Further results on the rainbow vertex-disconnection of graphs*

Xueliang Li, Yindi Weng
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: lxl@nankai.edu.cn, 1033174075@qq.com

Abstract

Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of $G-S$; whereas when x and y are adjacent, $S+x$ or $S+y$ is rainbow and x and y belong to different components of $(G-x y)-S$. Such a vertex subset S is called an $x-y$ rainbow vertex-cut of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by $\operatorname{rvd}(G)$, is the minimum number of colors that are needed to make G rainbow vertex-disconnected.

In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph G with $\operatorname{rvd}(G)=k$ for $k \geq \frac{n}{2}$. We then characterize the graphs of order n with rainbow vertex-disconnection number $n-1$ and obtain the maximum size of a graph G with $\operatorname{rvd}(G)=n-1$. Moreover, we get a sharp threshold function for the property $\operatorname{rvd}(G(n, p))=n$ and prove that almost all graphs G have $\operatorname{rvd}(G)=\operatorname{rvd}(\bar{G})=n$. Finally, we obtain some Nordhaus-Gaddum-type results: $n-5 \leq \operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \leq 2 n$ and $n-1 \leq \operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \leq n^{2}$ for the rainbow vertex-disconnection numbers of nontrivial connected graphs G and \bar{G} with order $n \geq 24$.

[^0]Keywords: rainbow vertex-cut, rainbow vertex-disconnection number, threshold function, Nordhaus-Gaddum-type result.
AMS subject classification 2020: 05C15, 05C40, 05C35, 05C80.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let $G=$ $(V(G), E(G))$ be a nontrivial connected graph with vertex set $V(G)$ and edge set $E(G)$. The order of G is denoted by $n=|V(G)|$ and the size of G is denoted by $|E(G)|$. For a vertex $v \in V$, the open neighborhood and closed neighborhood of v in G are the set $N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. The degree of v in G is $d_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let P_{n} denote a path with order n. Let V_{1}, V_{2} be two disjoint vertex subsets of G. We denote the set of edges between V_{1} and V_{2} in G by $E\left(V_{1}, V_{2}\right)$. We follow $[8,9]$ for graph theoretical notation and terminology not defined here.

In [11], Chartrand et al. firstly studied the rainbow edge-cut by introducing the concept of rainbow disconnection of graphs. Let G be a nontrivial connected and edge-colored graph. An edge-cut of G is a set R of edges of G such that $G-R$ is disconnected. If any two edges in R have different colors, then R is a rainbow cut. A rainbow cut R is called a $u-v$ rainbow cut if the vertices u and v belong to different components of $G-R$. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G, there exists a $u-v$ rainbow cut in G, separating them. The rainbow disconnection number $\operatorname{rd}(G)$ of G is the minimum number of colors required by a rainbow disconnection coloring of G.

For vertex-colorings of graphs, the authors in [4] introduced the concept of rainbow vertex-disconnection number. They gave some applications of the rainbow vertexdisconnection numbers of graphs. For more results on rainbow and other colored disconnections of graphs, we refer the readers to $[2,3,4,5,6,12,16]$.

For a connected and vertex-colored graph G, let x and y be two vertices of G. If x and y are nonadjacent, then an $x-y$ vertex-cut is a subset S of $V(G)$ such that x and y belong to different components of $G-S$. If x and y are adjacent, then an $x-y$ vertex-cut is a subset S of $V(G)$ such that x and y belong to different components of $(G-x y)-S$. A vertex subset S of G is rainbow if no two vertices of S have the same color. An $x-y$ rainbow vertex-cut is an $x-y$ vertex-cut S such that if x and y are nonadjacent, then S is rainbow; if x and y are adjacent, then $S+x$ or $S+y$ is rainbow.

A vertex-colored connected graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists an $x-y$ rainbow vertex-cut. In this case, the vertex-coloring c is called a rainbow vertex-disconnection coloring of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by $\operatorname{rvd}(G)$, is the minimum number of colors that are needed in order to make G rainbow vertex-disconnected. A rainbow vertex-disconnection coloring with $\operatorname{rvd}(G)$ colors is called an rvd-coloring of G.

An injective coloring of a graph G is a vertex-coloring of G such that the colors of any two vertices with a common neighbor are different. The injective chromatic number $\chi_{i}(G)$ of a graph G is the minimum number of colors such that G has an injective coloring using this number of colors. The injective coloring was first introduced in [15] by Hahn et al. in 2002 and originated from complexity theory [18].

In this paper, we study the relationships among the graph parameters: rainbow vertex-disconnection number, injective chromatic number, minimum degree and maximum degree. We obtain the following result in Section 2:

$$
\delta(G) \leq \operatorname{rvd}(G) \leq \chi_{i}(G) \leq \Delta(G)(\Delta(G)-1)+1
$$

In Section 3 we give a tighter upper bound for the maximum size of a graph G with $\operatorname{rvd}(G)=k$ for $k \geq \frac{n}{2}$. In Section 4 we characterize the graphs with rainbow vertex-disconnection number $n-1$ and obtain the maximum size of graphs G with $\operatorname{rvd}(G)=n-1$. In Section 5 we consider the sharp threshold function of random graphs $G(n, p)$ with $\operatorname{rvd}(G(n, p))=n$ and obtain that almost all graphs G have $\operatorname{rvd}(G)=\operatorname{rvd}(\bar{G})=n$. In Section 6 we get some Nordhaus-Gaddum-type results for the rainbow vertex-disconnection number, and leave a conjecture for further study.

2 Preliminaries

In this section, we first introduce some known results from [4]. Then we obtain some bounds for the rainbow vertex-disconnection number of a graph.

Lemma 2.1 [4] Let G be a nontrivial connected graph, and let u and v be two vertices of G having at least two common neighbors. Then u and v receive different colors in any rvd-coloring of G.

Lemma 2.2 [4] Let G be a nontrivial connected graph of order n. Then $\operatorname{rvd}(G)=n$ if and only if any two vertices of G have at least two common neighbors.

Theorem 2.3 Let G be a connected graph of order n with minimum degree δ. If $\delta \geq \frac{n+2}{2}$, then $\operatorname{rvd}(G)=n$.

Proof. Since $\delta \geq \frac{n+2}{2}$, there exist at least $\frac{n+2}{2} \times 2-n=2$ common neighbors for any two vertices of G. By Lemma 2.2, we have $\operatorname{rvd}(G)=n$.

Let x and y be two vertices of a graph G. The local connectivity $\kappa_{G}(x, y)$ of two nonadjacent vertices x and y is the minimum number of vertices required to separate x from y. If x and y are adjacent vertices, the local connectivity $\kappa_{G}(x, y)$ of x and y is defined as $\kappa_{G-x y}(x, y)+1$. The connectivity $\kappa(G)$ of G is the minimum number of vertices of G whose removal results in a disconnected graph or a trivial graph. The upper connectivity $\kappa^{+}(G)$ of G is the upper bound of the function $\kappa_{G}(x, y)$ on G.

Lemma 2.4 [4] Let G be a nontrivial connected graph of order n. Then $\kappa(G) \leq$ $\kappa^{+}(G) \leq \operatorname{rvd}(G) \leq n$.

Lemma 2.5 [17] Let K be a complete subgraph of G with $E(G-K) \neq \emptyset$. Then there exists an edge $a_{1} a_{2} \in E(G-K)$ such that $k\left(a_{1}, a_{2}\right)=\min \left\{d\left(a_{1}\right), d\left(a_{2}\right)\right\}$.

Lemma 2.6 [15] Let G be a graph with maximum degree Δ. Then, $\chi_{i}(G) \leq \Delta(\Delta-$ 1) +1 .

