientation of a graph G and let

−→
H be an induced

subdigraph of
−→
G corresponding to the subgraph H of G. If the subdigraphs

−→
H and−→

G −−→H of
−→
G are Eulerian, then

(i) Spectsl(
−→
G 1) = −Spectsl(

−→
G 2), (ii) Spectsl(

−→
G 3) = −Spectsl(

−→
G 4),

where
−→
G 1,
−→
G 2,
−→
G 3 and

−→
G 4 are the digraphs defined above.

2150051-4
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If
−→
G is itself an Eulerian digraph, the conclusion of Theorem 2.2 holds for all

induced subdigraphs. A subset W of the vertex set V (
−→
G ) is said to be independent

if the induced subdigraph 〈W 〉 is an empty digraph. In other words, W is an inde-

pendent subset of V (
−→
G ) if the vertices in W are mutually nonadjacent. By similar

reasoning as above, we have the following observation.

Theorem 2.3. Let
−→
G be an orientation of a graph G and let

−→
H be an induced

subdigraph of
−→
G corresponding to the subgraph H of G. If the subdigraph

−→
H is

Eulerian and the subdigraph
−→
G −−→H is independent, then

(i) Spectsl(
−→
G 1) = −Spectsl(

−→
G 2), (ii) Spectsl(

−→
G 3) = −Spectsl(

−→
G 4),

where
−→
G 1,
−→
G 2,
−→
G 3 and

−→
G 4 are the digraphs defined as above.

3. Bounds for the Skew Laplacian Energy

The skew Laplacian energy of
−→
G , denoted by SLE(

−→
G ), is defined as

SLE(
−→
G ) =

n∑
j=1

|νj |, (3.1)

where ν1, ν2, . . . , νn are the skew Laplacian eigenvalues of
−→
G . This concept was

introduced in 2013 by Cai et al. [3]. The idea was to conceive a graph energy like
quantity for a digraph, which instead of skew adjacency eigenvalues is defined in
terms of skew Laplacian eigenvalues and that hopefully would preserve the main
features of the original graph energy. The definition of SLE(

−→
G ) was therefore so

chosen that all the properties possessed by graph energy should be preserved. The
skew Laplacian energy is an extension of skew energy of a digraph just as Laplacian
energy (see [4, 5, 8, 12] and the references therein) is an extension of graph energy
(see [6] and the references therein).

Now, we obtain the bounds for skew Laplacian energy SLE(
−→
G ) and we will

see that these bounds for SLE(
−→
G ) are better than some of the previously known

bounds. The following result gives a relation between skew energy and the skew
Laplacian energy of an oriented graph G.

Theorem 3.1. Let
−→
G be an orientation of G.

(1) If
−→
G is an Eulerian digraph, then SLE(

−→
G ) = Es(

−→
G ).

(2) SLE(
−→
G ) ≥ 2

∑
νi∈U ′

1
|νi|+2|∑νi∈U ′

1
Re(νi)|, where U1 is the set of the eigenval-

ues of the form νi = ai + ibi, with bi �= 0 and U ′
1 is the subset of U1 containing

either νi or ν̄i but not both. Equality occurs if and only if νi = sνj , for all
νi, νj ∈ U2, s ∈ R.

2150051-5
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Proof. Let ν1, ν2, . . . , νn be the eigenvalues of the matrix S̃L = D̃ − S(
−→
G ). If the

digraph
−→
G of G is Eulerian, then D̃ = 0 and so S̃L = −S(

−→
G ). From this, the first

part follows.
Let U1 = {νi : ν = ai + ibi, bi �= 0} and U2 = {νi : ν = ai + ibi, bi = 0}. Since

the skew Laplacian characteristic polynomial Psl(
−→
G, x) has real coefficients, so if

νi ∈ U1, then ν̄i ∈ U1, where ν̄i is the complex conjugate of νi. With out loss of
generality, suppose that U1 = {ν1, ν2, . . . , νk, ν̄1, ν̄2, . . . , ν̄k}. By Theorem 1.1, we
have

n∑
i=1

νi = 0⇒
∑

νi∈U1

νi +
∑

νi∈U2

νi = 0⇒
∑

νi∈U1

Re(νi) +
∑

νi∈U2

νi = 0

⇒
∑

νi∈U2

νi = −
∑

νi∈U1

Re(νi)⇒
∣∣∣∣∣ ∑
νi∈U1

Re(νi)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
νi∈U2

νi

∣∣∣∣∣ ≤ ∑
νi∈U2

|νi|.

