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a b s t r a c t 

The extended adjacency matrix of graph G, A ex is a symmetric real matrix that if i � = j and 

u i u j ∈ E(G ) , then the i jth entry is d 2 u i 
+ d 2 u j 

/ 2 d u i d u j , and zero otherwise, where d u indicates 

the degree of vertex u . In the present paper, several investigations of the extended adja- 

cency matrix are undertaken and then some spectral properties of A ex are given. Moreover, 

we present some lower and upper bounds on extended adjacency spectral radii of graphs.

Besides, we also study the behavior of the extended adjacency energy of a graph G .

 

 

 

 

 

1. Introduction

In this work, by a graph, we mean a simple, finite and connected one. The symmetric division deg index a graph invariant

based on degree of vertices and it is defined as follows: 

SDD (G ) = 

∑ 

u v ∈ E(G ) 

d 2 u + d 2v
d u d v 

, (1) 

where d u and d v denotes the degrees of vertices u and v . Several properties of sdd -index are given in [8,11,21–24] as well as

[1,9,17] . 

The inverse symmetric division deg index is defined by Ghorbani et al. in [7] as follows: 

ISDD (G ) = 

∑ 

u v ∈ E(G ) 

d u d v 

d 2 u + d 2v
. (2) 

The adjacency matrix A (G ) of graph G is a matrix that a i j = 1 if v i v j ∈ E(G ) and zero otherwise. With respect to the

symmetric division deg index, the extended adjacency matrix ( A = A ex ) is defined as a symmetric real matrix in which the

i jth entry is d 2 u i 
+ d 2 u j 

/ 2 d u i d u j , when i � = j and u i u j ∈ E(G ) , and zero otherwise. It is clear that for a regular graph G, the

extended adjacency and the adjacency matrices are the same. For recent research along these lines, see [3,13,25] . Recall that

the extended adjacency matrix is just one among a large number of degree-based graph matrices; for details see [4] . 
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The structure of this paper is as follows. In continuing this section, we introduce definitions and concepts that we need

in this paper. In Section 2 , we compute the extended adjacency matrix or A -matrix of well-known graphs together with

their characteristic polynomials. In continuing, we will argue about the spectra of certain classes of graphs. In Section 3 ,

we apply algebraic graph theory techniques to explore the A -spectral radii of graphs in general. Finally, in Section 4 , the

extended adjacency energy of a graph is defined and some bounds are given. 

Two graph invariants M 1 (G ) = 

∑ 

u v ∈ E 
d u + d v and M 2 (G ) = 

∑ 

u v ∈ E 
d u d v are calles as Zagreb indices and they have been defined

in the 1970s, see [16,17] . Also, the forgotten index is defined as [5,6] 

F (G ) = 

∑ 

u v ∈ E 
d 2 u + d 2 v .

A permutation π on the vertices of a graph G is called an homomorphism, if for an edge e = xy of G, then π(e ) =
π(x ) π(y ) is again an edge of G, where the image of edge e = xy is denoted by π(e ) . We say π is an automorphism, if both

π and π−1 are homomorphism of G . The automorphism group of a graph G is the set Aut(G ) = { π : V (G ) → V (G ) , where π
is an automorphism } . 

For a given edge e ∈ E(G ) , the collection E e = { π(e ) , π ∈ Aut(G ) } is an orbit including e . A vertex(edge)-transitive graph

is a graph with only one vertex(edge) orbit. 

Throughout this paper, for the graph G, the symbol G \ e means removing the edge e . 

2. Preliminary results

For a graph G of order n and with adjacency matrix A = A (G ) , the polynomial χλ(G ) = det (λI n − A ) , where I n is the

identity matrix of order n, is called the characteristic polynomial of G and each root of χλ(G ) is called an eigenvalue of

G . If λ1 , λ2 , . . . , λs are all distinct eigenvalues of G, then the spectrum of G is the multiset spec(G ) = { [ λ1 ] 
m 1 , . . . , [ λs ] 

m s } ,
where m i ( 1 ≤ i ≤ s ) indicates the multiplicity of λi . Also, the spectral radius of a graph is the largest absolute value of its

eigenvalues. 