Theorem 2.7 Let G be a nontrivial connected graph with maximum degree Δ. Then $\delta(G) \leq \kappa^{+}(G) \leq \operatorname{rvd}(G) \leq \chi_{i}(G) \leq \Delta(\Delta-1)+1$.

Proof. By Lemmas 2.4 and 2.5, we have $\operatorname{rvd}(G) \geq \kappa^{+}(G) \geq \delta(G)$. Let c be an injective coloring of G. Let u and v be any two vertices of G. Since the colors of any two vertices with a common neighbor are different under $c, N_{G}(u)$ is rainbow. If u and v are adjacent, then $N_{G}(u) \backslash\{v\}$ is a $u-v$ rainbow vertex-cut. If u and v are not adjacent, then $N_{G}(u)$ is a $u-v$ rainbow vertex-cut. Thus, c is a rainbow vertexdisconnection coloring of G. By Lemma 2.6, we have $\operatorname{rvd}(G) \leq \chi_{i}(G) \leq \Delta(\Delta-1)+1$.

3 Bounds on the maximum size

In this section, we give a tighter upper bound for the maximum size of a graph G with $\operatorname{rvd}(G)=k$ for $k \geq \frac{n}{2}$, which is better for large k than that in the following lemma reported in [4].

Lemma 3.1 [4] For $k \geq 4$, let G be a graph of order n with $\operatorname{rvd}(G)=k$. Then, $\frac{1}{2} k(n-1)-\binom{k}{2} \leq|E(G)|_{\max } \leq k(n-1)-\binom{k}{2}$.

We need a lemma first.
Lemma 3.2 Let G be a nontrivial connected graph with $\operatorname{rvd}(G)=k$. Let $V_{1}, V_{2}, V_{3}, \cdots, V_{k}$ be the set of color classes of an rvd-coloring of G. Then for $i \in[k]$ and $\left|V_{i}\right| \geq 2$, we have

$$
\sum_{v \in V_{i}} d_{G}(v) \leq n+\binom{\left|V_{i}\right|}{2}
$$

Let $S=\left\{v_{i} \mid v_{i} \in V_{i}\right.$ and $\left.\left|V_{i}\right|=1\right\}$. We have

$$
\sum_{v \in S} d_{G}(v) \leq\left(\frac{n+k}{2}-1\right)|S|
$$

Proof. Without loss of generality, we assume that $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \cdots \leq\left|V_{k}\right|$ and $s=|S|$. Then $S=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$. For vertices v_{1} and v_{2}, since $V_{j}(j=s+1, s+2, \cdots, k)$ is monochromatic, the vertices v_{1} and v_{2} have at most one common neighbor in V_{j}. Otherwise, assume that $u_{1}, u_{2} \in V_{j}$ are the common neighbors of v_{1} and v_{2}. Then we have that v_{1}, v_{2} are two common neighbors of u_{1} and u_{2}. So u_{1}, u_{2} have different colors, a contradiction. So, we obtain $\left|E\left(v_{1}, V_{j}\right)\right|+\left|E\left(v_{2}, V_{j}\right)\right| \leq\left|V_{j}\right|+1$. Then we have

$$
\begin{aligned}
d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right) & =\left|E\left(v_{1}, S-v_{1}\right)\right|+\sum_{j \in\{s+1, \cdots, k\}}\left|E\left(v_{1}, V_{j}\right)\right| \\
& +\left|E\left(v_{2}, S-v_{2}\right)\right|+\sum_{j \in\{s+1, \cdots, k\}}\left|E\left(v_{2}, V_{j}\right)\right| \\
& \leq 2(s-1)+\sum_{j \in\{s+1, \cdots, k\}}\left(\left|V_{j}\right|+1\right) \\
& =2(s-1)+n-s+k-s \\
& =n+k-2 .
\end{aligned}
$$

Since the above inequality holds for any two vertices in S, we can derive that $\sum_{i \in[s]} d_{G}\left(v_{i}\right) \leq \frac{(n+k-2) s}{2}$.

Now consider the degrees of vertices in V_{j}. Let $\widetilde{d}(v)=\left|E\left(v, V_{j}\right)\right|$, where $v \in$ $V(G)-V_{j}$. Let $T=\{v \mid \widetilde{d}(v) \geq 2\}$. Since V_{j} is monochromatic, there are $\binom{\left|V_{j}\right|}{2}$ pairs of vertices in V_{j} which have at most one common neighbor by Lemma 2.1. Assume that $\left|E\left(V_{j}\right)\right| \leq \frac{\left|V_{i}\right|}{2}$. For $v \in T$, when $\widetilde{d}(v)$ increases one, this will increase at least one
pair of vertices in V_{j} which has one common neighbor v. Then we have

$$
\begin{aligned}
\left|E\left(V_{j}, V(G)-V_{j}\right)\right| & =\left|V(G)-V_{j}-T\right|+\sum_{v \in T} \widetilde{d}(v) \\
& =n-\left|V_{j}\right|+\sum_{v \in T}(\widetilde{d}(v)-1) \\
& \leq n-\left|V_{j}\right|+\binom{\left|V_{j}\right|}{2} .
\end{aligned}
$$

Thus, we obtain

$$
\sum_{v \in V_{j}} d_{G}(v)=2\left|E\left(V_{j}\right)\right|+\left|E\left(V_{j}, V(G)-V_{j}\right)\right| \leq n+\binom{\left|V_{j}\right|}{2} .
$$

If $\left|E\left(V_{j}\right)\right|>\frac{\left|V_{j}\right|}{2}$, assume that there are p connected components $T_{1}, T_{2}, \cdots, T_{p}$ in V_{j}, which are trees. Each $T_{i}(i \in[p])$ has at least $\left|T_{i}\right|-2$ pairs of vertices which have a common neighbor in V_{j}. Since

$$
\sum_{i \in[p]}\left(\left|T_{i}\right|-2\right)=\sum_{i \in[p]}\left|T_{i}\right|-2 p=\left|V_{j}\right|-2\left(\left|V_{j}\right|-\left|E_{j}\right|\right)=2\left|E_{j}\right|-\left|V_{j}\right|,
$$

we have at least $2\left|E_{j}\right|-\left|V_{j}\right|$ pairs of vertices of V_{j} which have no common neighbor in $V(G)-V_{j}$. So, we have

$$
\begin{aligned}
\sum_{v \in V_{j}} d_{G}(v) & =2\left|E\left(V_{j}\right)\right|+\left|E\left(V_{j}, V(G)-V_{j}\right)\right| \\
& \leq 2\left|E\left(V_{j}\right)\right|+n-\left|V_{j}\right|+\binom{\left|V_{j}\right|}{2}-\left(2\left|E_{j}\right|-\left|V_{j}\right|\right) \\
& =n+\binom{\left|V_{j}\right|}{2} .
\end{aligned}
$$

Theorem 3.3 Let G be a nontrivial connected graph with $\operatorname{rvd}(G)=k$ for $k \geq \frac{n}{2}$. Then $|E(G)|_{\max } \leq \frac{(n+k-2)(2 k-n)}{4}+\frac{(n-k)(n+1)}{2}$.

