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Abstract

A path in an edge-colored graph G is called a rainbow path if no two edges on

the path have the same color. The graph G is called rainbow connected if between

every pair of distinct vertices of G, there is a rainbow path. Recently, Johnson

et al. considered this concept with the additional requirement that the coloring of

G be proper. The proper rainbow connection number of G, denoted by prc(G), is

the minimum number of colors needed to properly color the edges of G so that

G is rainbow connected. Similarly, the proper strong rainbow connection number

of G, denoted by psrc(G), is the minimum number of colors needed to properly

color the edges of G such that for any two distinct vertices of G, there is a rainbow

geodesic (shortest path) connecting them. In this paper, we characterize those

graphs with proper rainbow connection numbers equal to the size or within 1 of

the size. Moreover, we completely solve a question proposed by Johnson et al. by

proving that ifG = Kp1� · · ·�Kpn , where n ≥ 1, and p1, ..., pn > 1 are integers, then

prc(G) = psrc(G) = χ′(G), where χ′(G) denotes the chromatic index of G. Finally,

we investigate some sufficient conditions for a graph G to satisfy prc(G) = rc(G),

and make some slightly positive progress by using a relation between rc(G) and the

girth of the graph.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow the

terminology and notation of Bondy and Murty in [1] for those not defined here. For

a connected graph G, we use V (G), E(G), v(G), e(G),∆(G) and diam(G) to denote the

vertex set, edge set, order, size, maximum degree and diameter of G, respectively. Suppose

that X ⊂ V (G), we use G[X ] to denote the subgraph of G induced by X , that is, the

subgraph of G whose vertex set is X and whose edge set is the set of all those edges of

G that have both ends in X . An edge xy is called a leaf if one of its end vertices, say x,

has degree one, and x is called a pendent vertex. Let Kn and Cn denote a complete graph

and a cycle on n vertices, respectively.

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {0, 1, . . . , t},

t ∈ N, where adjacent edges may be colored with the same color. If adjacent edges of G

receive different colors by c, then c is a proper coloring. The minimum number of colors

needed in a proper coloring of G is the chromatic index of G and denoted by χ′(G). All

colorings of graphs in this work are assumed to be colorings of the edges unless explicitly

stated otherwise.

A path in an edge-colored graph G is called a rainbow path if no two edges on the path

have the same color. The graph G is called rainbow connected if for any two distinct

vertices of G, there is a rainbow path connecting them. In this case, the coloring c is

called a rainbow connection coloring (RC-coloring for short) of G. For a connected graph

G, the rainbow connection number of G, denoted by rc(G), is defined as the minimum

number of colors that are needed to make G rainbow connected. Similarly, the graph G

is called strong rainbow connected if between every pair of distinct vertices of G, there is

a rainbow geodesic (shortest path) connecting them. In this case, the coloring c is called

a strong rainbow connection coloring (SRC-coloring for short) of G. For a connected

graph G, the strong rainbow connection number of G, denoted by src(G), is defined as

the minimum number of colors that are required to make G strong rainbow connected.

Obviously, rc(G) ≤ src(G) for all connected graphs G. Moreover, rc(G) = src(G) = 1 if

and only if G is a complete graph. These concepts were first introduced by Chartrand et

al. in [2] and have been well-studied since then. For further details, we refer the reader

to a survey [4] (with an updated version available at [5]) and a book [6].
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Recently, Johnson et al. [3] considered rainbow connection colorings with the additional

requirement that the coloring be proper. The proper rainbow connection number of a

connected graph G, denoted by prc(G), is the minimum number of colors needed to

properly color the edges of G to make G rainbow connected. This coloring c is called

a proper rainbow connection coloring (PRC-coloring for short) of G. This concept was

defined in [3] along with a “strong” version, the proper strong rainbow connection number,

requiring that the rainbow paths be geodesics, denoted by psrc(G) (the coloring involved

is written as PSRC-coloring for short). Some preliminary observations were made.

Proposition 1 ([3]). Let G be a connected graph. Then we have

diam(G) ≤ rc(G) ≤ src(G) ≤ psrc(G) ≤ e(G), (1)

rc(G) ≤ prc(G), (2)

and

χ′(G) ≤ prc(G) ≤ psrc(G). (3)

Theorem 1 ([3]). prc(Kn) = psrc(Kn) = χ′(Kn) =

{

n− 1 = ∆(Kn) if n is even;

n = ∆(Kn) + 1 if n is odd.