From this and (1), we have

SLE(
−→
G ) =

n∑
i=1

|νi| =
∑

νi∈U1

|νi|+
∑

νi∈U2

|νi| ≥
∑

νi∈U1

|νi|+
∣∣∣∣∣ ∑
νi∈U1

Re(νi)

∣∣∣∣∣
= 2

∑
νi∈U ′

1

|νi|+ 2

∣∣∣∣∣∣
∑

νi∈U ′
1

Re(νi)

∣∣∣∣∣∣,
where U ′

1 is the subset of U1 containing either νi or ν̄i but not both. Equality
occurs if and only if |∑νi∈U2

νi| =
∑

νi∈U2
|νi|, that is, if and only if all νi ∈ U2 are

collinear, that is, νi = sνj, for all νi, νj ∈ U2, s ∈ R.

If
−→
G is an Eulerian digraph, then S̃L = −S(

−→
G ), a skew symmetric matrix. So

all its eigenvalues are either zero or purely imaginary, that is, νi = 0, for all νi ∈ U2.
From this, it follows that for Eulerian digraphs equality occurs in Theorem 3.1. If
all the skew Laplacian eigenvalues of a digraph

−→
G are real, then U1 = φ and so we

have the following observation, the proof of which follows from Theorem 3.1.

Corollary 3.1. If all the skew Laplacian eigenvalues of a digraph
−→
G are real, then

SLE(
−→
G ) = 2

∑
νi∈U ′

2

νi,

where U ′
2 is the set of positive eigenvalues in U2.

For Eulerian digraphs
−→
G , Theorem 3.1 implies that the skew Laplacian energy

is same as the corresponding skew energy. So, all the theorems and problems that
have been considered for the skew energy also hold for the skew Laplacian energy
of Eulerian digraphs. One of the problems which is considered for the skew energy

2150051-6
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is that of determining the digraphs which attains the upper bound

Es(
−→
G ) ≤ n

√
Δ, (3.2)

where Δ is the maximum vertex degree. This problem is an active component of
the present research and some families of digraphs have been characterized in this
direction [11]. The following observation can be found in [10].

Lemma 3.1. Let X be a square complex matrix of order n having singular values
σ1(X) ≥ · · · ≥ σn(X) and eigenvalues λ1(X), λ2(X), . . . , λn(X) with |λ1(X)| ≥
· · · ≥ |λn(X)|. Then, for 1 ≤ k ≤ n, we have

k∑
i=1

|λi(X)|p ≤
k∑

i=1

σi(X)p,

for any positive real number p. Equality occurs if and only if X is a normal matrix.

A graph is said to be nilpotent if its adjacency matrix is nilpotent. It is well
known that a graph is nilpotent if and only if it is a totally disconnected graph.
We call a digraph

−→
G skew-nilpotent digraph if its skew Laplacian matrix S̃L(

−→
G ) is

a nilpotent matrix. It is clear that the totally disconnected digraph Kn is a skew-
nilpotent digraph. We note that there are digraphs having at least one edge which
are skew-nilpotent digraphs. The simplest example is the digraph

−→
G ∼= t

−→
K2 ∪ (n−

2t)K1. The skew Laplacian matrix of the digraph t
−→
K2∪(n−2t)K1 is S̃L(t

−→
K2∪(n−

2t)K1) = diag(X1, X1, . . . , X1, X2 . . . , Xt), where all Xi are zero matrices for i ≥ 2
and X1 =

(1 −1
1 −1

)
is repeated t times. By direct calculation, it can be seen that the

eigenvalues of X1 are 0, 0. Since the eigenvalues of S̃L(t
−→
K2 ∪ (n − 2t)K1) are the

union of the eigenvalues of X1, X1, . . . , X1, X2 . . . , Xt and 0 is the only eigenvalue
of each Xi, i ≥ 2, it follows that the eigenvalues of S̃L(t

−→
K2 ∪ (n − 2t)K1) are all

zero and so t
−→
K2 ∪ (n − 2t)K1 is a skew-nilpotent digraph. It will of interest to

characterize all skew-nilpotent digraphs and so we leave the following problem.