Proof. Let $V_{1}, V_{2}, V_{3}, \cdots, V_{k}$ be the set of color classes of an rvd-coloring of G. Assume that $S=\left\{v_{i} \mid v_{i} \in V_{i}\right.$ and $\left.\left|V_{i}\right|=1\right\}$ and $s=|S|$. For any two $V_{j_{1}}$ and $V_{j_{2}}$ with $\left|V_{j_{1}}\right| \geq\left|V_{j_{2}}\right| \geq 3$, we move one vertex u from $V_{j_{2}}$ to $V_{j_{1}}$. Then we have

$$
\begin{aligned}
& \sum_{v \in V_{j_{1}} \cup\{u\}} d_{G}(v)+\sum_{v \in V_{j_{2} \backslash\{u\}}} d_{G}(v) \\
\leq & n+\binom{\left|V_{j_{1}}\right|+1}{2}+n+\binom{\left|V_{j_{2}}\right|-1}{2} \\
= & n+\binom{\left|V_{j_{1}}\right|}{2}+n+\binom{\left|V_{j_{2}}\right|}{2}+\left|V_{j_{1}}\right|-\left(\left|V_{j_{2}}\right|-1\right) .
\end{aligned}
$$

We find the bound is larger after moving. So, there will be $k-s-1$ color classes with order 2 and one color class with order $n-s-2(k-s-1)=n-2 k+s+2$. Now we define the upper bound function $f(s)$ as follows:

$$
f(s)=\frac{(n+k-2) s}{2}+(k-s-1)(n+1)+n+\binom{n-2 k+s+2}{2} .
$$

Since $k \geq s \geq 2 k-n$ and the axis of symmetry of function $f(s)$ is $s=\frac{3 k-n+1}{2}$, we get the maximum value of $f(s)$ at $s=2 k-n$. Since $f(2 k-n)=\frac{n+k-2}{2}(2 k-$ $n)+(n-k)(n+1)$, by Lemma 3.2, we obtain $|E(G)|_{\max } \leq \frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \leq$ $\frac{1}{2} f(2 k-n)=\frac{(n+k-2)(2 k-n)}{4}+\frac{(n-k)(n+1)}{2}$. This upper bound is tighter than the upper bound $k(n-1)-\binom{k}{2}$ in Lemma 3.1 for $k \geq \frac{n}{2}$.

4 Graphs with rainbow vertex-disconnection number $n-1$

Let x and y be two vertices of a graph G. We denote the set of common neighbors of x and y by $M_{G}(x, y)$. Let $m_{G}(x, y)=\left|M_{G}(x, y)\right|$. Let $S_{G}(x, y)$ be an $x-y$ rainbow vertex-cut in G. Let $D_{G}(x, y)$ be the rainbow vertex set such that if x, y are adjacent, then $S_{G}(x, y)+x \subseteq D_{G}(x, y)$ or $S_{G}(x, y)+y \subseteq D_{G}(x, y)$ and $D_{G}(x, y)$ is rainbow; if x, y are nonadjacent, then $S_{G}(x, y) \subseteq D_{G}(x, y)$ and $D_{G}(x, y)$ is rainbow. In order to prove that there exists an $x-y$ rainbow vertex-cut in G, we only need to find $D_{G}(x, y)$.

Theorem 4.1 Let G be a nontrivial connected graph of order n. Then $\operatorname{rvd}(G)=n-1$ if and only if G satisfies the following three conditions:

1. There exists at least one pair (x, y) of vertices with $m_{G}(x, y) \leq 1$.
2. For any two pairs (x, y) and (p, q) of vertices with $m_{G}(x, y) \leq 1$ and $m_{G}(p, q) \leq 1$, Fig. 1.(1) or (2) is a subgraph of G containing the vertex set $\{x, y, p, q\}$.
3. For any three pairs $(x, y),(x, z),(y, z)$ of vertices with $m_{G}(x, y) \leq 1, m_{G}(x, z) \leq 1$ and $m_{G}(y, z) \leq 1$, Fig. 1.(3) or (4) is a subgraph of G containing the vertex set $\{x, y, z\}$.

Proof. Let $\operatorname{rvd}(G)=n-1$. Assume, to the contrary, that the graph G does not satisfy at least one of the conditions. Then there are three cases to discuss.

Case 1. Each pair of vertices have at least two common neighbors.
By Lemma 2.2, we have $\operatorname{rvd}(G)=n$, a contradiction.

Figure 1: The graphs of condition 2 and 3.

Case 2. There exist two pairs (x, y) and (p, q) of vertices with $m_{G}(x, y) \leq 1$ and $m_{G}(p, q) \leq 1$ which do not satisfy Condition 2 .

Define a vertex-coloring c of G with $n-2$ colors such that $c(x)=c(y)=1$, $c(p)=c(q)=2$ and the remaining vertices have different colors from $3,4, \cdots, n-2$. Since $\operatorname{rvd}(G)=n-1$, we have that c is not a rainbow vertex-disconnection coloring of G. Then there exist two vertices u, v which have no $u-v$ rainbow vertex-cut. Next, we claim that such vertices u, v do not exist.

Let P_{1} be the $u-v$ path of length two through a vertex with color 1 . Let P_{2} be the $u-v$ path of length two through another vertex with color 2 . Let P_{3} be the $u-v$ path of length three through two vertices with color 1 and color 2 . Since $m_{G}(x, y) \leq 1$ and $m_{G}(p, q) \leq 1$, there is at most one path P_{1}, at most one path P_{2} and at most two internally disjoint paths P_{3}.

Consider that u and v are not adjacent. If $u \in\{x, y, p, q\}$ or $v \in\{x, y, p, q\}$, without loss of generality, assuming $u=x$, then $N_{G}(u)$ or $N_{G}(v)$ is a $u-v$ rainbow vertex-cut. So $u, v \notin\{x, y, p, q\}$. There are several cases to deal with. Because of the symmetry of P_{1} and P_{2}, some cases can be omitted. If there are no P_{1}, P_{2} and P_{3}, then $D_{G}(u, v)=V(G) \backslash\{u, v, y, q\}$. If there is one P_{1} but no P_{2}, P_{3}, assuming $P_{1}=u x v$, then $D_{G}(u, v)=V(G) \backslash\{u, v, y, p\}$. If there is one P_{3} but no P_{1}, P_{2}, assuming $P_{3}=u x p v$, then $D_{G}(u, v)=V(G) \backslash\{u, v, y, p\}$. If there are P_{1}, P_{2} but no P_{3}, assuming $P_{1}=u x v$ and $P_{2}=u p v$, then $D_{G}(u, v)=V(G) \backslash\{u, v, y, q\}$. If there are P_{1}, P_{3} but no P_{2}, then assume $P_{1}=u x v$. When there exists one path P_{3} which is internally disjoint with P_{1}, assuming $P_{3}=u y p v$, we have $D_{G}(u, v)=V(G) \backslash\{u, v, y, q\}$. When all the paths P_{3} pass the vertex x, since $m_{G}(p, q) \leq 1$, we only have one path P_{3}. Then $D_{G}(u, v)=V(G) \backslash\{u, v, y, p\}$. If there are P_{1}, P_{2} and P_{3}, then assume $P_{1}=u x v$ and $P_{2}=u p v$. When there exists one path P_{3} which is internally disjoint with P_{1} and P_{2}, we have that Fig. 1.(1) is a subgraph of G containing $\{x, y, p, q\}$, a contradiction. When each path P_{3} has a common vertex (not u, v) with P_{1} or P_{2}, we have $D_{G}(u, v)=V(G) \backslash\{u, v, y, q\}$.

So, u and v are adjacent. When $u, v \notin\{x, y, p, q\}$, similar to the situation where u and v are nonadjacent, there exists a $u-v$ rainbow vertex-cut. When $u \in\{x, y, p, q\}$ and $v \notin\{x, y, p, q\}$, we have $N(u) \backslash\{v\}$ or $N(v) \backslash\{u\}$ is a $u-v$ rainbow vertexcut. So, $u, v \in\{x, y, p, q\}$. If the colors of u, v are the same, then $N(u) \backslash\{v\}$ or $N(v) \backslash\{u\}$ is a $u-v$ rainbow vertex-cut. So, the colors of u and v are different. Without loss of generality, we have $u=x, v=p$. If there is no $P_{1}=u y v$, then $D_{G}(u, v)=V(G) \backslash\{y, v\}$. If there is no $P_{2}=u q v$, then $D_{G}(u, v)=V(G) \backslash\{u, q\}$. So, there exist two paths uyv and uqv. Thus, Fig. 1.(2) is a subgraph of G containing $\{x, y, p, q\}$, which is a contradiction.