It is easy to see that if G is a tree, then prc(G) = psrc(G) = e(G). The opposite

direction does not hold since prc(K3) = psrc(K3) = 3 = e(K3), which brings us to the

first question.

Question 1 ([3]). Can we characterize the connected graphs G such that prc(G) = e(G)?

In Section 2, we characterize all the graphs G with prc(G) = e(G). Additionally, we

characterize all the graphs with prc(G) = e(G)− 1.

The Cartesian product of simple graphs G and H is the graph G�H whose vertex set

is V (G)× V (H) and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that either

u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2. The authors in [3] obtained an

easy result about Cartesian products.

Proposition 2 ([3]). Suppose that n, p1, · · · , pn > 1 are integers, and G = Kp1� · · ·�Kpn.

Then rc(G) = src(G) = n and

n
∑

i=1

(pi − 1) ≤ prc(G) ≤ psrc(G) ≤
n

∑

i=1

χ′(Kpi).

These inequalities are all equal if all the pis are even since χ′(Kpi) = pi − 1 (in fact, in

this case prc(G) = psrc(G) = χ′(G)). The authors in [3] asked the following question.
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Question 2 ([3]). What happens when some of the pis are odd?

In Section 3, we prove that if G = Kp1� · · ·�Kpn where n ≥ 1 and p1, · · · , pn > 1 are

positive integers, then prc(G) = psrc(G) = χ′(G).

In the final section, we investigate some sufficient conditions for a graph G to satisfy

prc(G) = rc(G), and make some slightly positive progress by using a relation between

rc(G) and the girth of the graph.

2 Graphs with large proper rainbow connection num-

bers

Let c be an edge-coloring of a graph G. We use c(e) to denote the color of an edge e.

For a subgraph H of G, let c(H) be the set of colors of the edges of H . First list some

useful results.

Proposition 3 ([2]). Let G be a nontrivial connected graph. Then

(i) rc(G) = src(G) = e(G) if and only if G is a tree,

(ii) rc(G) = 2 if and only if src(G) = 2.

Proposition 4 ([2]). For each integer n ≥ 4, rc(Cn) = src(Cn) = ⌈n
2
⌉.

Obviously, the following holds.

Corollary 1. For each integer n ≥ 4, prc(Cn) = psrc(Cn) = ⌈n
2
⌉.

Now, we are ready to characterize all connected graphs G with prc(G) = e(G).

Theorem 2. Let G be a connected graph. Then prc(G) = e(G) if and only if G is a tree

or K3.

Proof. By Proposition 1, Proposition 3 and Theorem 1, it is easy to see that prc(G) = e(G)

if G is a tree or K3.

For the opposite direction, it suffices to prove that if prc(G) = e(G), then G is a tree

or K3. Suppose that G is neither a tree nor K3. Let ℓ be the circumference of G and let

C denote a cycle of order ℓ in G. If ℓ ≥ 4, then construct a coloring of G by coloring

C with ⌈ ℓ
2
⌉ colors (by Corollary 1), and assigning distinct colors to the remaining edges

of G. It can be checked that this is a PRC-coloring of G with ⌈ ℓ
2
⌉ + e(G) − ℓ < e(G)

colors. If ℓ = 3, set C = u1u2u3u1. Let G1, G2, G3 denote the components of G − E(C),

where ui ∈ V (Gi), i = 1, 2, 3. Since G 6= K3, there exists a nontrivial component, say G1.
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Give distinct colors to the edges u1u2, u1u3, and the edges in G−E(C). Assign one color

used in E(G1) to the remaining edge u2u3. It is easy to check that G is proper rainbow

connected with e(G)− 1 colors.

The proof is thus complete.

We are also able to classify those graphs whose proper rainbow connection numbers are

close to the maximum possible value. Let H ′ and H ′′ be the two graph classes as shown

in Figure 1, where the order of H ′ ∈ H ′ is at least 4 and the order of H ′′ ∈ H ′′ is at

least 5, respectively. The dashed edge therefore represents a path of length at least 1.

...

H ′′H ′

Figure 1: The graphs H ′ ∈ H ′ and H ′′ ∈ H ′′, respectively.

Theorem 3. Let G be a connected graph. Then prc(G) = e(G)−1 if and only if G ∈ H ′

or G ∈ H ′′.

Proof. First suppose G ∈ H ′ or G ∈ H ′′. Then prc(G) ≤ e(G)−1 by Theorem 2. Let C3

be the triangle of G and T the nontrivial component of G−E(C3). In any PRC-coloring of

G, there must be at least three colors used in the triangle as well as e(T ) colors used in T

different from two of the colors used in the triangle. Hence, prc(G) ≥ e(T )+2 = e(G)−1.