The eigenvalues of matrix A = A ex are shown by η1 , η2 , . . . , ηn and its spectrum by spec ex (G ) . It is not difficult to realize

that in either a regular graph or a complete bipartite graph, the A -matrix is a multiple of the adjacency matrix. Hence, by

having the eigenvalues of the adjacency matrix, we can find the A -eigenvalues, but in general, this problem is more difficult.

Theorem 2.1. Let G be a graph extended adjacency eigenvalues η1 , . . . , ηn . Then 

(i) 
n ∑ 

i =1

ηi = tr(A ex ) = 0 . 

(ii) 
n ∑ 

i =1

η2 
i 

= tr(A 

2 
ex ) = 2 

∑ 

i, j

((A ex ) i j ) 
2 = 

1 

2 

∑ 

i ∼ j

( 
d u i 
d u j 

+ 

d u j 

d u i 
) 2 . 

(iii) 
n ∑ 

i =1

η3 
i 

= tr(A 

3 
ex ) = 

1 
4 

∑ 

i ∼ j 

d 2u i + d 2 u j 

(d u i d u j ) 
2 
( 

∑ 

k ∼i,k ∼ j

(d 2u i + d 2 u k 
)(d 2 u j

+ d 2 u k 
)

d 2 u k

) . 

(iv) 
n ∑ 

i =1

η4 
i 

= tr(A 

4 
ex ) = 

1 
16 ( 

n ∑ 

i =1

( 
∑ 

i ∼l

( 
d u i 
d u l 

+ 

d u j 

d u i 
) 2 ) 2 + 

∑ 

i � = j
( 

1 

d u i d u j 

∑ 

l ∼i,l ∼ j

(d 2u i + d 2 u l 
)(d 2 u j

+ d 2 u l 
)

d 2u l

) 2 ) . 

Proof. 

(i) It follows from definition. 

(ii) (A 

2 
ex ) ii = 

n ∑ 

j=1

(A ex ) i j (A ex ) ji = 

n ∑ 

j=1

((A ex ) i j ) 
2 = 

∑ 

i ∼ j

(A ex ) 
2 
i j = 

1 

4 

∑ 

i ∼ j

( 
d u i 
d u j 

+ 

d u j 

d u i 
) 2 . Therefore, 

tr(A 

2 
ex ) =

n ∑ 

i =1

∑ 

i ∼ j

( 
1 

2 

( 
d u i 
d u j 

+ 

d u j 
d u i 

)) 2 = 

1 

2 

∑ 

i ∼ j

( 
d u i 
d u j 

+ 

d u j 
d u i 

) 2 . 

(iii) Suppose i � = j. Then 

(A 

2 
ex ) i j =

n ∑ 

k =1

(A ex ) ik (A ex ) k j = 

∑ 

k ∼i,k ∼ j

(A ex ) ik (A ex ) k j 

= 

∑ 

k ∼i,k ∼ j

( 
1 

2 

( 
d u i 
d u k 

+ 

d u k 
d u i 

))( 
1 

2 

( 
d u j 
d u k 

+ 

d u k 
d u j 

)) 

= 

1 

4 d u i d u j 

∑ 

k ∼i,k ∼ j

( 
(d 2 u i 

+ d 2 u k 
)(d 2 u j

+ d 2 u k 
) 

d 2 u k 

) . 
2



 

For the matrix A 

3 
ex , we have 

(A 

3 
ex ) ii =

n ∑ 

j=1

(A ex ) i j (A 

2 
ex ) jk =

∑ 

i ∼ j

( 
1 

2 

( 
d u i 
d u j 

+ 

d u j 
d u i 

))((A ex ) 
2 ) jk 

= 

∑ 

i ∼ j 

d 2 u i
+ d 2 u j

8(d u i d u j ) 
2 
( 

∑ 

k ∼i,k ∼ j

(d 2 u i 
+ d 2 u k 

)(d 2 u j
+ d 2 u k 

) 

d 2 u k 

) . 

