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Abstract

This paper studies the fundamental relations among integer flows, modulo orienta-

tions, integer-valued and real-valued circular flows, and monotonicity of flows in signed

graphs. A (signed) graph is modulo-(2p + 1)-orientable if it has an orientation such

that the indegree is congruent to the outdegree modulo 2p + 1 at each vertex. An

integer-valued 2p+1
p -flow is a flow taking integer values in {±p,±(p+ 1)}. Extending a

fundamental result of Jaeger to signed graphs, we show that a bridgeless signed graph

is modulo-(2p+1)-orientable if and only if it admits an integer-valued 2p+1
p -flow. It was

conjectured by Raspaud and Zhu that, for any signed graph, the admission of a circular

r-flow implies the admission of an integer-valued dre-flow. Although this conjecture has

been disproved in general, it is confirmed in this paper for bridgeless signed graphs if

r = 2p+1
p and p ≥ 3.
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1 Introduction

Graphs considered in this paper may have multiple edges or loops. A signed graph (G, σ) is

a graph G associated with a signature σ : E(G)→ {±1}. An edge e is positive if σ(e) = 1

and negative otherwise. An ordinary graph can be considered as a signed graph with all

edges positive.

1.1 Motivations

Integer flows of ordinary graphs were introduced by Tutte [28] as the dual of vertex coloring

of graphs embedded on orientable surfaces. Bouchet [4] extended the concept of flows

to signed graphs as dual notion to local tensions of graphs embedded on non-orientable

surfaces. There are significant differences between the flows of signed graphs and that of

ordinary graphs. Some fundamental results on flows of ordinary graphs no longer hold for

signed graphs. In this paper we address those differences from the aspects related to circular

flows and modulo orientations.

Firstly, for ordinary graphs, Jaeger [13] showed that the admission of a modulo (2p+1)-

orientation is equivalent to the admission of an integer-valued 2p+1
p -flow. The modulo

orientation (and, more generally, modulo flow) technique is one of the most important tools

in flow theory (see [13, 29]). It is well known that the above equivalence plays an important

role in the proofs of some landmark flow theorems, such as [11, 13, 17, 18, 25, 26, 29] among

others. However, this equivalence is not true for signed graphs in general (cf. [5, 24, 31, 33]).

In this paper, this equivalence is established for all bridgeless signed graphs, which improves

several previous results [5, 24, 31, 33] in this direction.

Secondly, for ordinary graphs, Goddyn, Tarsi and Zhang [9] showed that the admission

of a circular r-flow implies the admission of an integer-valued dre-flow. For signed graphs,

this basic property was proposed as an open problem by Raspaud and Zhu [23]. Although

many counterexamples have been discovered recently in [20, 24, 19, 14], in this paper, this

open problem is verified for bridgeless signed graphs if r = 2p+1
p and p ≥ 3. In fact, this

result follows from a more general monotonicity property of circular flows of bridgeless

signed graphs.

1.2 Notation and terminology

Every edge of a signed graph (G, σ) is composed of two half-edges h and ĥ, each of which is

incident with one end. Denote the set of half-edges of (G, σ) by H(G) and the set of half-

edges incident with v by HG(v). For a half-edge h ∈ H(G), we use eh to refer to the edge

containing h. An orientation of a signed graph (G, σ) is a mapping τ : H(G) → {−1, 1}
such that τ(h)τ(ĥ) = −σ(eh) for each h ∈ H(G). We may consider τ as an assignment of
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orientations on H(G) such that h is a half-edge oriented away from its end if τ(h) = 1 and

otherwise towards its end. A signed graph (G, σ) together with an orientation τ is called

an oriented signed graph, denoted by (G, τ), with underlying signature στ .

Definition 1.1 Let (G, σ) be a signed graph with an orientation τ . Let k be a positive

integer and f : E(G) → Z be a mapping such that 0 ≤ |f(e)| ≤ (k − 1) for every edge

e ∈ E(G).

(1) The support of f , denoted by supp(f), is the set of edges e with f(e) 6= 0.

(2) The boundary of f at a vertex v is defined as ∂f(v) =
∑

h∈H(v) f(eh)τ(h).

(3) The mapping f is an integer-valued k-flow (or k-flow for short) of (G, σ) if ∂f(v) = 0

for each vertex v ∈ V (G).

(4) A flow f is nowhere-zero if supp(f) = E(G).

For convenience, we usually shorten the notation of nowhere-zero integer-valued k-flow

into k-NZF. For ordinary graphs, Goddyn, Tarsi and Zhang [9] introduced the concept of

circular flows as a refinement of Tutte’s integer flows, which allows flow values to be real

numbers. The circular flows are extended from ordinary graphs to signed graphs.

Definition 1.2 Let (G, σ) be a signed graph with an orientation τ . Let k and d be two

positive integers where k ≥ 2d > 0.

(1) An integer-valued k
d -flow of (G, σ) is an integer-valued flow f with d ≤ |f(e)| ≤ k−d

for every edge e ∈ E(G).

(2) A real-valued k
d -flow of (G, σ) is a real-valued flow f with |f(e)| ∈ [d, k−d] for every

edge e ∈ E(G) (where [d, k − d] denotes the real-valued interval from d to k − d).

Let (G, τ) be an oriented signed graph. Denote by d+
τ (v) (d−τ (v), resp.) the number of

half-edges incident with v which are oriented away from v (oriented toward v, resp.). An

edge e is a source (resp., sink) of (τ, f) if τ(h1) = τ(h2) = −1 (resp., τ(h1) = τ(h2) = 1),

where h1 and h2 are the two half-edges of e. For a positive integer p, an orientation τ

is called a modulo (2p + 1)-orientation if d+
τ (v) ≡ d−τ (v) (mod 2p + 1) for every vertex

v ∈ V (G). A signed graph (G, σ) is called modulo-(2p + 1)-orientable if it has a modulo

(2p+ 1)-orientation.