Case 3. There exist three pairs $(x, y),(x, z),(y, z)$ of vertices with $m_{G}(x, y) \leq 1$, $m_{G}(y, z) \leq 1$ and $m_{G}(z, x) \leq 1$ which do not satisfy Condition 3.

Define a vertex-coloring c of G with $n-2$ colors such that $c(x)=c(y)=c(z)=1$, and the remaining vertices have different colors from $2,3, \cdots, n-2$. Since $\operatorname{rvd}(G)=$ $n-1$, we have that c is not a rainbow vertex-disconnection coloring of G. Then there exist two vertices u and v which do not have a $u-v$ rainbow vertex-cut. Next, we claim that such vertices u, v do not exist.

Let Q_{1} be the $u-v$ path of length two through a vertex with color 1. Let Q_{2} be the $u-v$ path of length three through two vertices with color 1 . Since $m_{G}(x, y) \leq 1$, $m_{G}(y, z) \leq 1$ and $m_{G}(z, x) \leq 1$, there is at most one path Q_{1} and at most one path Q_{2}.

Assume $u, v \notin\{x, y, z\}$. Then there exist two internally disjoint paths Q_{1} and Q_{2}. (Otherwise, if there are no paths Q_{1} and Q_{2}, then $D_{G}(u, v)=V(G) \backslash\{y, z, u\}$; if there is a path Q_{1} but no path Q_{2}, assuming $Q_{1}=u x v$, then $D_{G}(u, v)=V(G) \backslash\{y, z, u\}$; if there is a path Q_{2} but no path Q_{1}, assuming $Q_{2}=u x y v$, then $D_{G}(u, v)=V(G) \backslash$ $\{y, z, u\}$; if there exist Q_{1} and Q_{2}, but Q_{1} and Q_{2} having a common vertex (not u, v), say x, then $D_{G}(u, v)=V(G) \backslash\{y, z, u\}$.) So, Fig. 1.(4) is a subgraph of G containing $\{x, y, z\}$, a contradiction.

Assume $u \in\{x, y, z\}$. Without loss of generality, let $u=x$. Suppose $v \notin\{y, z\}$. If there exists Q_{1}, assuming $Q_{1}=u y v$, then $D_{G}(u, v)=V(G) \backslash\{z, u\}$; if there is no Q_{1}, then $D_{G}(u, v)=V(G) \backslash\{z, u\}$. So, we have $v \in\{y, z\}$. Assume $v=y$. When vertices u and v are not adjacent, then $V(G) \backslash\{u, v\}$ is a u - v rainbow vertex-cut. So, vertices u and v are adjacent. If there is no path Q_{1}, then $D_{G}(u, v)=V(G) \backslash\{z, u\}$. If there is a path Q_{1}, then $Q_{1}=u z v$. So, Fig. 1.(3) is a subgraph of G containing $\{x, y, z\}$, a contradiction.

Now we are ready to show that a graph G satisfying the three conditions has $\operatorname{rvd}(G)=n-1$.

Let c be any rvd-coloring of G. For the sake of contradiction, assume $\operatorname{rvd}(G) \leq$ $n-2$. If there are at least two colors which are repeated, then there exist four vertices $v_{1}, v_{2}, v_{3}, v_{4}$ with $c\left(v_{1}\right)=c\left(v_{2}\right)$ and $c\left(v_{3}\right)=c\left(v_{4}\right)$. By Lemma 2.1, we have $m_{G}\left(v_{1}, v_{2}\right) \leq 1$ and $m_{G}\left(v_{3}, v_{4}\right) \leq 1$. Then Fig. 1.(1) or (2) is a subgraph of G containing $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. So, there are at least three colors for vertices v_{1}, v_{2}, v_{3} and v_{4}, a contradiction. If there is only one color which is repeated, then there exist at least three vertices v_{1}, v_{2}, v_{3} with $c\left(v_{1}\right)=c\left(v_{2}\right)=c\left(v_{3}\right)$. Similarly, we have $m_{G}\left(v_{1}, v_{2}\right) \leq 1, m_{G}\left(v_{1}, v_{3}\right) \leq 1$ and $m_{G}\left(v_{2}, v_{3}\right) \leq 1$ by Lemma 2.1. Then Fig. 1.(3) or (4) is a subgraph of G containing $\left\{v_{1}, v_{2}, v_{3}\right\}$. So, there are at least two colors for vertices v_{1}, v_{2} and v_{3}, a contradiction. Thus, $\operatorname{rvd}(G) \geq n-1$. By Lemma 2.2, we have $\operatorname{rvd}(G) \leq n-1$.

Theorem 4.2 Let G be a nontrivial connected graph of order n with $\operatorname{rvd}(G)=n-1$. Then

$$
|E(G)|_{\max }= \begin{cases}1, & n=2 \\ \frac{1}{2} n(n-1)-n+3, & n \geq 3\end{cases}
$$

Proof. When $n=2$, the graph is K_{2}. Consider $n \geq 3$. Since $\operatorname{rvd}(G)=n-1$, there exists at least one pair (x, y) of vertices with $m_{G}(x, y) \leq 1$ by Theorem 4.1. If x and y are adjacent, then $d_{G}(x)+d_{G}(y) \leq n+1$ and there are at least $2(n-1)-$ $d_{G}(x)-d_{G}(y) \geq n-3$ edges which are not in G. If x and y are not adjacent, then $d_{G}(x)+d_{G}(y) \leq n-1$ and there are at least $2(n-1)-d_{G}(x)-d_{G}(y)-1 \geq n-2$ edges which are not in G. Thus, $|E(G)| \leq \frac{1}{2} n(n-1)-n+3$. Let H be a graph with $V(H)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, which is obtained from K_{n} by deleting edges $v_{n} v_{i}$ $(i=[n-3])$. We have $\operatorname{rvd}(H)=n-1$ and $E(H)=\frac{1}{2} n(n-1)-n+3$.

Remark: This improves the result of Theorem 3.3 for the case $k=n-1$, where only bounds were given.

5 Results for random graphs

Let $G=G(n, p)$ be the random graphs on n vertices and edge probability p. In the study of properties of random graphs, many researchers observed that there are sharp threshold functions for various natural graph properties. For a graph property A and for a function $p=p(n)$, we say that $G(n, p)$ satisfies A almost surely if the probability that $G(n, p(n))$ satisfies A tends to 1 as n tends to infinity. We say that a function $f(n)$ is a sharp threshold function for the property A if there are two
positive constants c and C such that $G(n, c f(n))$ almost surely does not satisfy A and $G(n, p)$ satisfies A almost surely for all $p \geq C f(n)$. It is well-known that all monotone graph properties have a sharp threshold function, see [7] and [14]. In [10], the authors obtained the sharp threshold function for the property $\operatorname{rc}(G(n, p)) \leq 2$ by proving the property that any two vertices of $G(n, p)$ have at least $2 \log n$ common neighbors. By Lemmas 2.2 and 5.1 we can obtain Theorem 5.2 immediately.

Lemma $5.1[10] p=\sqrt{\log n / n}$ is a sharp threshold function for the property $r c(G(n, p)) \leq$ 2.

Theorem $5.2 p=\sqrt{\log n / n}$ is a sharp threshold function for the property $\operatorname{rvd}(G(n, p))=$ n.

