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Abstract. An odd Durfee symbol of n is an array of positive odd integers and a

subscript D, (
a1 a2 · · · as
b1 b2 · · · bt

)
D

such that 2D + 1 ≥ a1 ≥ a2 ≥ · · · ≥ as > 0, 2D + 1 ≥ b1 ≥ b2 ≥ · · · ≥ bt > 0, and

n =
∑s

i=1 ai +
∑t

j=1 bj + 2D2 + 2D + 1. Andrews defined the odd rank of an odd

Durfee symbol as (s − t). Let N0(a,M ;n) be the number of odd Durfee symbols of

n with odd rank congruent to a modulo M . We decompose the generating function

of N0(a,M ;n) into modular and mock modular parts. Specifically, we derive some

special cases of the generating functions of N0(a,M ;n) for M ∈ {3, 6, 12}. Some

generating functions are related to classical mock theta functions.

1. Introduction

In this paper, we adopt the following standard q-series notation [10]. Let q denote
a complex number with 0 < |q| < 1. For any positive integer n,

(a; q)n :=
n−1∏
k=0

(1− aqk) and (a; q)∞ :=
∞∏
k=0

(1− aqk).

Let

j(x; q) := (x; q)∞(q/x; q)∞(q; q)∞.

Then for integers a and m with m positive, define

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), and Jm := Jm,3m =
∞∏
i=1

(1− qmi).

A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum is n. Let p(n) denote the number of partitions of n. In order to give a
combinatorial explanation of the following congruences of Ramanujan

p(5n+ 4) ≡ 0 (mod 5) and p(7n+ 5) ≡ 0 (mod 7),

Dyson [8] introduced the rank of a partition as the largest part minus the number
of parts. Let N(m,n) denote the number of partitions of n with rank m, and let
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N(a,M, n) be the number of partitions of n with rank congruent to a modulo M .
Then he showed that

∞∑
m=−∞

∞∑
n=0

N(m,n)qnxm =
∞∑
n=0

qn
2

(qx; q)n(qx−1; q)n
.

In addition, Dyson [8] conjectured that

N(i, 5, 5n+ 4) =
p(5n+ 4)

5
, i = 0, 1, 2, 3, 4,

N(i, 7, 7n+ 5) =
p(7n+ 5)

7
, i = 0, 1, 2, 3, 4, 5, 6.

In 1954, Atkin and Swinnerton-Dyer [3] first proved the conjecture by using generalized
Lambert series. For more properties of N(m,n), see, for example, [5, 6, 16].

Hickerson and Mortenson [13] defined Appell-Lerch sums as follows.

Definition 1.1. Let x, z ∈ C∗ := C\{0} with neither z nor xz an integral power of q.
Then

m(x, q, z) :=
1

j(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
.

For the study of generalized Lambert series/Appell-Lerch sums, the articles [7, 13,
21] contribute to the modern theory of this subject. With this theory, results are
much more accessible than they were 20 years ago. In [12], Hickerson and Mortenson
considered the deviation of the ranks of partitions from the average:

D(a,M) :=
∞∑
n=0

(
N(a,M, n)− p(n)

M

)
qn.

Then in view of Appell–Lerch sum properties, they expressed D(a,M) in terms of
modular and mock modular parts. Recently, Zhang [20] established the similar results
for the deviation of the ranks of overpartitions from the average where an overpartition
[14] is a partition in which the first occurrence of a part may be overlined. The object of
this paper is to use properties of Appell-Lerch sums to study odd ranks of odd Durfee
symbols. Odd Durfee symbols were first introduced by Andrews [1] to give a new
partition-theoretic interpretation of qω(q), where the third order mock theta function
ω(q) was defined by Watson [19]

qω(q) :=
∞∑
n=0

q2n(n+1)+1

(q; q2)2
n+1

. (1.1)

Definition 1.2. An odd Durfee symbol of n is a two-rowed array with a subscript of
the form (

a1 a2 · · · as
b1 b2 · · · bt

)
D

where all the entries are odd numbers such that

(1) 2D + 1 ≥ a1 ≥ a2 ≥ · · · ≥ as > 0;
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(2) 2D + 1 ≥ b1 ≥ b2 ≥ · · · ≥ bt > 0;
(3) n =

∑s
i=1 ai +

∑t
j=1 bj + 2D2 + 2D + 1.