1.3 Main results

The circular 2p+1
p -flows was introduced and studied by Jaeger [12, 13] even before Goddyn

et al. [9] introduced the concept of general circular k
d -flow, and he proved that the following

three statements are equivalent.
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Proposition 1.3 (Jaeger [12, 13]) Let G be an ordinary graph and p be a positive integer.

The following statements are equivalent.

(I) G admits a modulo (2p+ 1)-orientation.

(II) G admits an integer-valued 2p+1
p -flow.

(III) G admits a real-valued 2p+1
p -flow.

Proposition 1.3 provides a fundamental tool to study k-NZFs and integer-valued 2p+1
p -

flows for ordinary graphs in terms of modulo orientations, which is technically easier to

handle. Tutte’s 3-flow conjecture asserts that every 4-edge-connected ordinary graph admits

a 3-NZF. The weak 3-flow theorem, established by Lovász, Thomassen, Wu, Zhang [18] using

modulo 3-orientations, states that every 6-edge-connected ordinary graph admits a 3-NZF.

Applying some modulo (2p + 1)-orientation techniques, Thomassen [26] and Lovász et al.

[18] prove the weak circular flow conjecture of Jaeger [13] by showing that every 6p-edge-

connected graph admits an integer-valued 2p+1
p -flow, while the circular flow conjecture was

disproved in [10] for p ≥ 3.
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(a) No real-valued or integer-valued 3
1

-flow.
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(b) There is a real-valued but no integer-valued 3
1

-flow.

Figure 1: Modulo-3-orientable signed graphs without integer-valued 3
1 -flow or real-valued 3

1 -flow.

How about Proposition 1.3 for signed graphs? It is not hard to see that (II) implies

both (I) and (III) by the definitions. However all other directions of implication fail. The

graph in Figure 1-(a) has a modulo 3-orientation but has no real-valued 3
1 -flow (of course

no integer-valued 3
1 -flow). Thus (I) does not imply (II). The graph in Figure 1-(b) has a

modulo 3-orientation and has a real-valued 3
1 -flow but has no integer-valued 3

1 -flow. Hence

(I) does not imply (III). The equivalence of (I) and (III) and of (II) and (III) fails even

for some signed graphs with high edge connectivity as shown in Proposition 5.3 for every

positive integer p.

On the other hand high edge connectivity may still guarantee the equivalence of (I) and

(II) for signed graphs. The following are some early results in this direction under some
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connectivity conditions due to Xu and Zhang [31], Schubert and Steffen [24], Zhu [33], and

Cheng et al. [5], respectively.

Theorem 1.4 Let (G, σ) be a signed graph and p ≥ 1 be an integer. Then (I) and (II) are

equivalent if one of the following conditions is satisfied:

1. ([31]) p = 1 and (G, σ) is cubic and contains a perfect matching;

2. ([24]) (G, σ) is (2p+ 1)-regular and contains a p-factor;

3. ([33]) (G, σ) is (12p− 1)-edge-connected;

4. ([5]) (G, σ) is odd-(2p+ 1)-edge-connected.

Our first main result establishes the best possible edge connectivity condition for the

equivalence of (I) and (II).

THEOREM A (I) and (II) are equivalent for all bridgeless signed graphs. That is, a

bridgeless signed graph is modulo-(2p + 1)-orientable if and only if it admits an integer-

valued 2p+1
p -flow.

Remark 1. The connectivity condition in Theorem A is necessary. Figure 1-(a) can be

generalized for any positive integer p. For each integer p ≥ 1, let Hp be the family of signed

graphs obtained from a tree in which the degree of each vertex is either 1 or 2p+1 by adding

p negative loops to each leaf vertex. Note that Figure 1-(a) is a graph in H1. One can see

that every graph in Hp is modulo-(2p+ 1)-orientable but has no integer-valued 2p+1
p -flow.

For ordinary graphs, by the definitions and Proposition 1.3, we have the following mono-

tonicity of circular flows.

Proposition 1.5 ([9, 13]) Let G be an ordinary graph. Let k, k′, d, d′ be positive integers

such that k′

d′ ≥
k
d ≥ 2. If G admits a circular k

d -flow (integer-valued or real-valued, respec-

tively), then G admits a circular k′

d′ -flow (integer-valued or real-valued, respectively).

Obviously Proposition 1.5 still holds for real-valued circular flows of signed graphs.

However it does not hold for integer-valued circular flows of signed graphs. There are even

some signed graphs with high edge connectivity that admit integer-valued 2k
2d -flows but no

integer-valued k
d -flows (see Section 5 for more details).

On the other hand, Raspaud and Zhu [23] suggested a conjecture concerning circular

flows and integer flows of signed graphs.

Conjecture 1.6 (Raspaud and Zhu [23]) For any positive integers k, d with k ≥ 2d, every

integer-valued k
d -flow admissible signed graph admits a nowhere-zero dkde-flow.
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Raspaud and Zhu [23] showed that every integer-valued k
d -flow admissible signed graph

admits a nowhere-zero (2dkde−1)-flow. Conjecture 1.6 has been disproved for signed graphs

in general (see [20, 24]), and some bridgeless counterexamples are found in [19, 14] recently.

In contrast, we confirm Conjecture 1.6 for certain integer-valued 2p+1
p -flows of bridgeless

signed graphs.

THEOREM B For each positive integer p 6= 2, every bridgeless integer-valued 2p+1
p -flow

admissible signed graph admits a nowhere-zero 3-flow.

The case when p = 2 remains open and will be further discussed in Sections 4 and 5.