Thus, we have prc(G) = e(G)− 1.

Next, we need to verify the converse. Let G be a connected graph with prc(G) = e(G)−

1. By Theorem 2, there is a cycle inG. Recall that prc(K3) = 3 and prc(Cn) = ⌈n
2
⌉ < n−1

for n ≥ 4. Let ℓ denote the circumference of G and let C denote a cycle of order ℓ in G.

If ℓ ≥ 4, then consider a coloring of G by using ⌈ ℓ
2
⌉ colors on the edges of C and distinct

colors on the remaining edges of G. It can be checked that this is a PRC-coloring of G

with ⌈ ℓ
2
⌉+ e(G)− ℓ < e(G)− 1 colors. Thus, ℓ = 3 and set C = u1u2u3u1. Let G1, G2, G3

denote the components of G − E(C), where ui ∈ V (Gi), i = 1, 2, 3. If there exist at

least two nontrivial components among G1, G2 and G3, say G1 and G2, we construct a

coloring of G using at most e(G)−2 colors. Give distinct colors to the edges in G−E(C)

and the edge u1u2. Assign one color used in E(G1) to the edge u2u3 and one color used

in E(G2) to the edge u1u3. It can be verified that G is proper rainbow connected with

e(G) − 2 colors. Together with prc(K3) = e(K3), we conclude that there exists exactly

one nontrivial component among G1, G2 and G3, say G1. Suppose G1 is not a tree,

which means that G1 contains a cycle K3, since ℓ = 3. If G1 = K3, that is, G ∼= G0,
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then the edge-coloring of G0 as shown in Figure 2 makes G proper rainbow connected,

meaning that prc(G) ≤ e(G) − 2 in this case. Otherwise, by Theorem 2 we first give a

PRC-coloring of G1 with at most e(G1)− 1 colors. Next, give the edges incident with u1

distinct colors and the remaining edge u2u3 a color used in E(G1). Hence, we obtain a

PRC-coloring of G with at most e(G)− 2 colors. This means that G1 must be a tree.

It is easy to verify when |G1| ≤ 3, so we just need to consider two cases under the

assumption that |G1| ≥ 4. We first consider the case that G1 is a path. If u1 is a pendent

vertex of G1, then G ∈ H ′ and satisfies prc(G) = e(G)− 1. Otherwise, let vv′ and ww′

be the two leaves of G1, where v and w are two pendent vertices of G1. Without loss of

generality, suppose that d(u1, w) ≥ d(u1, v). Then d(u1, w) ≥ 2 since |G1| ≥ 4. No matter

whether u1 is just the vertex v′, we give a coloring of G as follows: we first color e(G1)

and u1u2 with e(G) − 2 different colors; then let c(u1u3) = c(ww′) and c(u2u3) = c(vv′).

It is easy to check that this is a PRC-coloring of G with at most e(G) − 2 colors, a

contradiction. Next we consider the case that G1 is not a path. If G1 is a star and u1 is

the center of G1, then G ∈ H ′′ and satisfies prc(G) = e(G)− 1. Otherwise, there exists

a vertex u of degree at least 3 in G1 and d(u, u1) is as large as possible. Let vv′ and ww′

be two leaves of G, where v and w are two pendent vertices of G whose distances from

u are as small as possible. We first color e(G1) and u2u3 with different colors; then let

c(u1u2) = c(vv′) and c(u1u3) = c(ww′). Thus, we obtain a PRC-coloring of G with at

most e(G)− 2 colors, a contradiction completing the proof.

1
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2 3
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1
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1
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3

3 1

1 2
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a) b) c)

Figure 2: Example edge-colorings of G0, K3�K3 and K2�K3, respectively.

3 Cartesian products of complete graphs

Suppose that n ≥ 1, and p1, · · · , pn > 1 are integers. Let G = Kp1� · · ·�Kpn. In this

section, we further study the class of graphs considered in [3]. We first state Vizing’s

theorem.
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Theorem 4 ([1]). If G is a simple graph, then either χ′(G) = ∆(G) or ∆(G) + 1.

Lemma 1 ([1]). For every loopless graph G,

χ′(G) ≥ max

{⌈

2e(H)

v(H)− 1

⌉

: H ⊆ G, v(H) odd, v(H) ≥ 3

}

.