Fine [9] showed that

qω(q) =
∞∑
n=0

qn+1

(q; q2)n+1

=
∞∑
n=1

qn

(1− q1+0)(1− q2+1) · · · (1− qn+(n−1))
. (1.2)

From the above identity, it is easy to give another partition-theoretic interpretation of
qω(q). Let pω(n) be the number of partitions of n, where 0 is allowed as a part and
the subpartition obtaining from removing one occurrence of the largest part can be
grouped into pairs of consecutive integers. For example, there are 6 such partitions of
5: 5, 4 + (1 + 0), 3 + (1 + 0) + (1 + 0), 2 + (2 + 1), 2 + (1 + 0) + (1 + 0) + (1 + 0),
1 + (1 + 0) + (1 + 0) + (1 + 0) + (1 + 0). Then (1.2) can be restated as

qω(q) =
∞∑
n=0

pω(n)qn. (1.3)

In view of MacMahon’s modular partitions [15] with modulus 2, Andrews [1] showed
that each partition enumerated by pω(n) has associated with it an odd Durfee symbol
of n.

In analogy with ranks of partitions, Andrews [1] defined the odd rank of an odd
Durfee symbol as the number of entries in the top row minus the number of entries in
the bottom row. Let N0(m,n) denote the number of odd Durfee symbols of n with
odd rank m, and let N0(a,M ;n) denote the number of odd Durfee symbols of n with
odd rank congruent to a modula M . By interchanging the rows of the symbol, it is
clear that

N0(m,n) = N0(−m,n),

N0(a,M ;n) = N0(−a,M ;n). (1.4)

Andrews [1] showed that

pω(n) =
∞∑

m=−∞

N0(m,n), (1.5)

∞∑
n=1

∞∑
m=−∞

N0(m,n)zmqn =
∞∑
n=0

q2n(n+1)+1

(zq; q2)n+1(z−1q; q2)n+1

.

Meanwhile, Andrews [1, Corollary 27] provided that
∞∑
n=1

∞∑
m=−∞

N0(m,n)zmqn =
1

J2

∞∑
n=0

(−1)n(1− q4n+2)q3n2+3n+1

(1− z−1q2n+1)(1− zq2n+1)
. (1.6)

Recently, Wang [18] gave some explicit formulas of generating functions associated with
N0(a,M ; `n+ r) where 0 ≤ a < M , 0 ≤ r < `, and M, ` ∈ {2, 4, 8}. Moreover, letting
ζM := e2πi/M , Wang [18] showed that

∞∑
n=0

N0(a,M ;n)qn =
q

M

M−1∑
j=0

ζ−ajM g(ζjMq, q
2), (1.7)
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where the universal mock theta function g(x, q) is given by Ramanujan [17],

g(x; q) := x−1

(
−1 +

∞∑
n=0

qn
2

(x; q)n+1(qx−1; q)n

)
.

For convenience, set N0(a,M ; 0) = 0.

In this paper, we give the following generating function of N0(a,M ;n).

Theorem 1.3. We have
∞∑
n=0

N0(a,M ;n)qn =
1

J2

∞∑
n=−∞

(−1)nq3n2+3n+(2n+1)a+1

1− q(2n+1)M
.

Based on Theorem 1.3, we deduce the following corollary.

Corollary 1.4. Let M be a positive integer and a be an integer with 0 ≤ a < M . Then

N0(2a, 2M ; 2n) = 0,

N0(2a+ 1, 2M ; 2n+ 1) = 0.

Furthermore, we decompose the generating function of N0(a,M ;n) into modular
and mock modular parts.

Theorem 1.5. Let M be a positive integer and a be an integer with 0 ≤ a < M . Then

∞∑
n=0

N0(a,M ;n)qn =
3q

M

M/3−1∑
t=0

(−1)
a
3 q−

a2

3
J3

6

J2j(q3−2aωtM
3

; q6)
(1.8)

if a ≡ 0 (mod 3) and M ≡ 0 (mod 3);

∞∑
n=0

N0(a,M ;n)qn =
3q

M

M/3−1∑
t=0

(−1)
a+2
3 q

−a2−2
3 m(q3−2aωtM

3
, q6, q2a) (1.9)

if a ≡ 1 (mod 3) and M ≡ 0 (mod 3).

Set

∆(x; q) :=
x−2J1J

3
3 j(−x2; q)

j(x; q)j(−qx3; q3)j(−q2x3; q3)J0,3

(1.10)

and

Ψn
k(x, z, z′; q) := −

xkzk+1J3
n2

j(z; q)j(z′; qn2)

×
n−1∑
t=0

q(
t+1
2 )+kt(−z)tj(−q(

n+1
2 )+nk+nt(−z)n/z′; qn

2
)j(qntxnznz′; qn

2
)

j(−q(
n
2)−nk(−x)nz′, qntxnzn; qn2)

.