The organization of the rest of the paper is as follows. In Section 2, we introduce

additional notation and terminology and some basic lemmas needed for the proofs of the

main results. Section 3 introduces a method to construct a new regular modulo-(2p + 1)-

orientable signed graph from an arbitrary modulo-(2p + 1)-orientable signed graph, which

allows to reduce our theorems to regular signed graphs. Then we apply those results to

complete the proofs of Theorems A and B in Section 4. Some further remarks on the

difference of integer-valued and real-valued circular flows, as well as a few open problems,

will be presented in Section 5.

2 Preliminaries

In this section we first introduce additional notation and terminology needed for the rest of

the paper and then present some basic properties of flows of signed graphs. For terminology

and notation not defined here we follow [2, 3, 30].

Let G be a graph with vertex set V (G) and edge set E(G). The degree of a vertex v is

the number of edges incident with v, where each loop is counted twice. Let X and Y be

two disjoint vertex sets. We denote by [X,Y ] the set of edges with one end in X and the

other end in Y . Denote by B(G) the set of bridges of G. The graph G− B(G) consists of

some components, called blocks, each of which is either 2-edge-connected or a single vertex.

A block is called a leaf block if it is incident with exactly one bridge in B(G). Note that

leaf blocks always exist when G contains bridges.

A signed graph is flow-admissible if it admits a nowhere-zero k-flow for some integer k.

In a signed graph, switching at a vertex u means reversing the signs of all edges incident with

u. Two signed graphs are equivalent if one can be obtained from the other by a sequence

of switching operations. A signed graph is balanced if and only if it is equivalent to a graph

without negative edges. In particular, a circuit is balanced if it has an even number of

negative edges and is unbalanced otherwise. A signed graph (G, σ) is antibalanced if there

is a bipartition (A,B) of V (G) such that an edge e is positive if and only if e belongs to
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[A,B]. We use K−p1 to denote the signed graph consisting of p negative loops sharing a

common vertex.

Note that switching at a vertex does not change the parity of the number of negative

edges in a circuit and it does not change the admission of flows either. Bouchet [4] provided

a characterization for flow-admissible signed graphs.

Proposition 2.1 (Bouchet [4]) A connected signed graph (G, σ) is flow-admissible if and

only if it is not equivalent to a signed graph with exactly one negative edge and it has no

bridge b such that (G− b, σ|G−b) has a balanced component.

Proposition 2.2 Let p ≥ 1 be an integer. Suppose that (G, σ) is modulo-(2p+1)-orientable.

(i) If e = uv is a bridge, then each component of G− e has at least p negative edges and

thus each component of G− e is unbalanced.

(ii) (G, σ) is flow-admissible.

(iii) If G is (2p+ 1)-regular, then (G, σ) is antibalanced.

Proof. Let τ be a modulo (2p+ 1)-orientation of (G, σ).

(i) and (ii): Let [U,U c] be an edge cut of (G, σ). Let a and b be the number of sink

edges and the number of source edges with both endvertices in U respectively. Denote by

u+ and u− the numbers of oriented-in and oriented-out half-edges of the edges in [U,U c]

incident with a vertex in U , respectively. Since τ is a modulo (2p+ 1)-orientation, we have

2a+ u+ ≡ 2b+ u− (mod 2p+ 1). (∗)

If [U,U c] is a bridge, then u+ + u− = 1 and thus |a − b| ≡ p (mod 2p + 1). Therefore

a+ b ≥ |a− b| ≥ p. This proves (i).

If U c = ∅, then u+ = u− = 0 and thus by (∗) we have a ≡ b (mod 2p+ 1). This implies

a + b 6= 1. By (i), if G has a bridge e, each component of G − e is unbalanced. Therefore

by Proposition 2.1, (G, σ) is flow-admissible.

(iii): Since G is (2p+1)-regular and τ is a modulo (2p+1)-orientation, either d+
τ (v) = 0

or d−τ (v) = 0 for each vertex v ∈ V (G). Let A = {v ∈ V (G)|d−τ (v) = 0} and B = {v ∈
V (G)|d+

τ (v) = 0}. Then (A,B) is a bipartition of V (G) and an edge e is positive if and

only if e ∈ [A,B]. This proves that (G, σ) is antibalanced.

Lemma 2.3 Let f be an integer-valued flow of a signed graph (G, σ) with an orientation

τ . Then f(e) must be even for each bridge e ∈ B(G).

Proof. Let [U,U c] be an edge cut. We use U+ (U−, resp.) to denote the set of oriented-out

(oriented-in, resp.) half-edges in [U,U c] which are incident with a vertex in U . Then we

have ∑
e∈U+

f(e)−
∑
e∈U−

f(e) =
∑

e∈E(U),σ(e)=−1

±2f(e).
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The lemma follows immediately from the above fact when [U,U c] is a bridge.

Proposition 2.4 Let C be a circuit in a signed graph (G, σ) with an orientation τ . Let v

be a vertex in C. Then there is a mapping fC : E(G) → {0, 1,−1} with supp(f) = E(C)

such that ∂f(x) = 0 for each vertex x 6= v.

Proof. One may start to assign nonzero flow values to the edges E(C) from v clockwise

until going back to v so that the boundary at every vertex distinct from v is 0, which gives

a desired mapping.

3 Modulo orientable graphs and (2p+ 1)-regular graphs

In the study of flows and orientations, one may often try to reduce the graphs to regular

graphs. A classical method for this reduction is to apply some splitting results that preserves

the edge connectivity (see [7, 8, 21, 22, 32]). Usually the classical splitting method does

require high edge connectivity. In this section, we propose a new method to construct a

regular graph from certain graphs such that the regular graph easily preserves the properties

of orientations, flows and edge connectivity, and the original graph is the contraction of some

positive edges in the new regular graph. We believe that this construction is of interest itself

and will be useful in the future study of flows and orientations of (signed) graphs.