Lemma 5.3 [1](Chernoff Bound) If X is a binomial random variable with expectation μ, and $0<\delta<1$, then

$$
\operatorname{Pr}[X<(1-\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right)
$$

and if $\delta>0$,

$$
\operatorname{Pr}[X>(1+\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

Theorem 5.4 Almost all graphs G have $\operatorname{rvd}(G)=\operatorname{rvd}(\bar{G})=n$.
Proof. Consider the random graphs $G\left(n, \frac{1}{2}\right)$. By Lemma 2.2, it suffices to show that almost surely any two vertices of $G\left(n, \frac{1}{2}\right)$ have at least 2 common neighbors and two common nonadjacent vertices. Let x and y be two vertices of $G\left(n, \frac{1}{2}\right)$. By union bound, it suffices to show that x, y do not have two common neighbors or two common nonadjacent vertices with probability $o\left(\frac{1}{n^{2}}\right)$. Let X_{A} be the number of common neighbors of x and y. Let X_{B} be the number of vertices which are not adjacent to x, y. Let A_{i} be the event that vertex i is the common neighbor of x and y. Let B_{i} be the event that $i \notin N_{G}(x) \cup N_{G}(y)$. Then

$$
\operatorname{Pr}\left(A_{i}\right)=\operatorname{Pr}\left(B_{i}\right)=\frac{1}{4}, \quad E\left(X_{A}\right)=E\left(X_{B}\right)=\sum_{i} \operatorname{Pr}\left(A_{i}\right)=\frac{n-2}{4} .
$$

By Lemma 5.3,

$$
\operatorname{Pr}\left(X_{A}<\frac{2 n-4}{9}\right)=\operatorname{Pr}\left(X_{B}<\frac{2 n-4}{9}\right) \leq \exp \left(-\frac{n-2}{648}\right)
$$

where $\delta_{A}=\delta_{B}=\frac{1}{9}$. Then, when n is sufficiently large, we have

$$
\operatorname{Pr}\left(X_{A}<2 \text { or } X_{B}<2\right) \leq 2 \exp \left(-\frac{n-2}{648}\right)=o\left(\frac{1}{n^{2}}\right) .
$$

So, almost all graphs G have $\operatorname{rvd}(G)=\operatorname{rvd}(\bar{G})=n$.

6 Nordhaus-Gaddum-type results

In this section, we study the Nordhaus-Gaddum-type problem for the rainbow vertex-disconnection number of graphs. We assume that both a graph G and its complement \bar{G} are connected of order n. So, we have $n \geq 4$.

Lemma 6.1 [4] If G is a nontrivial connected graph and H is a connected subgraph of G, then $\operatorname{rvd}(H) \leq \operatorname{rvd}(G)$.

Lemma 6.2 [4] For an integer $n \geq 2$,

$$
\operatorname{rvd}\left(K_{n}\right)= \begin{cases}n-1, & \text { if } n=2,3 \\ n, & \text { if } n \geq 4\end{cases}
$$

Lemma $6.3 \operatorname{rvd}\left(K_{n}-e\right)=n$ for $n \geq 5$ and $\operatorname{rvd}\left(K_{n}-2 e\right)=n$ for $n \geq 6$.

Proof. If $n=5$, then $\left|E\left(K_{5}-e\right)\right|=9$. By Theorem 4.2, we have $\operatorname{rvd}\left(K_{5}-e\right)=5$. For $n \geq 6$, since $E\left(K_{n}-2 e\right)=\frac{1}{2} n(n-1)-2$, we have $\operatorname{rvd}\left(K_{n}-2 e\right)=n$ by Theorem 4.2. By Lemma 6.1, we have $\operatorname{rvd}\left(K_{n}-e\right) \geq \operatorname{rvd}\left(K_{n}-2 e\right)=n$.

Lemma 6.4 [4] Let G be a nontrivial connected graph. Then $\operatorname{rvd}(G)=1$ if and only if G is a tree.

Lemma 6.5 If G is a connected graph of order n with $5 \leq n \leq 7$ and $\operatorname{rvd}(G)=1$, then $\operatorname{rvd}(\bar{G}) \geq n-2$ and the lower bound is sharp.

Proof.

Figure 2: The trees and their complement graphs with order $n=5$.
By Lemma 6.4, G is a tree. For $n=5$, the graph G is G_{1} or G_{2} as shown in Fig. 2. Since $\operatorname{rvd}\left(\overline{G_{1}}\right)=\operatorname{rvd}\left(\overline{G_{2}}\right)=3$, we have $\operatorname{rvd}(\bar{G})=n-2$.

For $n=6$, the graph G is one of G_{1} through G_{5} as shown in Fig. 3.(1) through (5). For G_{1} through G_{3}, the four vertices in dashed line cycle form a K_{4} in \bar{G}. By Lemmas 6.2 and 6.1, we have $\operatorname{rvd}(\bar{G}) \geq \operatorname{rvd}\left(K_{4}\right) \geq 4$. If G is the graph G_{4}, then

Figure 3: The trees with order $n=6$ and the complement graph of P_{6}.
there are four internally disjoint paths between u and v in \bar{G}, which are paths $u v$, $u v_{1} v, u v_{2} v$ and $u v_{4} v_{3} v$. So, by Lemma 2.4 we have $\operatorname{rvd}(\bar{G}) \geq 4$. If G is the graph G_{5}, then \bar{G} is the graph as shown in Fig. 3.(6). We have $\operatorname{rvd}\left(\overline{G_{5}}\right)=\operatorname{rvd}\left(\overline{P_{6}}\right)=4$. So, $\operatorname{rvd}(\bar{G}) \geq n-2$.

Figure 4: The trees with order $n=7$ and $|E(H)|=2$.
For $n=7$, if any two vertices of the graph \bar{G} have at least two common neighbors, then $\operatorname{rvd}(\bar{G})=n$ by Lemma 2.2. So, assume that there exist two vertices x, y in \bar{G} with $m_{\bar{G}}(x, y) \leq 1$. Then there is at most one vertex which is not adjacent to x and y in G. Let $H=G-x-y$. If $|E(H)| \geq 3$, assuming that $\left\{e_{1}, e_{2}, e_{3}\right\} \subseteq E(H)$, then there are at least two edges with the common vertex, say $e_{1}=v_{1} v_{2}$ and $e_{2}=v_{2} v_{3}$. Since G is a tree, we have one vertex $t \in\left\{v_{1}, v_{2}, v_{3}\right\}$ but $t \notin N_{G}(x) \cup N_{G}(y)$ and there is a path $P_{1}=x e_{1} y$ or $x e_{2} y$ or $x e_{1} e_{2} y$ in G. So, the endpoints of e_{3} are adjacent to x and y, respectively. There is a path $P_{2}=x e_{3} y$. Then according to P_{1} and P_{2}, there is a cycle in graph G, a contradiction. So, $|E(H)| \leq 2$. When $|E(H)| \leq 1$, we have $\bar{H}=K_{5}$ or $K_{5}-e$. By Lemmas 6.1, 6.2 and 6.3, we have $\operatorname{rvd}(\bar{G}) \geq \operatorname{rvd}(\bar{H})=5$. When $|E(H)|=2, G$ is as shown in Fig. 4. If G is one of G_{1} through G_{4} or G_{6}, then the vertices in dashed line cycle form a K_{5} or $K_{5}-e$ in \bar{G}. So, $\operatorname{rvd}(G) \geq 5$ by Lemmas 6.2 and 6.3. If G is G_{5} or G_{7}, i.e. P_{7}, then we have $\operatorname{rvd}(\bar{G})=\operatorname{rvd}\left(\overline{P_{7}}\right)=5$.