Hence 

tr(A 

3 
ex ) =

n ∑ 

i =1

∑ 

i ∼ j 

d 2 u i
+ d 2 u j

8(d u i d u j ) 
2 
( 

∑ 

k ∼i,k ∼ j

(d 2 u i 
+ d 2 u k 

)(d 2 u j
+ d 2 u k 

) 

d 2 u k 

) 

= 

1 

4 

∑ 

i ∼ j 

d 2 u i
+ d 2 u j 

(d u i d u j ) 
2 
( 

∑ 

k ∼i,k ∼ j

(d 2 u i 
+ d 2 u k 

)(d 2 u j
+ d 2 u k 

) 

d 2 u k 

) . 

(iv) The trace of A 

4 
ex is 

tr(A 

4 
ex ) =

n ∑ 

i, j=1

(A 

2 
ex ) 

2 
i j = 

∑ 

i = j
(A 

2 
ex ) 

2 
i j + 

∑ 

i � = j
(A 

2 
ex ) 

2 
i j 

= 

1

16 

( 
n ∑ 

i =1

( 
∑ 

i ∼l

( 
d u i 
d u l 

+ 

d u j 
d u i 

) 2 ) 2 

+ 

∑ 

i � = j
( 

1 

d u i d u j 

∑ 

l ∼i,l ∼ j

(d 2 u i 
+ d 2 u l 

)(d 2 u j
+ d 2 u l 

) 

d 2 u l 

) 2 ) . 

This completes our argument. �

Example 2.1. Theorem 2.1 imlies that if G is r-regular, then clearly A ex = A and A 

2 
ex = A 

2 . On the other hand, tr(A 

2 ) = nr

which yields that tr(A 

2 
ex ) = nr. 

Example 2.2. For the path graph P n , we obtain 

A ex (P n ) = 

⎡
⎢⎢⎢⎢ ⎢⎢⎢ ⎢⎢ ⎢ ⎣ 

0 

5
4

0 0 · · · 0 0 

5
4

0 1 0 · · · 0 0 

0 1 0 1 

. . .
.. . 

. . . 

0 0 1 

. . .
. . . 0 0 

.. . 
.. . 

. . .
. . . 0 1 0 

0 0 · · · 0 1 0 

5 
4

0 0 · · · 0 0 

5
4

0 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The diagonal elements of A 

2 
ex (P n ) are 25 

16 , 
41 
16 , 2 , 2 , · · · , 2 , 41 

16 , 
25 
16 . Therefore 

tr(A 

2 
ex (P n )) = 

33 

4 

+ 2(n − 4) . 

Theorem 2.2. Let G be an edge-transitive graph on n vertices. Then 

χη(A ex ) = αn χ(αλ) (A ) , 

where α = 

a 2 + b 2 
2 ab 

. 

Proof. Since G is edge-transitive, and for each edge e = u v , there are two integers a and b such that a = d u and b = d v .

Then 

A ex (G ) = 

a 2 + b 2

2 ab 
A (G ) 

and we are done. �

Example 2.3. According to Theorem 2.2 , for the complete bipartite graph K m,n , we obtain 

A ex (K m,n ) = ( 
m 

2 + n 

2 

) A (K m,n ) . 

2 mn 

3



Fig. 1. The graph G .

 

 

 

 

 

 

 

 

Hence 

spec ex (K m,n ) = 

{
[ −m 

2 + n 

2

2 

√ 

mn 

] 1 , [0] m + n −2 , [ 
m 

2 + n 

2 

2 

√ 

mn 

] 1 
}
.