Lemma 3.1 For any two nonnegative integers a, b with a ≡ b (mod 2p+ 1), there exists a

2p-edge-connected bipartite simple graph B(a, b) = (X,Y ) such that

(i) each vertex in X ∪ Y is of degree 2p or 2p+ 1,

(ii) the numbers of vertices of degree 2p in X and in Y are exactly a and b respectively.

For example, Figure 2 shows the construction of B(a, b) when p = 1, a = 1 and b = 4.

Proof. Without loss of generality, we assume that b ≥ a and b−a = (2p+1)t, where t ≥ 0.

Let n = a+ b+ 2p+ 2 and Z2n = {0, 1, 2, . . . , 2n− 1} be the additive cyclic group of order

2n. We construct B(a, b) in the following three steps.

Step 1: Construct a 2p-edge-connected circulant graph H1.

(1-1) V (H1) = Z2n and bipartition V (H1) into X and Y , where X = {1, 3, 5, . . . , 2n−1}
and Y = {0, 2, 4, . . . , 2n− 2}.

(1-2) E(H1) = {xy|x ∈ X, y ∈ Y, x− y ∈ {±1,±3,±5, . . . ,±(2p− 1)}.
Clearly, H1 is a vertex-transitive graph and hence is 2p-edge-connected (see Theorem

9.14 of [2]).

Step 2: Add more edges to H1 to obtain a new graph H2.
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1 3 5 7 9 11 13 15 17

0 2 4 6 8 10 12 14 16

X

Y

(1) H1 in Step 1;

1 3 5 7 9 11 13 15 17

0 2 4 6 8 10 12 14 16

X

Y

(2) H2 in Step 2;

1 3 5 7 9 11 13 15 17

v1 0 2 4 6 8 10 12 14 16

X

Y

(3) B(1, 4) in Step 3.

Figure 2: The construction of B(a, b) in Lemma 3.1 for p = 1, a = 1 and b = 4, where the

larger circles are degree 2 vertices.

The graph H2 is obtained from H1 by adding the edges in

S =
n⋃

i=b+1

{xy : x = 2i− 1, y = 2i+ 2p}.

Then in H2 both X and Y have b vertices of degree 2p.

Step 3: Add t new vertices to Y and more edges to finally obtain B(a, b).

The graph B(a, b) is obtained from H2 by adding t new vertices v1, v2, . . . , vt (to Y ) and

adding the edges in

S′ =

t⋃
j=1

2p+1⋃
i=1

{vjx : x = 2(2p+ 1)(j − 1) + 2i− 1}.

It is easy to see that B(a, b) is 2p-edge-connected and satisfies (i) and (ii) as required.

Construction 3.2 Let (H,σ) be a signed graph with a modulo (2p+ 1)-orientation τ . We

construct a (2p+ 1)-regular signed graph (G, σ′) from (H,σ) as follows.
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(1) For each vertex v ∈ V (H), let Bv(d
+
τ (v), d−τ (v)) = (X,Y ) be the 2p-edge-connected

bipartite graph constructed in Lemma 3.1.

(2) First split v into d+
τ (v)+d−τ (v) vertices of degree 1 and then identify each degree 1 vertex

of an out-arc with a vertex of degree 2p in X and identify each degree 1 vertex of an in-arc

with a vertex of degree 2p in Y .

(3) Let G be the resulting graph from (2). The signature σ′ of G is defined as follows, for

each e ∈ E(G),

σ′(e) =

{
σ(e), if e ∈ E(H) ⊂ E(G);

1, if e ∈ E(G) \ E(H).

(4) The orientation τ of (H,σ) can be extended to (G, σ′) to obtain a modulo (2p + 1)-

orientation by orienting the half edges of each edge in Bv(d
+
τ (v), d−τ (v)) away from X and

toward Y .

(H,σ) (G, σ′) = anti(H,σ)

Figure 3: An example of (G, σ′) = anti(H,σ) in Construction 3.2 when p = 2.

By Construction 3.2-(4) above, (G, σ′) is modulo-(2p+1)-orientable, and thus by Propo-

sition 2.2, the graph (G, σ′) constructed above is antibalanced. We denote such a graph

(G, σ′) by anti(H,σ). See Figure 3 for an example of Construction 3.2.

The following proposition directly follows from the construction of (G, σ′).

Proposition 3.3 Let (H,σ) be a modulo-(2p+ 1)-orientable signed graph. Then (G, σ′) =

anti(H,σ) satisfies the following:

(i) (G, σ′) is (2p+ 1)-regular and is modulo-(2p+ 1)-orientable.

(ii) There is a set T of positive edges in G such that H = G/T and σ′ agrees with σ for

all edges in H.
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(iii) If H is k-edge-connected, then G is t-edge-connected, where t = min{2p, k}. In

particular, G is bridgeless if H is bridgeless.

(iv) Every bridge in G is also a bridge in H.

A classical result of Bäbler [1] shows that every bridgeless (2p+1)-regular graph contains

a k-factor if k is odd and 2p+1
3 ≤ k ≤ 2p − 1. Using Tutte’s f -factor theorem [27], Kano

[15, 16] obtained an extension of Bäbler’s result, allowing at most one bridge.

Theorem 3.4 (Kano [16]) Let G be a (2p+ 1)-regular graph with at most one bridge. If k

is odd and 2p+1
3 ≤ k ≤ 2p− 1, then G has a k-factor.

Note that the existence of one bridge is useful in our later inductive arguments.

Corollary 3.5 Let p ≥ 1 be an integer and G be a (2p+ 1)-regular graph with at most one

bridge. Then each of the following holds.

(a) E(G) can be partitioned into a p-factor and a (p+ 1)-factor;

(b) If p ≥ 3, then E(G) can be partitioned into a (p− 1)-factor and a (p+ 2)-factor.

Proof. Since G is (2p+ 1)-regular, the complement of a k-factor is a (2p+ 1− k)-factor in

G. Thus we only need to show that G has a p-factor or a (p + 1)-factor in (a) and has a

(p− 1)-factor or a (p+ 2)-factor in (b).