By Lemma 1, it follows that χ′(K3�K3) = 5. Moreover, we can give K3�K3 a PSRC-

coloring with 5 colors as shown in Figure 2. Hence, prc(K3�K3) = psrc(K3�K3) = 5 =

χ′(K3�K3) = ∆(K3�K3) + 1. Does prc(G) = psrc(G) = χ′(G) always hold when all the

pis are odd?

What happens for the other cases ? If p1 = ... = pn = 2, then G is an n-cube Qn, and

prc(Qn) = psrc(Qn) = χ′(Qn) = ∆(Qn) = n as showed in [3]. Moreover, we know that

prc(K3�K2) = psrc(K3�K2) = 3 = χ′(K3�K2) = ∆(K3�K2) from Figure 2. In the

following, we list two properties concerning the Cartesian product.

Proposition 5. For two simple connected graphs G and H, G�H ∼= H�G.

Lemma 2 ([1]). If H is a nontrivial graph with χ′(H) = ∆(H), then χ′(G�H) =

∆(G�H) for any simple graph G.

Now, we state the main result of this section, also a complete solution to Question 2.

Theorem 5. Suppose that n ≥ 1, and p1, · · · , pn > 1 are integers. Let G = Kp1� · · ·�Kpn.

Then prc(G) = psrc(G) = χ′(G).

Proof. Since χ′(G) ≤ prc(G) ≤ psrc(G), we only need to prove that psrc(G) = χ′(G).

By Theorem 1, we have psrc(G) = χ′(G) = ∆(G) when n = 1 and p1 is odd; psrc(G) =

χ′(G) = ∆(G) + 1 when n = 1 and p1 is even. In the following, we assume that n ≥ 2.

We need to consider the following two cases according to the parities of the pis.

Case 1. Suppose p1, · · · , pn are all odd.

Note that v(G) = p1p2 · · · pn and e(G) = p1···pn
2

∑n

i=1
(pi − 1). By Lemma 1, we have

χ′(G) ≥

⌈

2e(G)

v(G)− 1

⌉

>

n
∑

i=1

(pi − 1) = ∆(G).

Moreover, χ′(G) ≤ ∆(G) + 1 by Theorem 4. Thus psrc(G) ≥ χ′(G) = ∆(G) + 1.

Next we show that psrc(G) ≤ ∆(G) + 1 by induction on n. Let Hk = Kp1� · · ·�Kpk ,

where 1 < k ≤ n. Thus Hk = Hk−1�Kpk . It follows from Theorem 1 that psrc(Kpi) =

χ′(Kpi) = pi = ∆(Kpi) + 1 for each i with 1 ≤ i ≤ n. If n = 2, that is, G = H2, we use

(ai, bj) to denote the vertex in H2, where ai ∈ V (Kp1) (1 ≤ i ≤ p1) and bj ∈ V (Kp2) (1 ≤
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j ≤ p2). Then the vertex sets Uj = {(a, bj) : a ∈ V (Kp1)} and Vi = {(ai, b) : b ∈ V (Kp2)}

form complete graphs Kp1 and Kp2, respectively.

Now we give a PSRC-coloring of H2 with ∆(H2) + 1 colors as follows. Let each H2[Vi]

be edge colored with p2 colors so that the coloring is proper. Let each H2[Uj ] be edged

colored with p1 − 1 colors and one color that does not appear on the edges incident with

bj so that the coloring is proper. Note that this coloring of H2 is also proper. Since the

diameter of H2 is 2, H2 is proper strong rainbow connected with p1 + p2 − 1 = ∆(H2) + 1

colors, implying that psrc(G) ≤ ∆(G) + 1 in this case.

We assume that there exists a PSRC-coloring of Hn−1 with ∆(Hn−1) + 1 colors. Now

we consider the graph G = Hn. Note that Hn = Hn−1�Kpn . We use (ai, bj) to denote

the vertex in Hn, where ai ∈ V (Hn−1) (1 ≤ i ≤ v(Hn−1)) and bj ∈ V (Kpn) (1 ≤ j ≤ pn).

Then the vertex sets Uj = {(a, bj) : a ∈ V (Hn−1)} and Vi = {(ai, b) : b ∈ V (Kpn)} form

graphs Hn−1 and Kpn, respectively.