(1.11)

Theorem 1.6. Let M be a positive integer and a be an integer with 0 ≤ a < M . Then
∞∑
n=0

N0(a,M ;n)qn = d(a,M) + Ta,M(q),
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where

d(a,M) =



(−1)M+aq−
M2+2Ma+a2−1

3 m((−1)M+1qM
2−2Ma, q6M

2
, z)−ΨM

M+a−1
3

(q,−1, z; q6)

+(−1)M+aq−
M2−2Ma+a2−1

3 m((−1)M+1qM
2+2Ma, q6M

2
, z)−ΨM

M−a−1
3

(q,−1, z; q6)

if a ≡ 0 (mod 3) and M ≡ 1 (mod 3)

(−1)aq−
a2−1

3 m((−1)M+1q3M
2−2Ma, q6M

2
, z)−ΨM

a−1
3

(q,−1, z; q6)

+(−1)M+a+1q−
M2+2Ma+a2−1

3 m((−1)M+1qM
2−2Ma, q6M

2
, z)−ΨM

2M−a−1
3

(q,−1, z; q6)

if a ≡ 1 (mod 3) and M ≡ 1 (mod 3)

(−1)M+a+1q−
M2−2Ma+a2−1

3 m((−1)M+1qM
2+2Ma, q6M

2
, z)−ΨM

2M+a−1
3

(q,−1, z; q6)

+(−1)M+a+1q−
M2+2Ma+a2−1

3 m((−1)M+1qM
2−2Ma, q6M

2
, z)−ΨM

2M−a−1
3

(q,−1, z; q6)

if a ≡ 0 (mod 3) and M ≡ 2 (mod 3)

(−1)aq−
a2−1

3 m((−1)M+1q3M
2−2Ma, q6M

2
, z)−ΨM

a−1
3

(q,−1, z; q6)

+(−1)M+aq−
M2−2Ma+a2−1

3 m((−1)M+1qM
2+2Ma, q6M

2
, z)−ΨM

M−a−1
3

(q,−1, z; q6)

if a ≡ 1 (mod 3) and M ≡ 2 (mod 3)

and

Ta,M(q) =
q

M

M−1∑
j=0

ξ−ajM ∆(ξjMq; q
2).

Specifically, by considering some special cases of the generating functions ofN0(a,M ;n),
we relate some generating functions with the third order mock theta functions ω(q)
and ρ(q) where ρ(q) is defined as [19]

ρ(q) :=
∞∑
n=0

q2n(n+1)(q; q2)n+1

(q3; q6)n+1

. (1.12)

Theorem 1.7. We have
∞∑
n=0

(
N0(0, 3;n)−N0(1, 3;n)

)
qn = qρ(q), (1.13)

∞∑
n=0

(
N0(0, 6;n)−N0(3, 6;n)

)
qn = q

J2
3J

2
12

J2J2
6

, (1.14)

∞∑
n=0

(
N0(0, 6;n)−N0(2, 6;n)

)
qn =

q

2
(ρ(q) + ρ(−q)) , (1.15)

∞∑
n=0

(
N0(1, 6;n)−N0(3, 6;n)

)
qn =

q

2
(ρ(−q)− ρ(q)) , (1.16)

∞∑
n=0

(
N0(1, 6;n)−N0(2, 6;n)

)
qn =

q

3
(ρ(−q)− ω(−q)) . (1.17)

Recall the following two Ramanujan’s theta functions:

ϕ(q) :=
∞∑

n=−∞

qn
2

= (−q; q2)2
∞(q2; q2)∞,
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ψ(q) :=
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

.

In addition, the following theta function identities are frequently used in this paper.
Let n and m be integers with m positive. Then

j(x; q) = j(qx−1; q),

j(x; q) = (−1)nq(
n
2)xnj(qnx; q). (1.18)

This paper is organized as follows. In Section 2, we introduce some preliminary
lemmas. In Section 3, we prove Theorems 1.3, 1.5, and 1.6. In Section 4, we give some
examples of the generating functions of N0(a,M ;n) for M ∈ {3, 6, 12}, and then prove
Theorem 1.7.

2. Preliminaries

In this section, we give some preliminary lemmas which are used in the proofs of
the main results.