Problem 1. Characterize all skew-nilpotent digraphs with at least one edge.

Now, we obtain an upper bound for SLE(
−→
G ) in terms of the skew Laplacian rank

rsl and the parameter M1 = m + 1
2

∑n
i=1(d

+
i − d−i )2 associated to the digraph

−→
G .

Theorem 3.2. Let G be a connected graph with n vertices having m edges and let−→
G be an orientation of G. Then

SLE(
−→
G ) ≤

√
2M1rsl, (3.3)

where M1 = m + 1
2

∑n
i=1(d

+
i − d−i )2 and rsl is the rank of the matrix S̃L. Equality

occurs if and only if
−→
G is an Eulerian digraph having skew Laplacian eigenvalues

0[n−rsl], (ia)[
rsl
2 ], (−ia)[

rsl
2 ], a > 0.

2150051-7
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Proof. Let S̃L = (lij) be the skew Laplacian matrix of
−→
G and let rsl be the rank

of the matrix S̃L. Let ν1, ν2, . . . , νn−1, νn = 0 be the skew Laplacian eigenvalues of−→
G . Applying Cauchy–Schwarz’s inequality to the vectors (|ν1|, |ν2|, . . . , |νrsl |) and
(1, 1, . . . , 1), we get

SLE(
−→
G ) =

rsl∑
i=1

|νi| ≤
√√√√rsl

rsl∑
i=1

|νi|2,

with equality if and only if |ν1| = |ν2| = · · · = |νrsl |.
Taking p = 2, k = rsl, λi = νi and X = S̃L in Lemma 3.1, we get

rsl∑
i=1

|νi|2 ≤
rsl∑
i=1

σi(S̃L)2. (3.4)

Since
rsl∑
i=1

σi(S̃L)2 = tr(S̃L
∗
S̃L) =

n∑
i,j=1

|lij |2 = 2m +
n∑

i=1

(
d+

i − d−i
)2

,

from Eq. (4), it follows that

SLE(
−→
G ) ≤

√
rsl

(
2m +

∑n
i=1 α2

i

)
=
√

2rslM1.

This completes the proof of the first part of the theorem. Equality occurs in (3)
if and only if equality occurs in Lemma 3.1 and |ν1| = |ν2| = · · · = |νrsl |. Since
equality occurs in Lemma 3.1 if and only if S̃L is a normal matrix and as shown
in [8], the matrix S̃L is normal if and only if

−→
G is an Eulerian digraph, it follows

that equality occurs in (3) if and only if
−→
G is an Eulerian digraph with |ν1| =

|ν2| = · · · = |νrsl |. Since 0 is always an eigenvalue of S̃L, it follows that the skew

Laplacian spectrum of the Eulerian digraph
−→
G is {ν1, ν2, . . . , νrsl , 0

[n−rsl]}, with
|ν1| = |ν2| = · · · = |νrsl | = a. The following cases arise.

Case 1. If a = 0, all the skew Laplacian eigenvalues of
−→
G are 0, so

−→
G is either

an empty digraph or
−→
G is a skew-nilpotent digraph with at least one edge. If

−→
G

is an empty, then equality cannot occur as G is connected. We will show there is
no Eulerian skew-nilpotent digraph. For if

−→
G is a skew-nilpotent Eulerian digraph,

then the skew matrix of
−→
G is a nilpotent matrix. Since the skew matrix of

−→
G is a

normal matrix and it is well known [9] that a normal matrix is nilpotent if and only

if it is a zero matrix. It follows that there is no Eulerian skew-nilpotent digraph
−→
G

with at least one edge.

Case 2. If a �= 0 and
−→
G is Eulerian, then using the fact that S̃L = −S(

−→
G ) is a

real skew-symmetric matrix, it follows that the nonzero skew Laplacian eigenvalues

2150051-8
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of
−→
G are purely imaginary and so they occur in conjugate pairs. Thus, it fol-

lows that the skew Laplacian eigenvalues of the digraph
−→
G should be of the form

0[n−rsl], (ia)[
rsl
2 ], (−ia)[

rsl
2 ], a > 0. This completes the proof.