Theorem 2.3. For a regular graph G, we yield that 

χη(A ex ) = χλ(A ) . 

Proof. It is clear that all non-zero entries of A ex are 1. This fact and using the definition, would yield the required result. �

3. The spectral radii of extended adjacency matrix of graphs

In this section, we obtain some lower and upper bounds for the spectral radii of extended adjacency matrix of graphs.

Here, we show the largest eigenvalue of the adjacency matrix of graph G by λ1 (G ) (or for simply by λ1 ). Also, we denote the

largest eigenvalue of extended adjacency matrix of a graph by η1 (G ) (or for simply by η1 ). It is a well-known fact that for

the largest ordinary eigenvalue of a graph G, we have λ1 (G ) > λ1 (G \ e ) [2] but this fact is not true for the largest extended

adjacency eigenvalue. For example, consider the graph G as depicted in Fig. 1 . It is not difficult to see that η1 (G ) = 3 . 65 ,

η1 (G \ e 1 ) = 4 . 25 and η1 (G \ e 2 ) = 2 . 65 .

Based on the above facts, we investigate the spectral properties of the largest eigenvalue of extended adjacency matrix 

of a graph. 

Theorem 3.1. For any graph G, we have λ1 ≤ η1 ≤ 1 
2 ( 

�
δ

+ 

δ
�

) λ1 . The left equality holds if and only if G is a regular graph and

the right equality holds if and only if G is a complete bipartite graph. 

Proof. For two arbitrary vertices v i and v j ( 1 ≤ i, j ≤ n ), we have 1 ≤ 1 
2 ( 

d v i 
d v j 

+ 

d v j 
d v i 

) ≤ 1 
2 ( 

�
δ

+ 

δ
� ) . Consequently, A (G ) ≤

A ex (G ) ≤ 1 
2 ( 

�
δ

+ 

δ
� ) A (G ) and thus λ1 ≤ η1 ≤ 1 

2 ( 
�
δ

+ 

δ
� ) λ1 . �

It is well-known that [2,18] 

max { √ 

�, 

√
M 1 (G ) 

n 

, 
2 m 

n 

, 2 cos ( 
π

n + 1 

) } ≤ λ1 ≤ min { �, n − 1 } .

This together with the fact that for a tree T , λ1 ≤ min { 2 √ 

� − 1 ,
√ 

n − 1 } , we may conclude the following r esult. 

Corollary 3.2. 

(i) For graph G with maximum degree � and minimum degree δ

max { √ 

�,

√ 

M 1 (G ) 
n , 2 m 

n , 2 cos ( π
n +1 ) } ≤ η1 ≤ 1 

2 ( 
�
δ

+ 

δ
� ) min { �, n − 1 } . 

(ii) For tree T with maximum degree � and minimum degree δ

η1 ≤ 1

2 

( 
�

δ
+ 

δ

�
) min { 2

√
� − 1 , 

√
n − 1 } . 

It is a well-known fact that among all bipartite graphs of order n, the star graph S n has the minimum ordinary spec-

tral radius which is λ1 = 

√ 

n − 1 and the complete bipartite graph K n 
2 

, n 
2 

(if n is odd k [ n 
2 

] , [ n 
2 

]+1 ) has the maximum ordinary

spectral radius equal to λ1 = 

n 
2 . Thus the next result follows directly. 

Corollary 3.3. Among all bipartite graphs of order n, the star graph S n has the maximum A -spectral radius η1 = 

n 2 −2 n +2 
2 
√ 

n −1 
and

the complete bipartite graph K n , n has the minimum A -spectral radius η1 = 

n 
2 . 
2 2

4



For a real vector x ∈ R 

n , the Rayleigh quotient theorem [2] yields that 

η1 = sup 

x � =0

x t A ex x 

x t x 

= sup 

x � =0

∑ 

u v ∈ E(G ) 

x u x v 
d 2 u + d 2v
2 d u d v ∑ 

u ∈ V (G )

x 2 u 

.