Lemma 2.1. [13, Lemma 3.10] Let n and k be integers with 0 ≤ k < n. Let ω be a
primitive nth root of unity, and suppose that xn 6= 1. Then

xk

1− xn
=

1

n

n−1∑
t=0

ω−kt

1− ωtx
.

Lemma 2.2. [2, Entry 12.2.2] If z is not an integral power of q, then

∞∑
n=−∞

(−1)nq(
n+1
2 )

1− qnz
=

J3
1

j(z; q)
. (2.1)

Lemma 2.3. ( [11, Theorem 2.2], [13, Eq. (4.5)]) For generic x, z ∈ C∗,

g(x, q) = −x−2m(qx−3, q3, x3z)− x−1m(q2x−3, q3, x3z) +
J2

1 j(xz; q)j(z; q3)

j(x; q)j(z; q)j(x3z; q3)
.

(2.2)

Following [13], the term “generic” means that the parameters do not cause poles in
the Appell-Lerch sums or in the quotients of theta functions. The above lemma can
be found in the lost notebook [17] which was first proved by Hickerson [11], and then
rewritten in terms of Appell-Lerch sums by Hickerson and Mortenson [13].

Setting z = −x−3 in (2.2), we derive the following special case,

g(x, q) = −x−2m(qx−3, q3,−1)− x−1m(q2x−3, q3,−1) + ∆(x; q), (2.3)

where ∆(x; q) is defined in (1.10).

Lemma 2.4. [13] For generic x, z ∈ C∗,
m(x, q, z) = m(x, q, qz),

m(x, q, z) = x−1m(x−1, q, z−1), (2.4)
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m(qx, q, z) = 1− xm(x, q, z).

Lemma 2.5. [13, Theorem 3.9] Let n and k be integers with 0 ≤ k < n. Let ω be a
primitive nth root of unity. Then

n−1∑
t=0

ω−ktm(ωtx, q, z) = nq−(k+1
2 )(−x)km(−q(

n
2)−nk(−x)n, qn

2

, z′) + nΨn
k(x, z, z′; q),

where Ψn
k(x, z, z′; q) is defined in (1.11).

3. Main results

In this section, we prove Theorems 1.3, 1.5, and 1.6.

Proof of Theorem 1.3. First, for |q−1| < |z| < |q|,
1

(1− z−1q2n+1)(1− zq2n+1)
=

1

1− q4n+2
+

z−1q2n+1

(1− q4n+2)(1− z−1q2n+1)

+
zq2n+1

(1− q4n+2)(1− zq2n+1)

=
1

1− q4n+2
+
∞∑
m=1

(zq2n+1)
m

+ (z−1q2n+1)
m

1− q4n+2
.

Then from (1.6) and the above identity, we derive

∞∑
n=1

∞∑
m=−∞

N0(m,n)zmqn =
1

J2

∞∑
n=0

(−1)nq3n2+3n+1

+
1

J2

∞∑
n=0

∞∑
m=1

(−1)nq3n2+3n+1
(
(zq2n+1)m + (z−1q2n+1)m

)
.

Thus,
∞∑
n=1

N0(m,n)qn =
1

J2

∞∑
n=0

∞∑
m=−∞

(−1)nq3n2+3n+(2n+1)|m|+1. (3.1)

Setting m = kM + a with 0 ≤ a < M in (3.1), we prove the theorem. �

Proof of Theorem 1.5. For M ≡ 0 (mod 3), in view of Theorem 1.3 and Lemma
2.1 with n = M/3, k = 0, and x = q6n+3, we have

∞∑
n=0

N0(a,M ;n)qn =
3q

M

1

J2

M/3−1∑
t=0

∞∑
n=−∞

(−1)nq3n2+3n+(2n+1)a

1− q(6n+3)ωtM
3

. (3.2)

Case I: a ≡ 0 (mod 3).

Changing n to n− a/3 in the sum on the right-hand side of (3.2) gives that

M/3−1∑
t=0

∞∑
n=−∞

(−1)nq3n2+3n+(2n+1)a

1− q(6n+3)ωtM
3

=

M/3−1∑
t=0

∞∑
n=−∞

(−1)n+a
3 q3n2+3n−a2

3

1− q(6n−2a+3)ωtM
3
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=

M/3−1∑
t=0

(−1)
a
3 q−

a2

3
J3

6

j(q3−2aωtM
3

; q6)
, (3.3)

where the the last equality follows from (2.1). Then in view of (3.2) and (3.3), we
obtain (1.8).