Lemma 6.6 If G is a connected graph of order $n \geq 8$ and $\operatorname{rvd}(G)=1$, then $\operatorname{rvd}(\bar{G}) \geq$ $n-1$ and the lower bound is sharp.

Proof. By Lemma 6.4, G is a tree. Assume $n \geq 8$. If any two vertices of the graph \bar{G} have at least two common neighbors, then $\operatorname{rvd}(\bar{G})=n$ by Theorem 2.2. So, we consider that there exist two vertices x and y in \bar{G} with $m_{\bar{G}}(x, y) \leq 1$. Then there is at most one vertex which is not adjacent to x and y in G. Without loss of generality, let $N_{G}(y) \geq N_{G}(x)$. Then $\left|N_{G}(y) \backslash\{x\}\right| \geq 3$. Let $H=G-x-y$.

If x and y have no common nonadjacent vertex in G, then $V(H) \subseteq N_{G}(x) \cup N_{G}(y)$. Since there exists at most one edge in graph H, we have $\operatorname{rvd}(\bar{H})=n-2$ by Lemmas 6.2 and 6.3. Let $v \in V(H)$. If $M_{G}(x, y)=\{s\}$, then $N_{G}(y) \geq 4$. We have $N_{G}(y) \backslash\{s, v\} \subseteq$ $M_{\bar{G}}(x, v)$. So, $m_{\bar{G}}(x, v) \geq 2$. By Lemma 2.1, we obtain $\operatorname{rvd}(\bar{G}) \geq n-1$. Consider $M_{G}(x, y)=\emptyset$. If $x y \in E(G)$, then $N_{G}(y) \backslash\{x, v\} \subseteq M_{\bar{G}}(x, v)$. So, $m_{\bar{G}}(x, v) \geq 2$ and $\operatorname{rvd}(\bar{G}) \geq n-1$. If $x y \notin E(G)$, then there is an edge $v_{1} v_{2} \in E(G)$ with $v_{1} \in N_{G}(x)$ and $v_{2} \in N_{G}(y)$. Then $N_{G}(y) \backslash\left\{v_{2}\right\} \subseteq M_{\bar{G}}(x, v)$ for $v \in N_{G}(x)$ and $N_{G}(y) \backslash\{v\} \subseteq M_{\bar{G}}(x, v)$ for $v \in V(H) \backslash N_{G}(x)$. So, $m_{\bar{G}}(x, v) \geq 2$ for $v \in V(H)$ and $\operatorname{rvd}(\bar{G}) \geq n-1$.

Now we consider that there exists a vertex t which is not adjacent to x and y in G. If $x y \in E(G)$, then the vertex t is adjacent to a vertex t^{\prime} of $N_{G}(x) \backslash\{y\}$ or $N_{G}(y) \backslash\{x\}$ in G. So, $\operatorname{rvd}(\bar{H})=\operatorname{rvd}\left(K_{n-2}-e\right)=n-2$ by Lemma 6.3. If $t^{\prime} \in N_{G}(x) \backslash\{y\}$ in G, then $N_{G}(y) \backslash\{x, v\} \subseteq M_{\bar{G}}(x, v)$; if $t^{\prime} \in N_{G}(y) \backslash\{x\}$ in G, then $N_{G}(y) \backslash\left\{x, t^{\prime}\right\} \subseteq M_{\bar{G}}(x, v)$ for $v=t$ and $N_{G}(y) \backslash\{x, v\} \subseteq M_{\bar{G}}(x, v)$ for $v \in V(H) \backslash\{t\}$. We have $m_{\bar{G}}(x, v) \geq 2$ for $v \in V(H)$. So $\operatorname{rvd}(\bar{G}) \geq n-1$.

Assume $x y \notin E(G)$. If $M_{G}(x, y)=\left\{s^{\prime}\right\}$, then t is adjacent to a vertex h_{1} from $V(H)$ in G. We have $\operatorname{rvd}(\bar{H})=\operatorname{rvd}\left(K_{n-2}-e\right)=n-2$ by Lemma 6.3. If $h_{1} \in N_{G}(x)$ or $N_{G}(y) \geq 4$ in G, then $N_{G}[y] \backslash\left\{s^{\prime}, h_{1}\right\} \subseteq M_{\bar{G}}(x, t), N_{G}(y) \backslash\left\{s^{\prime}\right\} \subseteq M_{\bar{G}}(x, v)$ for $v \in N_{G}(x)$ and $N_{G}(y) \cup\{t\} \backslash\left\{v, s^{\prime}\right\} \subseteq M_{\bar{G}}(x, v)$ for $v \in N_{G}(y) \backslash\left\{s^{\prime}\right\}$. So, by Lemma 2.1 we have that $V(\bar{G}) \backslash\{y\}$ is rainbow. If $h_{1} \in N_{G}(y)$ and $N_{G}(y)=3$ in G, then $N_{G}(x)=3$. By symmetry, we know that $V(\bar{G}) \backslash\{x\}$ is rainbow. Thus, $\operatorname{rvd}(\bar{G}) \geq n-1$. If $M_{G}(x, y)=\emptyset$, then $\operatorname{rvd}(\bar{H})=\operatorname{rvd}\left(K_{n-2}-2 e\right)=n-2$ by Lemma 6.3. Let h_{2} be the neighbor of t in $N_{G}(y)$ (if h_{2} does not exist, then let $\left\{h_{2}\right\}=\emptyset$). Let $v_{x} v_{y}$ be the edge of G with $v_{x} \in N_{G}(x)$ and $v_{y} \in N_{G}(y)$ (if $v_{x} v_{y}$ does not exist, then let $\left.\left\{v_{x}\right\}=\left\{v_{y}\right\}=\emptyset\right)$. We have $N_{G}(y) \backslash\left\{h_{2}\right\} \subseteq M_{\bar{G}}(x, t), N_{G}(y) \backslash\left\{v_{y}\right\} \subseteq M_{\bar{G}}\left(x, v_{x}\right)$ and $N_{G}(y) \backslash\{v\} \subseteq M_{\bar{G}}(x, v)$ for $v \in V(H) \backslash\left\{t, v_{x}\right\}$. So, $m_{\bar{G}}(x, v) \geq 2$ for $v \in V(H)$ and $\operatorname{rvd}(\bar{G}) \geq n-1$.

For the sharpness of the lower bound, let G_{0} be a tree obtained from $K_{1, n-2}$ by adding a new vertex which is adjacent to one of the leaves. Then we have $\operatorname{rvd}\left(\overline{G_{0}}\right)=$
$n-1$.

A block of a graph is a maximal connected induced subgraph of G containing no cut vertices. An end-block is a block with exactly one cut vertex of G.

Lemma 6.7 [4] Let G be a nontrivial connected graph. Then $\operatorname{rvd}(G)=2$ if and only if each block of G is either K_{2} or a cycle and at least one block of G is a cycle.

Lemma 6.8 If G is a connected graph of order n and $\operatorname{rvd}(G)=2$, then $\operatorname{rvd}(\bar{G}) \geq$ $n-3$.