Hence, for x = j , we have 

η1 ≥ j t (A ex (G )) j 

j t j 
= 

SDD (G ) 

n 

. (3) 

Consider three following well-known topological indices: 

R α(G ) = 

∑ 

u v ∈ E 
(d u d v ) 

α, 

GA (G ) = 

∑ 

u v ∈ E 

2 

√
d u d v 

d u + d v 
,

ABC(G ) = 

∑ 

u v ∈ E 

√
d u + d v − 2 

d u d v 
.

Suppose G has n vertices, m edges and k pendant edges. By [7] , the following lower bounds for the spectral radius of A ex 

can be explored: 

η1 ≥
(2 m + 

2 k 
3 

) 

n 

, (4) 

η1 ≥ (m + n ) 

n 

, (5) 

η1 ≥
M 

2 
1 (G ) 

M 2 (G ) 
− 2 m 

n 

, (6) 

η1 ≥
n 2

R −1 (G ) 
− 2 m 

n 

, (7) 

η1 ≥ 2 m 

2 

nGA (G ) 
, (8) 

η1 ≥ 3 ABC(G ) 

2 n 

, (9) 

η1 ≥ 2 GA (G ) 

n 

, (10) 

η1 ≥
4 

m 

3

(GA (G )) 2 
− 2 m 

n 

, (11) 

η1 ≥
m [( M 1 (G ) 

m � ) 2 − 2] 

n 

. (12) 

Consider now the real vector x = (d v i ) i . Again Rayleigh quotient theorem yields that

x t (A ex ) x 

x t x 
= 

∑ 

(v i , v j ) ∈ E(G ) 

(d v i 
2 + d v j 

2 
)

n ∑ 

k =1

d 2 v k 

= 

F (G )

M 1 (G ) 
≤ η1 . (13) 
5



 

 

 

 

Since, SDD (G ) ≥ 2 m, by Eq. (3) , we conclude that η1 ≥ 2 m 

n .

Suppose now v k v s ∈ E(G ) , is an arbitrary edge. For the non-zero real vector x = (x ) i , where 

x i = 

{
1 i = k, s 
0 otherwise 

,

we obtain 

x t (A ex ) x 

x t x 
= 

1

2 

( 
d k 
d s 

+ 

d s 

d k 
) ≤ η1 (14) 

or equivalently SDD (G ) ≤ 2 mη1 . Finally, for each vertex u ∈ V (G ) , clearly δ ≤ deg (u ) ≤ � and thus SDD (G ) 
2 m ≤ η1 . Hence, we

proved the following theorem. 

Theorem 3.4. Let G be a graph on n vertices and m edges. Then 

η1 ≥ max 
{2 m

n 

,
2 m + 

2 k 
3 

n 

,
(m + n ) 

n 

}
.

In addition, η1 = 

2 m 

n if and only if G is a regular graph. Applying well-known degree-based topological indices given in Equations

(4) − (13) , we have 

η1 ≥ max 
{ F (G )

M 1 (G ) 
,
SDD (G ) 

2 m 

,

M 

2 
1 (G ) 

M 2 (G ) 
− 2 m 

n 

,

n 2

R −1 (G ) 
− 2 m 

n 

,
2 m 

2 

nGA (G ) 
,

3 ABC(G ) 

2 n 

,

2 GA (G ) 

n 

,
SDD (G ) 

n 

,
4 

m 

3

(GA (G )) 2 
− 2 m 

n 

,
m [( M 1 

m � ) 2 − 2] 

n 

}
.

Corollary 3.5. Suppose G is a graph in which two vertices with degrees � and δ are adjacent. Then 

η1 ≥ 1

2 

( 
�

δ
+ 

δ

�
) . 

By using inequality given in Theorem 3.4 , one can deduce that for the smallest eigenvalue of A ex , we obtain ηn ≤ SDD (G ) 
n .