For (a), let

k1 =

{
p+ 1, if p ≡ 0 (mod 2);

p, otherwise.

Then G has a k1-factor by Theorem 3.4, since 3k1 ≥ 3p ≥ 2p+ 1.

For (b), let

k2 =

{
p− 1, if p ≡ 0 (mod 2);

p+ 2, otherwise.

Then G has a k2-factor by Theorem 3.4, since p ≥ 3 and 3k2 ≥ 2p+ 1.

4 Modulo (2p+ 1)-orientations and integer-valued flows

We will present the proofs of our main results in this section.
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4.1 Modulo (2p+ 1)-orientations and integer-valued 2p+1
p

-flows

In this subsection we will prove Theorem A. Actually, we shall show the following slightly

stronger theorem instead, which will be also useful in the next subsection.

Theorem 4.1 Let (H,σ) be a modulo-(2p + 1)-orientable signed graph with at most one

bridge. Then (H,σ) admits an integer-valued 2p+1
p -flow.

By Proposition 3.3, there is a (2p+ 1)-regular modulo-(2p+ 1)-orientable signed graph

(G, σ′) with at most one bridge such that H = G/X for some set X consisting of positive

edges. Since the flow property is preserved under contraction, Theorem 4.1 follows directly

from the lemma below.

Lemma 4.2 Let (G, σ) be a (2p+ 1)-regular modulo-(2p+ 1)-orientable signed graph with

at most one bridge. Then G can be partitioned into a p-factor M1 and a (p + 1)-factor

M2 so that (G, σ) has an integer-valued 2p+1
p -flow f where f(e) = −(p + 1) if e ∈ M1 and

f(e) = p if e ∈M2.

Proof. By Corollary 3.5, there is a partition of E(G) into a p-factor M1 and a (p+1)-factor

M2. Let τ be a modulo (2p+ 1)-orientation of (G, σ) and let

f(e) =

{
−(p+ 1), if e ∈M1;

p, otherwise.

Therefore f is a desired flow.

Taking p = 1, an integer-valued 3
1 -flow is indeed a 3-NZF. For the case when p = 2,

an integer-valued 5
2 -flow is exactly a 4-NZF with flow values in {±2,±3} by definition.

Therefore we have the following corollary.

Corollary 4.3 (i) Every modulo-3-orientable signed graph with at most one bridge admits

a nowhere-zero 3-flow.

(ii) Every modulo-5-orientable signed graph with at most one bridge admits a nowhere-

zero 4-flow with flow values in {±2,±3}.

The case when p = 1 slightly strengthens the result by Xu and Zhang [31] which claims

that every bridgeless modulo-3-orientable signed graph admits a nowhere-zero 3-flow.

4.2 Modulo (2p+ 1)-orientations and integer flows

In this subsection, we will prove Theorem B. In fact, Theorem B is a corollary of Theorem A

and the following theorem.
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THEOREM C Let p ≥ 3 be an integer. If a signed graph (G, σ) has a modulo (2p + 1)-

orientation, then (G, σ) has a modulo 3-orientation.

Note that the case when p = 2 and G has bridges is excluded from Theorem B and from

Corollary 4.3 which will be settled for 5-flows in the following two theorems.

THEOREM D Every modulo-5-orientable signed graph admits a 5-NZF.

DeVos et al. [6] showed that every modulo-3-orientable signed graph has a 5-NZF,

which is one of the key steps in establishing a 11-flow theorem of signed graphs. This result

together with Theorem C (for p 6= 2) and Theorem D (for p = 2) implies the following

theorem.

THEOREM E For each integer p ≥ 1, every modulo-(2p + 1)-orientable signed graph

admits a 5-NZF.

Remark 2. Here the flow number 5 in Theorem E is sharp as every signed graph in Hp
(defined in Remark 1) has no 4-NZF by Proposition 2.3.

Now we start the proof of Theorem C.

Proof of Theorem C. Let (H,σ) be a counterexample to the theorem with |V (H)| +

|E(H)| minimized. That is, (H,σ) is modulo-(2p + 1)-orientable but is not modulo-3-

orientable.

Claim 1 H contains at least two bridges.

Proof. Suppose to the contrary that H has at most one bridge. Let (G, σ′) = anti(H,σ) be

the signed graph defined in Construction 3.2. Then G is (2p+ 1)-regular and (G, σ′) has a

modulo (2p+ 1)-orientation τ . By Proposition 3.3, G has at most one bridge. Since p ≥ 3,

by Corollary 3.5-(a), G has a (p − 1)-factor M . By reversing the direction of each edge in

M , we obtain a new orientation τ ′ of (G, σ′) satisfying the following:

• d+
τ ′(v) = p+ 2, d−τ ′(v) = p− 1 if d+

τ (v) = 2p+ 1;

• d+
τ ′(u) = p− 1, d−τ (u) = p+ 2 if d−τ (v) = 2p+ 1.

Hence d+
τ ′(v) − d−τ ′(v) ≡ 0 (mod 3) for each v ∈ V (G). Therefore τ ′ is a modulo 3-

orientation of (G, σ′), which yields a modulo 3-orientation of (H,σ), a contradiction. Thus

H contains at least two bridges. �

By possibly some switching operations, we assume that every bridge is positive.

Claim 2 Every leaf block of H is a K−p1 .
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Proof. Suppose to the contrary that there is a bridge e = uv such that one of the components

H1 and H2 of G−e, say H1, is a leaf block and H1 6= K−p1 . By Claim 1, we have H2 6= K−p1 .

For each i = 1, 2, let Gi be the new graph obtained from H by replacing Hi with p negative

loops K−p1 . Then both G1 and G2 are modulo-(2p+ 1)-orientable.