Proof. If $G=C_{n}$, then $\delta(\bar{G})=n-3$. By Theorem 2.7, we have $\operatorname{rvd}(\bar{G}) \geq n-3$. Assume that G is not C_{n}. By Lemma 6.7, there exist at least two end-blocks B_{i} and B_{j} which are a K_{2} or a cycle. If B_{i} and B_{j} are both K_{2}, then we select one of the endpoints with degree one in G from B_{i}, B_{j}, respectively, say x and y. Then x, y are adjacent in \bar{G} and $M_{\bar{G}}(x, y)=V(\bar{G}) \backslash\left\{N_{G}[x], N_{G}[y]\right\}$. So, $\kappa_{\bar{G}}(x, y) \geq n-3$. Thus, $\operatorname{rvd}(\bar{G}) \geq n-3$ by Lemma 2.4. Assume that B_{i} is a cycle. If B_{i} is a triangle $v_{1} v_{2} v_{3} v_{1}$, where v_{3} is a cut vertex of G, then $M_{\bar{G}}\left(v_{1}, v_{2}\right)=V(\bar{G}) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$. So, $\operatorname{rvd}(\bar{G}) \geq n-3$. If B_{i} is a $C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$, where v_{4} is a cut vertex of G, then $M_{\bar{G}}\left(v_{1}, v_{3}\right)=V(\bar{G}) \backslash\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Since v_{1}, v_{3} are adjacent in \bar{G}, we have $\operatorname{rvd}(\bar{G}) \geq$ $\kappa_{\bar{G}}\left(v_{1}, v_{3}\right) \geq n-3$ by Lemma 2.4. If B_{i} is a cycle $C_{t}=v_{1} v_{2} \cdots v_{t-1} v_{t} v_{1}$ with order $t \geq 5$, where v_{t} is a cut vertex of G, then $M_{\bar{G}}\left(v_{1}, v_{2}\right)=V(\bar{G}) \backslash\left\{v_{1}, v_{2}, v_{3}, v_{t}\right\}$. Since there is a path $v_{1} v_{3} v_{t} v_{2}$ in \bar{G}, we have $\operatorname{rvd}(\bar{G}) \geq \kappa_{\bar{G}}\left(v_{1}, v_{2}\right) \geq n-3$ by Lemma 2.4.

Theorem 6.9 Let G and \bar{G} be connected graphs of order n.

1. If $n=4$, then $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G})=1$.
2. If $5 \leq n \leq 7$, then $n-2 \leq \operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \leq n^{2}$ and the lower bound is sharp.
3. If $n \geq 8$, then $n-1 \leq \operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \leq n^{2}$. Furthermore, the lower bound is sharp and the upper bound is sharp for $n \geq 12$.

Proof. If $n=4$, then $G=\bar{G}=P_{4}$. By Lemma 6.4, $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G})=1$. The upper bounds are obvious for $n \geq 5$. For the lower bounds, by Lemmas 6.5 and 6.8, we only need to consider $n \geq 8$. we assume that $\delta(G) \leq \delta(\bar{G})$. Then $\delta(G) \leq \frac{n-1}{2}$. When $\operatorname{rvd}(G)=1$, we have $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq n-1$ by Lemma 6.6. When $\operatorname{rvd}(G)=2$, we have $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq 2(n-3)=n-1+n-5 \geq n-1$ by Lemma 6.8. By
symmetry, we consider $\operatorname{rvd}(G) \geq 3$ and $\operatorname{rvd}(\bar{G}) \geq 3$. So, for $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G})$ we only need to consider $n \geq 11$. Let

$$
f= \begin{cases}\left\lceil\frac{n-1}{3}\right\rceil, & \text { if } \delta(G) \leq 3 \\ \left\lceil\frac{n-1}{\delta(G)}\right\rceil, & \text { if } \delta(G) \geq 4\end{cases}
$$

If $\operatorname{rvd}(\bar{G}) \geq f$, then for $\delta(G) \leq 3, \operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq 3 f \geq n-1$; for $\delta(G) \geq 4$, $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq \delta(G) \cdot f \geq n-1$ by Theorem 2.7.

Suppose $\operatorname{rvd}(\bar{G}) \leq f-1$. Let u be the vertex with $d_{G}(u)=\delta(G)$. Let $H=$ $G-N_{G}[u]$ and v be any vertex of the graph H. Since u is adjacent to v in the graph \bar{G}, we have $m_{\bar{G}}(u, v) \leq f-2$. So, there are at most $f-2$ vertices which are not adjacent to u and v in G. Hence, we have

$$
\begin{aligned}
d_{H}(v) & \geq|H|-1-(f-2) \\
& =n-\delta(G)-f .
\end{aligned}
$$

If H is connected, then $\operatorname{rvd}(G) \geq \operatorname{rvd}(H) \geq \delta(H) \geq n-\delta(G)-f$ by Lemma 6.1 and Theorem 2.7. If H is not connected, then we denote a component with maximum rainbow vertex-disconnection number by H_{1}. Then $\operatorname{rvd}(G) \geq \operatorname{rvd}\left(H_{1}\right) \geq \delta\left(H_{1}\right) \geq$ $n-\delta(G)-f$ by Lemma 6.1 and Theorem 2.7.

When $\delta(G) \leq 3, \operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq(n-\delta(G)-f) \cdot 3 \geq n-1+n-10 \geq n-1$. When $\delta(G) \geq 4$, since $\delta(G) \leq \frac{n-1}{2}$, we have $\operatorname{rvd}(G) \cdot \operatorname{rvd}(\bar{G}) \geq(n-\delta(G)-f) \cdot \delta(G) \geq$ $n-1+\delta(G) \cdot(\delta(G)-4) \geq n-1$.

By Lemmas 6.5 and 6.6, the lower bound is sharp. For the upper bound, let G be a graph with order $n=4 k+t(k \geq 3$ and $t=0,1,2,3)$. The vertex set $V(G)$ can be partitioned into four cliques, $V_{1}=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}, V_{2}=\left\{v_{k+1}, v_{k+2}, \cdots, v_{2 k}\right\}$, $V_{3}=\left\{v_{2 k+1}, v_{2 k+2}, \cdots, v_{3 k}\right\}$ and $V_{4}=\left\{v_{3 k+1}, v_{3 k+2}, \cdots, v_{4 k}, v_{4 k+1}, \cdots, v_{4 k+t}\right\}$. Each vertex set $\left\{v_{i}, v_{k+i}, v_{2 k+i}, v_{3 k+i}\right\}$ forms a clique, where $i \in[k-1]$. The vertex set $\left\{v_{k}, v_{2 k}, v_{3 k}, v_{4 k}, v_{4 k+1}, \cdots, v_{4 k+t}\right\}$ also forms a clique. Then we have $\operatorname{rvd}(G)=$ $\operatorname{rvd}(\bar{G})=n$.

Theorem 6.10 Let G and \bar{G} be connected graphs of order n. Then $n-7 \leq \operatorname{rvd}(G)+$ $\operatorname{rvd}(\bar{G}) \leq 2 n$.

Proof. The upper bound is obvious. Now we consider the lower bound. For $n \geq 8$, when $\operatorname{rvd}(G)=1$ or 2 , we have $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-1$ by Lemmas 6.6 and 6.8. Assume that $\operatorname{rvd}(\bar{G}) \geq \operatorname{rvd}(G) \geq 3$. If $\operatorname{rvd}(G) \geq\left\lceil\frac{n-1}{2}\right\rceil$, then $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-1$.

So, we consider $3 \leq \operatorname{rvd}(G) \leq \operatorname{rvd}(\bar{G}) \leq\left\lceil\frac{n-1}{2}\right\rceil-1$ and $n \geq 13$. Let $\operatorname{rvd}(G)=k$ and $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be the set of color classes of an rvd-coloring of G. Since $\frac{n}{k}>2$, there are three cases to consider.

Case 1. There exists a V_{i} with $\left|V_{i}\right| \geq 4$.
Let D_{i} be the subset of V_{i} with four vertices. For any two vertices of D_{i}, they have at most one common nonadjacent vertex in \bar{G} by Lemma 2.1. Let $S=\{u \mid$ the vertex u is not adjacent to at least two vertices of D_{i} in $\left.\bar{G}\right\}$. Let $T=V(\bar{G}) \backslash\left(D_{i} \cup S\right)$. Then $|S| \leq\binom{ 4}{2}=6$ and $\left|N_{\bar{G}}(v) \cap D_{i}\right| \geq 3$ for $v \in T$. For any two vertices x, y of T, there are at least two common neighbors from D_{i} in \bar{G}. By Lemma 2.1, the vertex set T is rainbow in \bar{G}. Thus, $\operatorname{rvd}(\bar{G}) \geq n-10$ and $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-7$.

