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Abstract

Let w be a permutation of {1, 2, . . . , n}, and let D(w) be the Rothe diagram
of w. The Schubert polynomial Sw(x) can be realized as the dual character of the
flagged Weyl module associated to D(w). This implies a coefficient-wise inequality

Minw(x) ≤ Sw(x) ≤ Maxw(x),

where both Minw(x) and Maxw(x) are polynomials determined by D(w). Fink,
Mészáros and St. Dizier found that Sw(x) equals the lower bound Minw(x) if and
only if w avoids twelve permutation patterns. In this paper, we show that Sw(x)
reaches the upper bound Maxw(x) if and only if w avoids two permutation patterns
1432 and 1423. Similarly, for any given composition α ∈ Zn≥0, one can define a
lower bound Minα(x) and an upper bound Maxα(x) for the key polynomial κα(x).
Hodges and Yong established that κα(x) equals Minα(x) if and only if α avoids five
composition patterns. We show that κα(x) equals Maxα(x) if and only if α avoids a
single composition pattern (0, 2). As an application, we obtain that when α avoids
(0, 2), the key polynomial κα(x) is Lorentzian, partially verifying a conjecture of
Huh, Matherne, Mészáros and St. Dizier.
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1 Introduction

The Schubert polynomials Sw(x) = Sw(x1, . . . , xn) indexed by permutations w of [n] =
{1, 2, . . . , n} were introduced by Lascoux and Schützenberger [22], representing coho-
mology classes of Schubert cycles in flag varieties. For combinatorial constructions of
Schubert polynomials, see for example [3, 4, 16,20,26].

Kraśkiewicz and Pragacz [17,18] proved that Sw(x) equals the dual character of the
flagged Weyl module associated to the Rothe diagram D(w) of w. Given a permutation
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w = w1w2 · · ·wn of [n], the Rothe diagram D(w) = (D(w)1, D(w)2, . . . , D(w)n) of w is
defined by

D(w)j = {i : wi > j, i < w−1j }, where 1 ≤ j ≤ n.

In general, a diagram means an ordered list D = (D1, D2, . . . , Dn) of n subsets of [n]. A
diagram D can be viewed as a collection of boxes of an n×n grid, this is, Dj consists of
the boxes (i, j) in row i and column j where i ∈ Dj. Here the row indices increase from
top to bottom, and the column indices increase from left to right. For example, Figure
1.1(a) represents the diagram ({1}, {4}, {1, 2, 4}, {2}). When viewed as a subset of an
n× n grid, the Rothe diagram D(w) can be obtained by removing the boxes that are to
the right of (i, wi) or below (i, wi). Figure 1.1(b) is the Rothe diagram of 1432.

•
•

•
•

(a) (b)

Figure 1.1: (a) is a diagram, (b) is the Rothe diagram of w = 1432.

For two diagrams C = (C1, . . . , Cn) and D = (D1, . . . , Dn), write C ≤ D if Cj ≤ Dj

for every 1 ≤ j ≤ n, where Cj ≤ Dj means that

(1) |Cj| = |Dj|;

(2) for 1 ≤ k ≤ |Cj|, the k-th least element of Cj is less than or equal to the k-th least
element of Dj.

It is worth mentioning that the set {Cj : Cj ≤ Dj} forms the basis of the Schubert
matroid corresponding to Dj, see for example [1, 5, 9].

Write xD for the monomial generated by a diagram D:

xD =
n∏
j=1

∏
i∈Dj

xi.

Recall that D(w) is the Rothe diagram of a permutation w. Denote

Minw(x) =
∑

xβ∈{xC : C≤D(w)}

xβ and Maxw(x) =
∑

C≤D(w)

xC .

Note that the coefficient of each monomial appearing in Minw(x) equals one.

Given a diagram D, one can construct the flagged Weyl module MD of the group
B of invertible upper-triangular n × n matrices over C [10, 11, 17, 18, 24], see Section 2
for detailed descriptions. Kraśkiewicz and Pragacz [17, 18] showed that Sw(x) equals
the dual character of MD(w). As a consequence, one has the following coefficient-wise
inequality:

Minw(x) ≤ Sw(x) ≤ Maxw(x), (1.1)
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where, for two polynomials f(x) =
∑

β aβ x
β and g(x) =

∑
β bβ x

β in Z[x1, . . . , xn],
f(x) ≤ g(x) means that aβ ≤ bβ for any β. The above inequality (1.1) will also be
explained in Section 2.