Since H admits a modulo (2p+ 1)-orientation, by Proposition 2.2, Hi contains at least

p negative edges for i = 1, 2. Since H1 6= K−p1 and H2 contains a bridge which is a positive

edge, we have |E(Gi)| < |E(H)| for each i = 1, 2. Hence by the minimality of H, each Gi

admits a modulo 3-orientation τi. One may choose τ1 and τ2 such that e = uv has the same

directions in both τ1 and τ2. Combining H1 + uv of G2 under orientation τ1 and H2 of G1

under orientation τ2, we obtain a modulo 3-orientation of (H,σ), which is a contradiction.

This proves the claim. �

Now by Claim 2, each leaf block of H is a K−p1 . Let t be the number of leaf blocks

and u1, . . . , ut be the t vertices of the leaf blocks. Let G∗ be a new signed graph obtained

from H by identifying u1, u2, . . . , ut into a new vertex u∗. Then G∗ is bridgeless and is

modulo-(2p + 1)-orientable. By Theorem 4.1, G∗ admits a modulo 3-orientation. In the

modulo 3-orientation of G∗, we split u∗ back to u1, u2, . . . , ut. Since p ≥ 3, we can reverse

the direction of some negative loops adjacent to ui for each 1 ≤ i ≤ t to obtain a modulo

3-orientation of (H,σ).

Next, we will prove Theorem D. We first prove the following lemma.

Lemma 4.4 Let (H,σ) be a modulo-5-orientable signed graph with exactly one bridge e0.

Then each of the following holds.

(i) (H,σ) admits a 4-NZF f1 such that f1(e) ∈ {−3, 2} for each edge e ∈ E(H) and

f1(e0) = 2.

(ii) If one of the two components of H − e0 is a K−2
1 , then (H,σ) admits a 5-NZF f2 such

that f2(e0) = 4.

Proof. Let (G, σ′) = anti(H,σ) be the signed graph defined in Construction 3.2. Note

that G contains precisely one bridge, which is corresponding to the edge e0 in H.

(i) By Lemma 4.2, (G, σ′) has an integer-valued 5
2 -flow f1 such that f1(e) = −3 if e is

in a 2-factor of G, and f1(e) = 2 otherwise. Since e0 is a bridge, it does not belong to

a 2-factor of G, and hence f1(e0) = 2. By Proposition 3.3, (H,σ) is obtained from G by

contracting a set of positive edges, and thus the flow f1 is preserved in (H,σ). Hence we

actually obtain a 4-NZF f1 of (H,σ) such that f1(e) ∈ {2,−3} for each edge e ∈ E(H) and

f1(e0) = 2.

(ii) Denote e0 = xy. Let H1 and H2 be the two components of G− e0 where H2 = K−2
1 ,

x ∈ V (H1) and y ∈ V (H2). By Proposition 2.2, H1 is unbalanced since H is modulo-5-

orientable, and thus H1 contains an unbalanced circuit.
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First, suppose that there is an unbalanced circuit containing x. Then C together with

e0 = xy and a negative loop in H2 forms a long barbell, which has a characteristic 3-flow

g1 such that g1(e0) = 2 and g1(e) ∈ {±1} otherwise. Then f2 = f1 + g1 is a 5-NZF with

f2(e0) = f1(e0) + g1(e0) = 4.

Next, suppose that there is no unbalanced circuit containing x. Let C be an unbalanced

circuit C in H1. Then C does not contain x. Since H1 is bridgeless, by Menger’s Theorem

there are two edge-disjoint paths from x to C, P1 and P2. We choose a pair of paths P1, P2

such that |E(P1)|+ |E(P2)| is the minimum. Denote by u1 and u2 be the other endvertices

of P1 and P2 respetively. Then u1, u2 ∈ V (C). If u1 6= u2, let P ′ be the (u1, u2)-segement of

C such that in E(P1)∪E(P2)∪E(P ′) the circuit containing E(P ′) is unbalanced; if u1 = u2,

let P ′ = C. Therefore by the minimality of |E(P1)|+|E(P2)|, E(P1)∪E(P2)∪E(P ′) consists

of a chain of circuits C1, C2, . . . , Cs such that x ∈ C1, u1 ∈ Cs and |V (Ci) ∩ V (Ci+1)| = 1

for each i = 1, . . . , s − 1 (see Figure 4 for an illustration of H1 and C). Since x is not

contained in any unbalanced circuit of H1, C1 is balanced. Note that by the choice of Cs,

Cs is unbalanced. Let t be the smallest integer j such that Cj is unbalanced. Then it is easy

to see that the graph consists of C1, . . . , Ct together with e0 = xy and a negative loop in

H1 has a 3-flow g2 such that g2(e0) = 2 and g2(e) ∈ {±1} otherwise. Therefore f2 = f1 + g2

is a 5-NZF with f2(e0) = f1(e0) + g1(e0) = 4, as desired.

C

P ′

u1

u2

P1

P2

P ′ = C

u1 = u2

P1

P2

x or x

Figure 4: The structure of H1 in the proof of Lemma 4.4.

Now we are ready to prove Theorem D.

Proof of Theorem D. The proof applies similar ideas to those of Theorem C. Let (H,σ)

be a counterexample of Theorem D with |V (H)|+ |E(H)| minimized. Since every modulo-

5-orientable signed graph with at most one bridge has a 4-NZF by Corollary 4.3-(ii). Thus

H contains at least two bridges since (H,σ) is a counterexample. As before, we assume

each bridge is a positive edge by applying possibly some switching operations.