Since 0 is always a skew Laplacian eigenvalue of
−→
G , it follows that rsl ≤

n − 1 and so we make the following observation which is immediate from
Theorem 3.2.

Corollary 3.2. Let G be a connected graph with n vertices and m edges and let
−→
G

be an orientation of G. Then

SLE(
−→
G ) ≤

√
2M1(n− 1),

where M1 = m+ 1
2

∑n
i=1(d

+
i −d−i )2. Equality occurs if and only if

−→
G is an Eulerian

digraph having skew Laplacian eigenvalues 0, (ai)[
n−1

2 ], (−ai)[
n−1

2 ](a > 0).

This upper bound for skew Laplacian energy SLE(
−→
G ) of a digraph

−→
G was

obtained in [3]. Since for Eulerian digraphs M1 = m and rsl = rs, where rs is

the rank of S(
−→
G ), we have the following observation from Theorem 3.2.

Corollary 3.3. Let G be a connected graph with n vertices and m edges and let
−→
G

be an orientation of G. If
−→
G is Eulerian, then

SLE(
−→
G ) ≤ √2mrs, (3.5)

with equality if and only if the skew Laplacian eigenvalues of
−→
G are 0[n−rs], (ai)[

rs
2 ],

(−ai)[
rs
2 ], (a > 0).

In [15], it is shown that for a bipartite graph G, there is always a digraph−→
G having skew spectrum i times the adjacency spectrum of G. So, for such ori-
entations of bipartite graphs, skew rank rs is same as the corresponding adja-
cency rank. From this, it follows that if the edges of a bipartite graph G are so
directed that the resulting orientation

−→
G is Eulerian with all the even cycles ori-

ented uniformly, we can always find a digraph whose skew Laplacian rank is less
than n − 1. The simplest example is the complete bipartite graph Ks,t, the adja-
cency rank of this graph is 2. For all such digraphs the upper bound given by (2) is
always better than the upper bound given by Corollary 3.2. Further, since

√
2mrs ≤√

2m(n− 1) ≤√n(n− 1)Δ < n
√

Δ, as 2m ≤ nΔ, it follows that Eulerian digraphs
never attain the upper bound (2) and so they are not the maximum skew energy
digraphs.

The following gives another upper bound for SLE(
−→
G ), in terms of the skew

Laplacian rank rsl and the parameter M1 = m + 1
2

∑n
i=1(d

+
i − d−i )2 associated to

the digraph
−→
G .
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Theorem 3.3. Let G be a connected graph G with n vertices having m edges and
let
−→
G be the digraph of G. Then

SLE(
−→
G ) ≤

√
2M1

rsl
+

√
(rsl − 1)

(
2M1 − 2M1

rsl

)
. (3.6)

Equality occurs if and only if
−→
G is an Eulerian digraph having skew Laplacian

eigenvalues

0[n−rsl], (ia)[
rsl
2 ], (−ia)[

rsl
2 ], a =

√
2M1

rsl
.

Proof. Let S̃L = (lij) be the skew Laplacian matrix of
−→
G and let rsl be the rank

of the matrix S̃L. Let ν1, ν2, . . . , νn−1, νn = 0 be the skew Laplacian eigenvalues of−→
G with ρsl = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−1| ≥ 0. Applying Cauchy–Schwarz’s inequality
to the vectors (|ν2|, |ν3|, . . . , |νrsl |) and (1, 1, . . . , 1), we get

SLE(
−→
G )− |ν1| =

rsl∑
i=2

|νi| ≤
√√√√(rsl − 1)

rsl∑
i=2

|νi|2

≤
√√√√(rsl − 1)

(
rsl∑
i=1

|νi|2 − |ν1|2
)

,

with equality if and only if |ν2| = |ν3| = · · · = |νrsl |.
Taking p = 2, k = rsl, λi = νi and X = S̃L in Lemma 3.1, we get

rsl∑
i=1

|νi|2 ≤
rsl∑
i=1

σi(S̃L)2. (3.7)

Since
rsl∑
i=1

σi(S̃L)2 = tr(S̃L
∗
S̃L) =

n∑
i,j=1

|lij |2 = 2m +
n∑

i=1

α2
i ,

from Eq. (7), it follows that

SLE(
−→
G ) ≤ ρsl +

√
(rsl − 1)(2M1 − ρ2

sl).