Now we provide a PSRC-coloring of Hn as follows. Let each Hn[Vi] be edge colored

with pn colors so that the coloring is proper. Let each Hn[Uj ] be edged colored with

∆(Hn−1) colors and one color that does not appear on the edges incident with bj so that

the coloring is proper strong rainbow. Obviously, this coloring of Hn is also proper. For

two vertices u = (ai, bj) and v = (ai′ , bj′) (1 ≤ i 6= i′ ≤ v(Hn−1) and 1 ≤ j 6= j′ ≤ pn),

there exists a rainbow geodesic P ′ between u and (ai′, bj) in Hn[Uj]. Thus the path

P = uP ′(ai′ , bj)v is a rainbow geodesic from u to v since the color of the edge between

(ai′ , bj) and v does not appear on P ′. For the other two vertices, it can be easily checked

that there exists a rainbow geodesic between them. Thus this coloring defined above with

∆(G) + 1 colors makes Hn proper strong rainbow connected. So psrc(G) ≤ ∆(G) + 1,

and hence, psrc(G) = χ′(G) = ∆(G) + 1 in this case.

Case 2. Suppose that at least one number of p1, · · · , pn is even.

By Theorem 1, Proposition 5 and Lemma 2, it follows that psrc(G) ≥ χ′(G) = ∆(G).

Next we show that psrc(G) ≤ ∆(G). If p1, · · · , pn are all even, then psrc(G) = ∆(G)

by Proposition 2. Otherwise, we prove that psrc(G) ≤ ∆(G) by induction on n. Without

loss of generality, suppose that p1, · · · , pd (d ≥ 1) are even and pd+1, · · · , pn (n ≥ 2)

are odd. By Theorem 1, we have χ′(Kpi) = pi − 1 if 1 ≤ i ≤ d, and χ′(Kpi) = pi if

d + 1 ≤ i ≤ n. If n = 2, we give a coloring of G = H2 which is similar to that defined

in Case 1, only with the difference that each H2[Uj ] is edged colored with p1 − 2 colors

and one color that does not appear on the edges incident with bj so that the coloring is

proper. Similarly, we can prove that under this coloring with p1 + p2 − 2 = ∆(H2) colors,

H2 is proper strong rainbow connected, implying that psrc(G) ≤ ∆(G) in this case.

We assume that there exists a PSRC-coloring of Hn−1 with ∆(Hn−1) colors. Now we

8



consider the graph G = Hn = Hn−1�Kpn. We provide a coloring of Hn which is analogous

to that defined in Case 1, only with the difference that each Hn[Uj ] is edged colored with

∆(Hn−1) − 1 colors and one color that does not appear on the edges incident with bj so

that the coloring is proper strong rainbow. Analogously, we show that this coloring with

∆(G) colors makes Hn proper strong rainbow connected. So psrc(G) ≤ ∆(G), and hence,

psrc(G) = χ′(G) = ∆(G) + 1 in this case.

The proof is thus complete.

4 Forcing prc(G) to equal rc(G)

In the previous section, we have considered Cartesian products of complete graphs.

How about Cartesian products of general graphs? We consider two kinds of simple graphs,

paths and cycles. Since prc(G) ≥ rc(G) ≥ diam(G), the lower bounds of the following

observations are immediate. For the upper bounds, color every copy within each dimension

to be rainbow connected (and therefore strong rainbow connected) and for each dimension,

use a disjoint set of colors.

Observation 1. Given integers d ≥ 1 and t1, t2, . . . , td ≥ 3, if G = Pt1�Pt2� . . .�Ptd ,

then psrc(G) = prc(G) = rc(G) =
∑d

i=1
(ti − 1).

Observation 2. Given integers d ≥ 1 and t1, t2, . . . , td ≥ 4, if G = Ct1�Ct2� . . .�Ctd ,

then
∑d

i=1
⌊ ti
2
⌋ ≤ rc(G) ≤ prc(G) ≤ psrc(G) ≤

∑d

i=1
⌈ ti
2
⌉.

Based on these observations, the following question is natural.

Question 3. Is it possible to classify the class of graphs G satisfying prc(G) = rc(G), or

satisfying psrc(G) = src(G)?

When ∆(G) is large, certainly prc(G) must be large. On the other hand, when diam(G)

is large, rc(G) must be large. Many rainbow connection colorings are proper edge-

colorings, especially for strong rainbow connection colorings. Based on this, it might be

tempting to ask if diam(G) ≫ ∆(G) might imply prc(G) = rc(G) or psrc(G) = src(G).

Here “≫” is used to mean “is sufficiently larger than” so here the assumption is that

diam(G) is much larger than ∆(G). Unfortunately, it turns out that this question has a

negative answer, as seen in the following result.