Claim 3 Every leaf block of H is a K−2
1 .
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Proof. Suppose to the contrary that H1 is a leaf block of H and H1 6= K−2
1 . Let e0 be the

bridge adjacent to H1. Denote by H2 the other component of G− e0. Let Gi be the graph

obtained from H by replacing Hi with a K−2
1 for each i = 1, 2. Thus both G1 and G2 are

modulo-5-orientable. Since |V (G1)|+ |E(G1)| < |V (H)|+ |E(H)|, by the the minimality of

H, G1 has a 5-NZF f1. Let e1, e2 be the two negative loops adjacent to e0 in G1. Since f1

is a 5-NZF and e0 is a bridge of G1, by Lemma 2.3, f1(e0) is even, i.e., f1(xy) ∈ {±2,±4}.
Note that G2 contains exactly one bridge. If f1(e0) ∈ {±2}, we apply Lemma 4.4-(i),

with possibly negating flow values of each edge, to obtain a 5-NZF f2 of G2 such that

f2(e0) = f1(e0) ∈ {±2}. If f1(e0) ∈ {±4}, we apply Lemma 4.4-(ii), with possibly negating

flow values of each edge, to obtain a 5-NZF f2 of G2 such that f2(e0) = f1(e0) ∈ {±4}.
Then in each case we combine those flows together to obtain a 5-NZF of H, a contradiction.

This proves the claim. �

By Claim 3, each leaf block of H is a K−2
1 . Let t be the number of leaf blocks and

u1, . . . , ut be the t vertices of the leaf blocks. Let u′i be the neighbor of ui for each i = 1, . . . , t.

Let G∗ be the new signed graph obtained from H by identifying u1, u2, . . . , ut into a new

vertex u∗. Then G∗ is bridgeless and is modulo-5-orientable. By Construction 3.2 and

Proposition 3.3, (G′, σ′) = anti(G∗, σ) has a modulo 5-orientation and G′ is bridgeless.

By Theorem 4.1, G′ has a 4-NZF f ′ and a 2-factor M such that f ′(e) = 3 if e ∈ M and

f ′(e) = −2 otherwise.

We are going to obtain a contradiction by finding a 5-NZF of (H,σ) from f ′ in the

following.

First, we modify the flow values of uiu
′
i to be an even number in {2, 4}.

Let M ′ ⊂ M be the set of circuits in M containing at least one edge uiu
′
i where uiu

′
i

is corresponding to the bridge in H connecting a leaf block. By Proposition 2.4, for each

circuit C ∈ M ′, there is a vertex ui ∈ C and an edge weight fC : E(G∗)→ {0, 1,−1} with

supp(fC) = E(C) such that ∂fC(x) = 0 for each vertex x 6= ui. Let g = f ′ +
∑

C∈M ′ fC .

Then ∂g(x) = 0 if x 6∈ {u1, . . . , ut} and g(e) ∈ {−2, 2, 3, 4} for each edge e in G∗. In

particular, g(uiu
′
i) ∈ {2, 4} for each i = 1, . . . , t.

Second, we further modify g to obtain a 5-NZF of (H,σ) by reassigning flows values to

the negative loops adjacent to each ui.

For each i ∈ {1, . . . , t}, we have g(uiu
′
i) = 2a where a ∈ {1, 2}. Without loss of

generality, we assume that the half edge of uiu
′
i with end ui is oriented toward ui. We first

orient the two negative loops such that one is a sink and the other one is a source. Then

assign the flow values a+ 1 and 1 to the sink and the source respetively.

In this way we extend g to be a 5-NZF of (H,σ), a contradiction. This completes the

proof of the theorem.
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5 The differences among modulo orientations, integer-valued

and real-valued circular flows

Let k, d be two integers with k ≥ 2d > 0. It is known from [9, 13] that for an ordinary

graph, it has a real-valued k
d -flow if and only if it has an integer-valued k

d -flow. Lu et al.

[19] showed the following interesting result about circular flows of signed graphs.

Lemma 5.1 ([19]) Let k, d be two integers with k ≥ 2d > 0. If (G, σ) admits a real-valued
k
d -flow, then it admits a real-valued k

d -flow f such that |f(e)| ∈ {d, d+ 1
2 , d+ 2

2 , . . . , k− d−
1
2 , k − d}.

Lemma 5.1 implies the following relation between real-valued circular flows and integer-

valued circular flows.

Proposition 5.2 Let (G, σ) be a signed graph. Then (G, σ) has a real-valued k
d -flow if and

only if it has an integer-valued 2k
2d -flow.

Proof. If f is an integer-valued 2k
2d -flow, then d ≤ |12f(e)| ≤ k − d and thus 1

2f(e) is a

real-valued k
d -flow. This proves the sufficiency.

Now we show the necessity. Assume that (G, σ) has a real-valued k
d -flow. Then by

Lemma 5.1, (G, σ) has a real-valued k
d -flow (τ, f) such that |f(e)| ∈ {d, d+ 1

2 , d+ 2
2 , . . . , k−

d − 1
2 , k − d}. Thus |2f(e)| ∈ {2d, 2d + 1, . . . , 2k − 2d}. Therefore 2f is an integer-valued

2k
2d -flow.

In fact, there are many signed graphs which have a real-valued k
d -flow but no integer-

valued k
d -flow (see [14, 19, 24] and Proposition 5.3 below).

Remark 3. By Proposition 5.2, Conjecture 1.6 is equivalent to that every real-valued
k
d -flow admissible signed graph admits a dkde-NZF (which is the original form in [23]).

In the following, for each integer p ≥ 1, we will present a 2p-edge-connected signed graph

Gp which shows that the equivalence of (I) and (III) and the equivalence of (II) and (III)

both fail.

Let C4 = v1v2v3v4v1 be a circuit of length 4 and pC4 + v1v3 be the graph obtained

by replacing every edge in C4 with p parallel edges and then adding one edge v1v3 (the

multiplicity of v1v3 is one).

Let (Gp, σ) be the signed graph obtained from pC4 + v1v3 by adding (2p − 1) negative

loops at each of v2 and v4. An illustration for p = 1, 2 is shown in Figure 5.