Consider the function

f(x) = x +
√

(rsl − 1)(2M1 − x2).

It is easy to see that f(x) is a decreasing function for
√

2M1
rsl
≤ x ≤ √2M1. So, we

have f(x) ≤ f(
√

2M1
rsl

), that is,

f(x) ≤
√

2M1

rsl
+

√
(rsl − 1)

(
2M1 − 2M1

rsl

)
,

2150051-10



February 2, 2021 12:33 WSPC/246-AEJM 2150051

Skew Laplacian spectrum of digraphs

which gives

SLE(
−→
G ) ≤

√
2M1

rsl
+

√
(rsl − 1)

(
2M1 − 2M1

rsl

)
,

completing the proof of the first part of the theorem. Equality case is similar to
that of Theorem 3.2.

From the proof of Theorem 3.3, if we know a lower bound for ρsl, the upper
bound given in this theorem can be improved. Thus, it will be attractive to find
the possible lower bounds for the skew Laplacian spectral radius ρsl which relates
it to the structure of the digraph.

4. Skew Laplacian Equienergetic Digraphs

Two digraphs of same order are said to be skew equienergetic digraphs, if they
are noncospectral with respect to their skew spectrum and have the same skew
energy [14]. Like wise, two digraphs of same order are said to be skew Laplacian
equienergetic digraphs, if they are noncospectral with respect to their skew Lapla-
cian spectrum and have the same skew Laplacian energy.

Ramane et al. [14] have shown the existence of nonskew cospectral Eulerian
digraphs of order n having same skew energy for all n ≥ 6. Since for Eulerian
digraphs skew energy and skew Laplacian energy are same. So the families of
digraphs obtained in [14] are also skew Laplacian equienergetic. It will be inter-
esting to obtain non-Eulerian digraphs which are noncospectral with respect skew
Laplacian spectrum and have the same skew Laplacian energy. Our aim is be to show
the existence of families of non-Eulerian skew Laplacian equienergetic digraphs.

The following observations are immediate from Theorems 2.1–2.3.

Theorem 4.1. Let
−→
G be an orientation of a connected graph G. Then

(1)
−→
G and

−→
G are nonisomorphic, nonskew Laplacian cospectral digraphs with

SLE(
−→
G ) = SLE(

←−
G ).

(2)
−→
G 1 and

−→
G 2 are nonisomorphic, nonskew Laplacian cospectral digraphs with

SLE(
−→
G 1) = SLE(

−→
G 2).

(3)
−→
G 3 and

−→
G 4 are nonisomorphic, nonskew Laplacian cospectral digraphs with

SLE(
−→
G 3) = SLE(

−→
G 4),

where
−→
G 1,
−→
G 2,
−→
G 3,
−→
G 4 are the digraphs as defined in Theorems 2.2 and 2.3.

The first part of Theorem 4.1, tell us that the digraph and its converse have
the same skew Laplacian energy. Similarly, other parts reveal that by changing the
orientation of the arcs between some suitable induced subdigraphs of

−→
G does not

effect the skew Laplacian energy. Let
−→
G1 and

−→
G2 be orientations of G1 and G2

2150051-11
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respectively and let
−→
G =

−→
G1 → −→G2, be the digraph obtained by taking the union of

the digraphs
−→
G1 and

−→
G2 and joining each vertex v in

−→
G1 with every vertex u in

−→
G2

by an arc directed from v to u. It is clear that the underlying graph of
−→
G is the join

of G1 and G2. The following theorem obtained in [7] gives the skew characteristic

polynomial of the digraph
−→
G =

−→
G1 → −→

G2 in terms of the skew characteristic
polynomial of the digraphs

−→
G1 and

−→
G2.