Theorem 6. Let G = Pt�Kk where t ≫ k ≥ 4. Then rc(G) = src(G) = t, prc(G) >

rc(G) and psrc(G) > src(G).
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A′ A

B′ B

C ′ C

D′ D

Figure 3: The illustration of Theorem 6.

Proof. We first point out that diam(G) = t and ∆(G) = k + 1. It can be easily checked

that rc(G) = src(G) = t. Suppose that prc(G) = rc(G). Let A,B,C,D denote four

vertices in the copy of Kk representing an end-vertex of the Pt, respectively. And let

A′, B′, C ′, D′ be the corresponding vertices of the Kk representing the opposite end-vertex

of the Pt, respectively. Consider the assumed rainbow path between A and B′. Without

loss of generality, assume the rainbow path connecting them is A...A′B′ (A...A′ means the

dashed lines corresponding to the copy of Pt between A and A′ in Figure 3). Note that

X...X ′(X ∈ {A,B,C,D}) must be a rainbow path, otherwise, the length of a rainbow

path connecting X and X ′ is at least t+1, contradicting the assumption prc(G) = t. Let

c(A...A′) = {1, 2, ..., t− 1} and c(A′B′) = t.

First suppose that the color t does not appear on the path B′...B. Then consider

the rainbow path P connecting B′ and C. If P is B′...BC, then c(BC) = t. Thus the

rainbow path connecting C ′ and B must be C ′...CB since the coloring is proper. This

yields a contradiction since there does not exist a rainbow path connecting C ′ and A. If

P is B′C ′...C, then c(B′C ′) ∈ {1, 2, ..., t − 1}, say c(B′C ′) = 1. Moreover, the color 1

does not appear on the path C ′...C. Note that the rainbow path connecting A′ and C is

A′...AC and c(AC) = t since the coloring must be proper. Similarly, the rainbow path

connecting C ′ and B is C ′...CB and c(CB) = 1. Thus, there does not exist a rainbow

path connecting C ′ and A, a contradiction.

Now, assume that the color t does appear on the path B′...B and the color 1 does not.

Then the rainbow path connecting B to A′ is BA...A′ and c(AB) = t. Note that the

rainbow path connecting C to A′ is C...C ′A′ and let c(C ′A′) = x (1 ≤ x ≤ t − 1). Next

consider the rainbow path P connecting B′ and C. If P is B′C ′ . . . C, then c(B′C ′) = x,

contradicting the assumption that the coloring is proper. If P is B′...BC, then c(BC) = 1.

Suppose that the rainbow path from C ′ to B is C ′...CB, then x = 1. But there does not

exist a rainbow path connecting C ′ and A, a contradiction. So the rainbow path from C ′

to B is C ′B′...B, and then c(C ′B′) = 1. Since the coloring is proper, the rainbow path
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connecting B′ and D is B′D′...D. Let c(B′D′) = 2( 6= x). Hence the rainbow path from

D′ to B is D′...DB and c(DB) = 2. This yields a contradiction since there does not exist

a rainbow path connecting D′ and C. Therefore, prc(G) > t and psrc(G) > t.

It turns out that using a restriction on the girth yields slightly more. If g(G) ≥ 5, then

every strong rainbow connection coloring is also a proper coloring so psrc(G) = src(G).

This restriction still does not quite achieve the goal for prc(G) though. For example,

let G be a graph obtained from s cycles Ct with a common vertex. Then g(G) = t and

prc(G) ≥ ∆(G) = 2s. Moreover, rc(G) ≤ t. If s ≫ t, then prc(G) ≫ rc(G).

We conclude with some slightly positive progress by using a relation between rc(G) and

the girth of the graph.

Proposition 6. If rc(G) < g(G)− 2, then any minimum rainbow connection coloring of

G is also proper.

This means that if rc(G) < g(G)− 2, then prc(G) = rc(G). In particular, sufficiently

long cycles satisfy this restriction.

Proof. For a contradiction, consider a rainbow connection coloring of G using rc(G) colors,

and suppose this coloring is not proper. Let uvw be a monochromatic copy of P3. Since

u cannot be connected to w by a rainbow path through v, such a path, say P , must go

elsewhere in the graph. Then C = uPwvu is a cycle in G, meaning that |C| ≥ g(G)

so P must use at least |C| − 2 ≥ g(G) − 2 colors, contradicting the assumption that

rc(G) < g(G)− 2 colors were used.
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