Case II: a ≡ 1 (mod 3).

According to Definition 1.1, we obtain that
∞∑

n=−∞

(−1)nq3n2+3n+(2n+1)a

1− q(6n+3)ωtM
3

= −q−aj(q2a; q6)m(q3−2aωtM
3
, q6, q2a)

= −q−aj(q6a−1
3

+2; q6)m(q3−2aωtM
3
, q6, q2a)

= −q−a(−1)
a−1
3 q

−a2+3a−2
3 j(q2; q6)m(q3−2aωtM

3
, q6, q2a)

= (−1)
a+2
3 q

−a2−2
3 J2m(q3−2aωtM

3
, q6, q2a),

where the third step follows from (1.18). Then combining (3.2) and the above identity
yields (1.9). �

Proof of Theorem 1.6. First, by means of (1.7) and (2.3), we have

∞∑
n=0

N0(a,M ;n)qn

=
q

M

M−1∑
j=0

ξ−ajM g(ξjMq, q
2)

=
q

M

M−1∑
j=0

ξ−ajM

(
−ξ−2j

M q−2m(ξ−3j
M q−1, q6,−1)− ξ−jM q−1m(ξ−3j

M q, q6,−1)
)

+
q

M

M−1∑
j=0

ξ−ajM ∆(ξjMq; q
2)

= − 1

M

M−1∑
j=0

ξ
(−a+1)j
M m(ξ3j

Mq, q
6,−1)− 1

M

M−1∑
j=0

ξ
(−a−1)j
M m(ξ−3j

M q, q6,−1)

+
q

M

M−1∑
j=0

ξ−ajM ∆(ξjMq; q
2), (3.4)

where the first summand in the third equality follows from (2.4). Then for given a
and M , let k± be an integer such that ∓3k± ≡ −a± 1 (mod M). Notice that such k±
must exist since gcd(3,M) = 1. Then applying Lemma 2.5 with (n, k, ω, x, q, z, z′) →
(M,k±, ξ

±3
M , q, q6,−1, z) yields

− 1

M

M−1∑
j=0

ξ
(−a±1)j
M m(ξ±3j

M q, q6,−1)
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= − 1

M

M−1∑
j=0

ξ
∓3jk±
M m(ξ±3j

M q, q6,−1)

= −q−3k±(k±+1)(−q)k±m(−q3M(M−1)−6Mk±(−q)M , q6M2

, z)−ΨM
k±(q,−1, z; q6)

= (−1)k±+1q−3k2±−2k±m((−1)M+1q3M2−(6k±+2)M , q6M2

, z)−ΨM
k±(q,−1, z; q6). (3.5)

Hence, by combining (3.4) and (3.5), we prove the theorem. �

4. Examples

In this section, we provide some examples which are the generating functions of
N0(a,M ;n) for M ∈ {3, 6, 12}. Then we prove Theorem 1.7.

Case M=3:
∞∑
n=0

N0(0, 3;n)qn =
qJ4

6

J2J2
3

, (4.1)

∞∑
n=0

N0(1, 3;n)qn =
∞∑
n=0

N0(2, 3;n)qn = −m(q, q6, q2). (4.2)

Proof. From Theorem 1.5, we obtain the case for M = 3. �

Case M=6:
∞∑
n=0

N0(0, 6;n)qn =
qJ5

24

J2J6J2
48

, (4.3)

∞∑
n=0

N0(3, 6;n)qn = 2 · q
4J2

12J
2
48

J2J6J24

, (4.4)

∞∑
n=0

N0(1, 6;n)qn =
∞∑
n=0

N0(5, 6;n)qn = −1

2

(
m(q, q6, q2) +m(−q, q6, q2)

)
, (4.5)

∞∑
n=0

N0(2, 6;n)qn =
∞∑
n=0

N0(4, 6;n)qn = −1

2

(
m(q, q6, q2)−m(−q, q6, q2)

)
. (4.6)

Proof. In view of (1.8), we have

∞∑
n=0

N0(0, 6;n)qn =
1

2
· qJ3

6

J2ϕ(−q3)
+

1

2
· qJ3

6

J2ϕ(q3)
(4.7)

=
1

2
· qJ

3
6 (ϕ(q3) + ϕ(−q3))

J2ϕ(−q3)ϕ(q3)
, (4.8)

∞∑
n=0

N0(3, 6;n)qn =
1

2
· qJ3

6

J2ϕ(−q3)
− 1

2
· qJ3

6

J2ϕ(q3)
(4.9)