Theorem 4.2. If
−→
G =

−→
G1 → −→G2, then

Psl(
−→
G, x) =

x(x − n2 + n1)
(x + n1)(x − n2)

Psl(
−→
G1, x− n2)Psl(

−→
G2, x + n1),

where n1 and n2 are respectively, the orders of digraphs
−→
G1 and

−→
G2.

If νi, 0, for i = 1, 2, . . . , n1 − 1, are the skew Laplacian eigenvalue of G1, and
ξi, 0, for i = 1, 2, . . . , n2 − 1 are the skew Laplacian eigenvalue of G2, then from
Theorem 4.2, it is clear that the skew Laplacian eigenvalues of

−→
G1 → −→G2 are

νi + n2, ξk − n1, n2 − n1, 0, i = 1, 2, . . . , n1 − 1, k = 1, 2, . . . , n2 − 1.

Therefore, the skew Laplacian energy of the digraph
−→
G1 → −→G2 is given by

SLE(
−→
G1 → −→G2) = |n2 − n1|+

n1−1∑
i=1

|νi + n2|+
n2−1∑
i=1

|ξi − n1|.

Suppose that all νi, ξk are real with |νi| ≤ n2, |ξk| ≤ n1, for all i = 1, 2, . . . , n1 − 1;
k = 1, 2, . . . , n2 − 1 and n1 ≤ n2. Then,

|νi + n2| =
{

n2 + |νi|, if νi ≥ 0,

n2 − |νi|, if νi < 0,
|ξi − n1| =

{
n1 − |ξi|, if ξi ≥ 0,

n1 + |ξi|, if ξi < 0,

and so

SLE(
−→
G1 → −→G2) = |n2 − n1|+

n1−1∑
i=1

|νi + n2|+
n2−1∑
i=1

|ξi − n1|

= n2 − n1 +
∑
νi≥0

(n2 + |νi|) +
∑
νi<0

(n2 − |νi|)

+
∑
ξi≥0

(n1 − |ξi|) +
∑
ξi<0

(n1 + |ξi|)

= 2n1(n2 − 1) +
∑

νi,ξi≥0

(|νi| − |ξi|) +
∑

νi,ξi<0

(|ξi| − |νi|).

From this, we arrive at the following observation.

Theorem 4.3. Let G1 be a graph with n1 vertices and m1 edges and let
−→
G1 be an

orientation of G1. If all the skew Laplacian eigenvalues ν1, ν1 . . . , νn1−1, 0 of G1 are

2150051-12
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real with |νi| ≤ n1, for all i, then

SLE(
−→
G1 → −→G1) = 2n1(n1 − 1).

If all the skew Laplacian eigenvalues of G1 are purely imaginary or zero with |νi| ≤
n1, for all i, then

SLE(
−→
G1 → −→G1) = 2

n1−1∑
i=1

|νi + n1|.

Proof. Proof follows from the above discussion.

Theorem 4.3 implies that the skew Laplacian energy SLE(
−→
G1 → −→G1) of the

digraph
−→
G1 → −→G1 is a function of n1, the number of vertices of

−→
G1, provided all the

skew Laplacian eigenvalues ν1, ν1 . . . , νn1−1, 0 of G1 are real with |νi| ≤ n1, for all
i. Therefore, we have the following observation.

Corollary 4.1. Let
−→
G1 and

−→
H1 be two digraphs each having order n1. Let νi, 0,

for i = 1, 2, . . . , n1 − 1 be the skew Laplacian eigenvalues of G1 and ξi, 0, for i =
1, 2, . . . , n1 − 1, be the skew Laplacian eigenvalues of H1. If for i = 1, 2, . . . , n1 − 1
each of νi, ξi are real with |νi|, |ξi| ≤ n1, then

SLE(
−→
G1 → −→G1) = SLE(

−→
H1 → −→H1).

If the digraphs
−→
G1 and

−→
H1 in Corollary 4.1 are nonskew Laplacian cospectral,

we obtain an infinite families of skew Laplacian equienergetic digraphs.
Let Kr,s be a complete bipartite graph of order n1 = r + s having partite sets

V1 = {x1, x2, . . . , xr} and V2 = {y1, y2, . . . , ys}. Consider different orientations of

Kr,s. Let
−→
H 1 be the orientation when all the edges are directed from V1 to V2 and−→

H 2 be the orientation when all the edges are directed from V2 to V1. The following
lemma [7] is about the skew Laplacian eigenvalues of

−→
H 1 and

−→
H 2.