Since 

SDD (G ) ≤ min { n �, 2 m (1 + I(G )) − n 

2 , 2 m (
k f (G ) + n 

n − 1 

) − n 

2 } ,

where I(G ) = 

n ∑ 

i =1 

1 

d u i 
and k f (G ) = 

∑ 

i< j

r i j , where r i j denotes the resistance-distance between v i and v j . We conclude that

ηn ≤ 1 
n × α(G ) , where 

α(G ) = min { n �, 2 m (1 + I(G )) − n 

2 , 2 m (
k f (G ) + n 

n − 1 

) − n 

2 } .

Lemma 3.6. ( [27] ) If A n ×n is a Hermitian matrix of order n ≥ 2 with eigenvalues θ1 ≥ . . . ≥ θn , then 

θ1 − θn ≥
| ∑ 

i � = j
a i j |

n − 1 

.

Theorem 3.7. If G is r-regular, then λn = ηn ≤ r 
1 −n .

Proof. Since G is r-regular, we conclude that A ex (G ) = A (G ) , which yield that ηi = λi ( 1 ≤ i ≤ n ). Specially η1 = r. On the

other hand, 
∑ 

i � = j
(A ex ) i j = nr and Lemma 3.6 yields that 

η1 − ηn ≥ nr 

n − 1 

or equivalently 

ηn ≤ r 

1 − n 

.

�

6



 

4. On extended energy of graphs

Let G be a graph with adjacency eigenvalues λ1 , λ2 , · · · , λn . The graph energy of G is

E(G ) = 

n ∑ 

i =1

| λi | ,

see [10,12,14,15] . 

Here, we define the extended energy as the sum of absolute values of the eigenvalues of extended adjacency matrix. 

More formally, suppose η1 , η2 , · · · , ηn are the eigenvalues of A ex . It is not difficult to see that these eigenvalues are real

numbers and their sum is zero. Hence, the Extended Energy can be defined as E ex (G ) = 

n ∑ 

i =1

| ηi | , see [4,20] .

Theorem 4.1. Let G be a graph with n vertices. Then √ 

tr(A 

2 
ex ) ≤ E ex (G ) ≤

√
ntr(A 

2 
ex ) . 

Proof. The variance of the numbers | ηi | , i = 1 , 2 , · · · , n is equal to

1 

n 

n ∑ 

i =1

| ηi | 2 −
(

1 

n 

n ∑ 

i =1

| ηi |
)

2

which is greater than or equal to zero. Now, 

n ∑ 

i =1

| ηi | 2 =
n ∑ 

i =1

η2 
i = tr(A 

2 
ex ) and therefore 

E ex (G ) ≤
√

ntr(A 

2 
ex ) 

as we desired. Now by Radon inequality we investigate that 

n ∑ 

i =1

| ηi | =
n ∑ 

i =1

| ηi | 2
| ηi | ≥

n ∑ 

i =1

| ηi | 2
n ∑ 

i =1

| ηi |
.

Hence, 

E ex (G ) ≥
√

n ∑ 

i =1

| ηi | 2 =
√

tr(A 

2 
ex ) 

�

Theorem 4.2. Let G be a non-trivial graph. Then 

E ex (G ) ≥
√

tr(A 

2 
ex ) 

3 

tr(A 

4 
ex ) 

.