Proposition 5.3 Let p ≥ 1 be a positive integer. Then

(1) (Gp, σ) admits a real-valued 2p+1
p -flow.
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Figure 5: Graphs with real-valued 2p+1
p -flow but no integer-valued 2p+1

p -flow for p = 1, 2.

(2) (Gp, σ) does not admit an integer-valued 2p+1
p -flow.

(3) (Gp, σ) does not admit a modulo (2p+ 1)-orientation.

(4) In particular, when p = 1, (G1, σ) admits an integer-valued 6
2 -flow but no integer-valued

3
1 -flow.

Proof. It is clear that Gp is 2p-edge-connected. By Theorem A, (3) and (2) are equivalent.

If (1) holds, then by Proposition 5.2 (G1, σ) has an integer-valued 6
2 -flow in (4). Hence (4)

follows from (1) and (2). Therefore we only need to show (1) and (3).

We first prove (1) by finding a real-valued 2p+1
p -flow. Let t = p if p is even, and t = p−1

otherwise.

We first define the orientation of Gp: all half edges incident with the end v1 are oriented

toward it and all half edges incident with the end v3 are oriented away from it; all negative

loops are oriented as sources.

Then the flow f is defined as follows:

(i) f(e) = p for each (parallel) edge e between v1 and v2 and between v3 and v4.

(ii) Among 2p − 1 negative loops incident with v2, 2p − 1 − t
2 loops have flow values

p+ 1
2 and the remaining t

2 loops have flow values −(p+ 1
2).

(iii) Among 2p − 1 negative loops incident with v4, 2p − 1 − t
2 loops have flow values

−(p+ 1
2) and the remaining t

2 loops have flow values p+ 1
2 .

(iv) If p is odd, f(v1v3) = p and f(e) = −(p + 1) if e ∈ [v1, v4] ∪ [v2, v3]. If p is even,

f(v1v3) = −(p + 1), f(e1) = f(e2) = p where e1 is an edge in [v2, v3] and e2 is an edge in

[v1, v4], and f(e) = −(p+ 1) for each e ∈ [v2, v3] ∪ [v1, v4] \ {e1, e2}.
One can easily check that (f, τ) is a real-valued 2p+1

p -flow. This proves (1).

Next we show (3). Suppose to the contrary that Gp has a modulo-(2p + 1)-orientation

τ . Since dGp(v1) = dGp(v3) = 2p + 1 and v1 and v2 are adjacent, we may assume that in

τ , all half edges incident with the end v1 are oriented out and all half edges incident with
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the end v3 are oriented in. Therefore exactly half of negative loops incident with v2 must

be oriented in and the other half must be oriented out. This is impossible since there are

(2p− 1) negative loops incident with v2. This proves (3).

We would like to point out that such signed graphs (Gp, σ) can be modified to be (2p+1)-

edge-connected as well. However, we are not aware of any such examples with higher edge

connectivity.

Note that Theorems C does not include the case when p = 2. We propose the following

conjecture.

Conjecture 5.4 Every modulo-5-orientable signed graph is modulo-3-orientable.

Clearly, Conjecture 5.4 implies that every bridgeless modulo-5-orientable signed graph

has a 3-NZF. By Corollary 4.3-(ii), every bridgeless modulo-5-orientable signed graph has

a 4-NZF with flow values in {±2,±3}. Theorem D shows that every modulo-5-orientable

signed graph admits a 5-NZF with flow values in {±1,±2,±3,±4}, and perhaps this could

be strengthened to a special 5-NZF to prove Conjecture 5.4 provided that the values {±3}
are forbidden. Also by Lemma 4.9 in [5] and Theorem 3.1, every odd-5-edge-connected

modulo-5-orientable signed graph is modulo-3-orientable and thus admits a 3-NZF. Those

observations provide some evidence to support Conjecture 5.4.

For ordinary graphs, Propositions 1.3 and 1.5 imply the following monotonicity of mod-

ulo orientations.

Proposition 5.5 ([9, 13]) Let G be an ordinary graph. If G has a modulo (2p + 1)-

orientation for some p ≥ 1, then it has a modulo (2p′ + 1)-orientation for each integer

p′ with 1 ≤ p′ ≤ p.

It is unknown whether Proposition 5.5 remains true for signed graphs, and we can show

that it is true whenever p− p′ is even for bridgeless signed graphs.

Proposition 5.6 Let p and p′ be two positive integers with p > p′ and p − p′ even. If

G is bridgeless and (G, σ) has a modulo (2p + 1)-orientation, then (G, σ) has a modulo

(2p′ + 1)-orientation.

Proof. It is sufficient to show the case when p′ = p − 2 and (G, σ) is (2p + 1)-regular by

Proposition 3.3. Let τ be a modulo (2p+ 1)-orientation of (G, σ). Since p′ = p− 2 ≥ 1, we

have p ≥ 3. Thus 2p − 1 ≥ 2p+1
3 . Hence by Theorem 3.4, G has a (2p − 1)-factor, whose

complement is a 2-factor, denoted by M . One may obtain a modulo-(2(p−2)+1)-orientation

by reversing the directions of all edges in M .

By Theorem A, an equivalent form of Proposition 5.6 says that for positive integers p, p′

with p > p′ and p−p′ even, if G is bridgeless and (G, σ) admits an integer-valued 2p+1
p -flow,
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then (G, σ) admits an integer-valued 2p′+1
p′ -flow as well. However, Proposition 5.6 does not

completely solve the monotonicity of modulo orientations and circular flows. We conclude

the paper with the following problem.

Problem 5.7 Let p ≥ 2 be an integer. Is it true that for any integer p′ with 1 ≤ p′ < p, if

(G, σ) is modulo-(2p+ 1)-orientable, then it is also modulo-(2p′ + 1)-orientable?

Conjecture 5.4 suggests a positive answer to Problem 5.7 for p = 2, but we are not sure

in general.
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