Lemma 4.1. The skew Laplacian spectrum of
−→
H 1 is {s−r, 0, s[r−1], (−r)[s−1]} and

the skew Laplacian spectrum of
−→
H 2 is {−(s− r), 0, (−s)[r−1], r[s−1]}.

Any orientation of a complete graph Kn on n vertices is said to be a tournament.
If vi → vj is an arc in a tournament, the vertex vi is said to dominate the vertex vj .
A tournament is said to be transitive if u dominates v and v dominates w implies u

dominates w, for all the vertices u, v, w of the tournament. We denote a transitive
tournament of order n1 by Tn1 . The following theorem gives the skew Laplacian
spectrum of a transitive tournament and can be found in [7].

Lemma 4.2. For a transitive tournament of order n, the skew Laplacian spectrum
is {±(n− 2j) : j = 1, 2, 3, . . .�n1

2 �}, when n is even and equal to {0,±(n− 2j) : j =
1, 2, . . . , �n1

2 �, when n is odd.
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The following result gives a family of non-Eulerian skew Laplacian equienergetic
digraphs of order n ≡ 0(mod 2).

Theorem 4.4. The digraphs H =
−→
H1 → −→H1 and G = Tn1 → Tn1 are non-Eulerian

skew Laplacian equienergetic digraphs of order n ≡ 0(mod 2), where H1 and Tn1

are the digraphs defined in Lemmas 4.1 and 4.2.

Proof. By Lemma 4.1, the skew Laplacian eigenvalues of
−→
H1 are s −

r, 0, s[r−1], (−r)[s−1], r + s = n1. Clearly, all the eigenvalues of
−→
H1 are real with

their moduli less or equal to n1 = r + s. Therefore, by Corollary 4.1, we have
SLE(

−→
H1 → −→H1) = 2n1(n1 − 1). Also, for n1 even, by Lemma 4.2, it follows that

the skew Laplacian eigenvalues of Tn1 are ±(n1 − 2j) : j = 1, 2, 3, . . . �n1
2 �. Clearly,

all the eigenvalues of Tn1 are real with their moduli less or equal to n1. Therefore,
by Corollary 4.1, we have SLE(Tn1 → Tn1) = 2n1(n1 − 1). It is also clear that the−→
H1 → −→H1 and Tn1 → Tn1 are non-Eulerian nonskew Laplacian cospectral digraphs.
The case when n1 is odd can be similarly done.

Let v1 → v2 → · · · → vn1 be a Hamiltonian path and for i = 1, 2, . . . , n1 − 1,
let e = vivi+1 be an arc in a transitive tournament Tn1 . Let Tn1 − e be the digraph
obtained by removing the arc e = vivi+1 from Tn1 . In [7], it is shown that the
skew Laplacian spectrum of Tn1 −e is same as the skew Laplacian spectrum of Tn1 .
Therefore, we have the following observations.

Theorem 4.5. (1) The digraphs H =
−→
H1 → −→H1 and G = Tn1 − e→ Tn1 are non-

Eulerian skew Laplacian equienergetic digraphs of order n ≡ 0(mod 2), where
H1 and Tn1 are the digraphs defined in Lemmas 4.1, 4.2 and e = vivi+1 is an
arc in a Hamiltonian path of Tn1 .

(2) The digraphs H =
−→
H1 → −→H1 and G = Tn1 → Tn1 − e are non-Eulerian skew

Laplacian equienergetic digraphs of order n ≡ 0(mod 2), where H1 and Tn1

are the digraphs defined in Lemmas 4.1, 4.2 and e = vivi+1 is an arc in a
Hamiltonian path of Tn1 .

(3) The digraphs H =
−→
H1 → −→H1 and G = Tn1 − e → Tn1 − e are non-Eulerian

skew Laplacian equienergetic digraphs of order n ≡ 0(mod 2), where H1 and
Tn1 are the digraphs defined in Lemmas 4.1, 4.2 and e = vivi+1 is an arc in a
Hamiltonian path of Tn1 .
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