Proof. Suppose G has n vertices. The Hölder inequality implies that 

n ∑ 

i =1

a i b i ≤
( 

n ∑ 

i =1 

a p 
i 

) 

1 /p

( 

n ∑ 

i =1

b q 
i 

)
1 /q

where a i , b i ∈ R 

+ (i = 1 , 2 , · · · , n ) . Put a i = | ηi | 2 / 3 , b i = | ηi | 4 / 3 , p = 3 / 2 and q = 3 , thus we have

n ∑ 

i =1

| ηi | 2 =
n ∑ 

i =1

| ηi | 2 / 3 (| ηi | 4 ) 1 / 3 ≤ (
n ∑ 

i =1 

| ηi | ) 2 / 3 (
n ∑ 

i =1

| ηi | 4 ) 1 / 3 . (15) 

If G is not an empty graph, then 

n ∑ 

i =1

| ηi | 4 � = 0 and Eq. (15) can be rewritten as

E ex (G ) = 

n ∑ 

i =1

| ηi | ≥

n ∑ 

i =1

(| ηi | 2 ) 3 / 2
n ∑ 

i =1

(| ηi | 4 ) 1 / 2
= 

n ∑ 

i =1

(η2 
i ) 

3 / 2 

n ∑ 

i =1

(η4 
i ) 

1 / 2 

= 

√
tr(A 

2 
ex ) 

3 

tr(A 

4 
ex ) 

.

7



Fig. 2. The correlation between the values of η1 and other lower bounds.

 

 

 

�

Theorem 4.3. For the graph G, we have 

E ex (G ) ≥ 2 η1 . 

Proof. It is clear that E ex (G ) = 

n ∑ 

i =1

| ηi | and thus

E ex (G ) = | η1 | +
n ∑ 

i =2

| ηi | ≥ | η1 | + |
n ∑ 

i =2

ηi | .

On the other hand, 

n ∑ 

i =1

ηi = 0 yields that η1 = −
n ∑ 

i =2

ηi , and so | η1 | = |
n ∑ 

i =2

ηi | . Hence

E ex (G ) ≥ 2 | η1 | = 2 η1 .

�

Corollary 4.4. For the graph G with n vertices, m edges and k pendant edges, we obtain 

E ex (G ) ≥ 2 max 
{2 m 

n 

,
2 m + 

2 k 
3 

n 

,
(m + n ) 

n 

}
.

Moregenerally, comparing with other degree-based topological indices, we have 

E ex (G ) ≥ 2 max 
{ F (G ) 

M 1 (G ) 
,
SDD (G ) 

2 m 

,

M 

2 
1 (G ) 

M 2 (G ) 
− 2 m 

n 

,

n 
R −1 (G ) 

− 2 m 

n 

,
2 m 

2 GA (G ) 

n 

,
3 ABC(G ) 

2 n 

}
.

Proof. Use Theorems 3.4 and 4.3 . �

5. Computational experiments

In this section, we present some comparatives examples for different values of n . Considering all graphs of orders 3,

4, 5 and 6, several lower bounds for A -spectral radii in the paper are compared. The analyzing of these graph quantities

indicates that the best upper bound for η1 is as given in Eq. (13) . The correlation between the values of η1 and other lower

bounds are given in Fig. 2 and Table 1 . By the contents of table, we obtain 

A 1 = 

SDD (G ) 

n 

, A 2 = 

F (G )

M (G ) 
,

1 

8



Table 1

The correlation between the values of η1 and other lower bounds.

Corr A 1 A 2 A 3 A 4 A 5 A 6 A 7

η1 0.955 0.959 0.906 0.938 0.933 0.558 0.72

 

 

A 3 = 

M 

2 
1 (G ) 

M 2 (G ) 
− 2 m 

n 

, A 4 = 

4 

m 

3

(GA (G )) 2 
− 2 m 

n 

,

A 5 = 

n 2

R −1 (G ) 
− 2 m 

n 

, A 6 = 

2 GA (G )

n 

,

A 7 = 

2 m 

2

nGA (G ) 
.

This means that, if n is sufficiently large, then η1 ≈ F (G ) 
M 1 (G ) 

. The correlations between A -energy and the ordinary and Randic

energies of 10 0 0 random graphs of orders 19 and 20 are respectively cor r (E ex , E ) = −0 . 41 and cor r (E ex , E R ) = −0 . 48 . It can

be infered that the A -energy has a low correlation with both ordinary and Randic energies. 
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