=
1

2
· qJ

3
6 (ϕ(q3)− ϕ(−q3))

J2ϕ(−q3)ϕ(q3)
. (4.10)
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In addition, from Entry 25 (i)-(iii) in [4, p. 40], we have

ϕ(q) + ϕ(−q) = 2ϕ(q4), (4.11)

ϕ(q)− ϕ(−q) = 4qψ(q8), (4.12)

ϕ(−q)ϕ(q) = ϕ2(−q2). (4.13)

Substituting (4.11) and (4.13) into (4.8), we arrive at (4.3). Similarly, combining (4.10),
(4.12), and (4.13) yields (4.4). The last two equalities follow from (1.9) and Lemma
2.4. �

Case M=12:
∞∑
n=0

N0(0, 12;n)qn =
1

2
· qJ5

24

J2J6J2
48

+
1

2
· qJ

3
6J24

J2J2
12

, (4.14)

∞∑
n=0

N0(3, 12;n)qn =
q4J2

12J
2
48

J2J6J24

,

∞∑
n=0

N0(6, 12;n)qn =
1

2
· qJ5

24

J2J6J2
48

− 1

2
· qJ

3
6J24

J2J2
12

.

Proof. In light of (1.8), we derive
∞∑
n=0

N0(0, 12;n)qn =
1

4
· qJ3

6

J2ϕ(−q3)
+

1

4
· qJ3

6

J2ϕ(q3)

+
1

4
· qJ3

6

J2j(iq3; q6)
+

1

4
· qJ3

6

J2j(−iq3; q6)

=
1

4
· qJ

3
6 (ϕ(q3) + ϕ(−q3))

J2ϕ(−q3)ϕ(q3)
+

1

2
· qJ3

6

J2j(iq3; q6)
. (4.15)

Moreover,

j(iq3; q6) = (iq3; q6)∞(−iq3; q6)∞(q6; q6)∞ = (−q6; q12)∞(q6; q6)∞ = ϕ(−q12).

Then substituting (4.11), (4.13), and the above equality into (4.15), we arrive at (4.14).
Similarly, by means of (1.8), we prove the rest of the equalities. �

Proof of Theorem 1.7. Watson [19] showed that

ω(q) + 2ρ(q) = 3 · J3
6

J2ϕ(−q3)
, (4.16)

where ω(q) and ρ(q) are defined in (1.1) and (1.12), respectively. By combining (4.1)
and (4.16), we prove

∞∑
n=0

N0(0, 3;n)qn =
q

3
ω(q) +

2q

3
ρ(q). (4.17)

From (1.3), (1.4), and (1.5), it follows that

2
∞∑
n=0

N0(1, 3;n)qn = qω(q)−
∞∑
n=0

N0(0, 3;n)qn =
2q

3
ω(q)− 2q

3
ρ(q),
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where we derive the last equality by using (4.17). Therefore, we arrive at
∞∑
n=0

N0(1, 3;n)qn =
q

3
ω(q)− q

3
ρ(q). (4.18)

Combining (4.17) and (4.18), we complete the proof of (1.13).

Furthermore, with the aid of (4.7) and (4.9), we prove (1.14).

From (4.2) and (4.18), it can be seen that

m(q, q6, q2) = −q
3
ω(q) +

q

3
ρ(q). (4.19)

Thus,

m(−q, q6, q2) =
q

3
ω(−q)− q

3
ρ(−q). (4.20)

Then substituting (4.19) and (4.20) into (4.6), we obtain
∞∑
n=0

N0(2, 6;n)qn =
q

6
(ω(q) + ω(−q))− q

6
(ρ(q) + ρ(−q)) . (4.21)

Moreover, using (4.7) and (4.16) yields
∞∑
n=0

N0(0, 6;n)qn =
q

6
(ω(q) + ω(−q)) +

q

3
(ρ(q) + ρ(−q)) .

Hence, combining the above two identities, we derive (1.15).

Similarly, by using (4.5), (4.9), (4.16), (4.19), and (4.20), we have
∞∑
n=0

N0(1, 6;n)qn =
q

6
(ω(q)− ω(−q))− q

6
(ρ(q)− ρ(−q)) , (4.22)

∞∑
n=0

N0(3, 6;n)qn =
q

6
(ω(q)− ω(−q)) +

q

3
(ρ(q)− ρ(−q)) ,

which imply (1.16).

Finally, combining (4.21) and (4.22), we deduce (1.17). �
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