Case 2. There exist V_{i}, V_{j} with $\left|V_{i}\right|=\left|V_{j}\right|=3$ and $\left|V_{s}\right| \leq 3$ for $s \in[k]$.
For any two vertices of V_{i} or V_{j}, they have at most one common nonadjacent vertex in \bar{G} by Lemma 2.1. Let $S_{1}=\{u \mid$ the vertex u is not adjacent to at least two vertices of V_{i} in $\left.\bar{G}\right\}$ and $S_{2}=\{u \mid$ the vertex u is not adjacent to at least two vertices of V_{j} in $\left.\bar{G}\right\}$. Let $T=V(\bar{G}) \backslash\left(V_{i} \cup V_{j} \cup S_{1} \cup S_{2}\right)$. Then $\left|S_{1} \cup S_{2}\right| \leq 6$. We have $\left|N_{\bar{G}}(v) \cap V_{i}\right| \geq 2$ and $\left|N_{\bar{G}}(v) \cap V_{j}\right| \geq 2$ for $v \in T$. For any two vertices x, y of T, x and y have at least one common neighbor from V_{i} and another from V_{j} in \bar{G}. By Lemma 2.1, the vertex set T is rainbow in \bar{G}. Thus, $\operatorname{rvd}(\bar{G}) \geq n-12$ and $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq\left\lceil\frac{n}{3}\right\rceil+n-12 \geq n-7$.

Case 3. There is only one V_{i} with $\left|V_{i}\right|=3$ and $\left|V_{s}\right| \leq 2$ for $s \in[k] \backslash\{i\}$.
We have $\operatorname{rvd}(\bar{G}) \geq \operatorname{rvd}(G) \geq \frac{n-3}{2}+1=\frac{n-1}{2}$. So, $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-1$.

Theorem 6.11 Let G and \bar{G} be connected graphs of order $n \geq 24$. Then $n-5 \leq$ $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \leq 2 n$ and the upper bound is sharp.

Proof. Let $\operatorname{rvd}(G)=k$ and $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be the set of color classes of an rvdcoloring of G. Then for any triple $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V_{i}$, where $i \in[k]$, let $S=V(\bar{G}) \backslash$ $\left\{v_{1}, v_{2}, v_{3}\right\}$. Since $m_{G}\left(v_{1}, v_{3}\right) \leq 1$, we have v_{3} is adjacent to at least $\left|S-N_{\bar{G}}\left(v_{1}\right)\right|-1$ vertices of the vertex set $S-N_{\bar{G}}\left(v_{1}\right)$ in \bar{G}. Since $m_{G}\left(v_{2}, v_{3}\right) \leq 1$, we have that v_{3} is adjacent to at least $\left|S-N_{\bar{G}}\left(v_{2}\right)\right|-1$ vertices of the vertex set $S-N_{\bar{G}}\left(v_{2}\right)$ in \bar{G}. Since $m_{G}\left(v_{1}, v_{2}\right) \leq 1$, we obtain $\left|\left(S-N_{\bar{G}}\left(v_{1}\right)\right) \cap\left(S-N_{\bar{G}}\left(v_{2}\right)\right)\right| \leq 1$. If $d_{\bar{G}}\left(v_{1}\right)<\frac{n+2}{2}$ and
$d_{\bar{G}}\left(v_{2}\right)<\frac{n+2}{2}$, then

$$
\begin{aligned}
d_{\bar{G}}\left(v_{3}\right) & \geq\left|S-N_{\bar{G}}\left(v_{1}\right)\right|+\left|S-N_{\bar{G}}\left(v_{2}\right)\right|-3 \\
& =2 n-9-d_{\bar{G}}\left(v_{1}\right)-d_{\bar{G}}\left(v_{2}\right) \\
& >n-11 \\
& \geq \frac{n+2}{2} .
\end{aligned}
$$

So, for \bar{G} there is at least one vertex with degree more than $\frac{n+2}{2}$ in $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let T be the set of vertices with degrees larger than $\frac{n+2}{2}$ in \bar{G}. Then we have $|T| \geq$ $\sum_{i \in[k]}\left(\left|V_{i}\right|-2\right)=n-2 k$. For any two vertices x and y in $T, d_{\bar{G}}(x)+d_{\bar{G}}(y) \geq n+2$. So, we have that T is rainbow by Lemma 2.1. Thus, $\operatorname{rvd}(\bar{G}) \geq n-2 k$. When $k \leq 5$, we have $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-k \geq n-5$. Now consider $k \geq 6$. Since $n \geq 24$, we have $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n-4$ for the Case 2 and Case 3 of Theorem 6.10. For the Case 1 of Theorem 6.10, we have $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq 6+n-10 \geq n-4$.

The upper bound is sharp, which can be achieved by graphs with order $n=4 k+t$ ($k \geq 6$ and $t=0,1,2,3$), described in Theorem 6.9.

In fact, we think that the lower bound of $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G})$ could be improved further. When $\operatorname{rvd}(G)=1$, we have $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n$ for $n \geq 8$ by Lemma 6.6. So, we pose the following conjecture for further study.

Conjecture 6.12 Let G and \bar{G} be nontrivial connected graphs of order $n \geq 8$. Then $\operatorname{rvd}(G)+\operatorname{rvd}(\bar{G}) \geq n$.

Acknowledgement. The authors are very grateful to the reviewers for their helpful comments and suggestions.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd Ed., Wiley, Hoboken, 2008.
[2] X. Bai, R. Chang, Z. Huang, X. Li, More on rainbow disconnection in graphs, Discuss. Math. Graph Theory, doi:10.7151/dmgt.2333, in press.
[3] X. Bai, Y. Chen, M. Ji, X. Li, Y. Weng, W. Wu, Proper disconnection in graphs, Bull. Malays. Math. Sci. Soc., doi10.1007/s40840-020-01069-5, in press.
[4] X. Bai, Y. Chen, P. Li, X. Li, Y. Weng, The rainbow vertex-disconnection in graphs, Acta Math. Sin., Engl. Ser., 37(2021), 249-261.
[5] X. Bai, Z. Huang, X. Li, Bounds for the rainbow disconnection number of graphs, accepted by Acta Math. Sin., Engl. Ser., arXiv:2003.13237 [math.CO].
[6] X. Bai, X. Li, Graph colorings under global structural conditons, arXiv:2008.07163.
[7] B. Bollobás, A. Thomason, Threshold functions, Combinatorica 7(1986), 35-38.
[8] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 224, Springer, 2008.
[9] J. Cai, J. Wang, X. Zhang, Restricted Colorings of Graphs, Science Press, Beijing (2019)
[10] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[11] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38(4)(2018), 1007-1021.
[12] Y. Chen, P. Li, X. Li, Y. Weng, Complexity results for the proper disconnection of graphs, FAW 2020, Lecture Notes Computer Sci. No.12340, 1-12.
[13] P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5(1960), 17-61.
[14] E. Friedgut, G. Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124(1996), 2993-3002.
[15] G. Hahn, J. Kratochvíl, J. Širáň, D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256(2002), 179-192.
[16] P. Li, X. Li, Monochromatic disconnection of graphs, Discrete Appl. Math. 288(2021), 171-179.
[17] W. Mader, Grad und lokaler zusammenhang in endlichen graphen, Math. Ann. 205(1973), 9-11.
[18] M. Santa, private communication, 1993.

[^0]: *Supported by NSFC No. 11871034.