Fink, Mészáros and St. Dizier [11, Theorem 1.1] proved that Sw(x) attains the lower
bound Minw(x) if and only if w avoids twelve permutation patterns: 12543, 13254,
13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, 315642. For a
permutation w of [n] and a permutation π of [m] with n ≥ m, we say that w avoids the
pattern π if there do not exist subsequences in w of length m that are order isomorphic
to π. A Schubert polynomial that reaches the lower bound is called a zero-one Schubert
polynomial in [11], which can also be generated exactly by the lattice points in its
associated Newton polytope [10].

Our first result provides a characterization of when Sw(x) reaches the upper bound.

Theorem 1.1. The Schubert polynomial Sw(x) equals Maxw(x) if and only if w avoids
the patterns 1432 and 1423.

Huh, Matherne, Mészáros and St. Dizier [14, Conjecture 15] conjectured that for any
permutation w, the normalized Schubert polynomial N(Sw(x)) is Lorentzian, where N
is a linear operator defined by

N(xµ) =
xµ

µ!
=
xµ11 · · ·xµnn
µ1! · · ·µn!

, for µ = (µ1, . . . , µn) ∈ Zn≥0.

We refer the reader to [6] or [14, Definition 5] for several equivalent definitions of
Lorentzian polynomials. It should be pointed out that, as an important consequence
of the Lorentzian property, the coefficients of a Lorentzian polynomial are log-concave.
Using Theorem 1.1 combined with results in [6, 10], Huh, Matherne, Mészáros and
St. Dizier [14, Proposition 17] confirmed the above conjecture for permutations avoiding
1432 and 1423. In fact, [14, Proposition 17] proved that when w avoids 1432 and 1423,
the Schubert polynomial Sw(x) is Lorentzian. This is stronger because the Lorentzian
property of a polynomial f(x) implies that of N(f(x)) [6, Corollary 3.7]. As noted
below [14, Proposition 17], the Schubert polynomials S1432(x) and S1423(x) are not
Lorentzian.

We also remark that Gire [12] showed that the number of permutations of [n] avoiding
2341 and 3241 is the large Schröder number rn−1 (see also Kremer [19]), which can be
defined via the following generating function

∑
r≥0

rnx
n =

1− x−
√

1− 6x+ x2

2x
.

The first few values of rn are 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, . . .. Reversing the order
of permutations leads to a bijection between permutations of [n] avoiding 1432 and 1423
and permutations of [n] avoiding 2341 and 3241. Thus the number of permutations of
[n] avoiding 1432 and 1423 is equal to rn−1.

Using analogous arguments, we can characterize when key polynomials reach their
upper bounds. Key polynomials κα(x) associated to compositions α ∈ Zn≥0 (also called
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Demazure characters) are characters of the Demazure modules for the general linear
groups [7, 8, 10]. Their combinatorial properties were initially investigated by Lascoux
and Schützenberger [21]. It is known that every Schubert polynomial is a positive sum
of key polynomials [23, 25]. It is also worth mentioning that κα(x) can be realized as a
specialization of the nonsymmetric Macdonald polynomial Eα(x; q, t) at q = t = 0 [2,15].

The key polynomial κα(x) is equal to the dual character of the flagged Weyl module
MD(α) associated to the skyline diagram D(α) of α [7, 8, 10]. Recall that the skyline
diagram D(α) consists of the first αi boxes in row i. For example, Figure 1.2 depicts the
skyline diagram of (1, 3, 0, 2).

Figure 1.2: The skyline diagram of (1, 3, 0, 2).

Write

Minα(x) =
∑

xβ∈{xC : C≤D(α)}

xβ and Maxα(x) =
∑

C≤D(α)

xC .

Similar to Schubert polynomials, one has the following inequality:

Minα(x) ≤ κα(x) ≤ Maxα(x). (1.2)

Recently, Hodges and Yong [13] established a pattern avoidance characterization of when
κα(x) equals the lower bound Minα(x), which they call multiplicity-free key polynomials.
For two compositions α = (α1, . . . , αn) and β = (β1, . . . , βm) with n ≥ m, we say that α
contains the composition pattern β if there exists i1 < i2 < · · · < im such that

(1) αis ≤ αit if and only if βs ≤ βt;

(2) |αis − αit | ≥ |βs − βt|.

We say that α avoids β if α does not contain the pattern β. Using the quasi-key model
along with the Kohnert diagram model of key polynomials, Hodges and Yong [13] showed
that κα(x) equals Minα(x) if and only if α avoids the following five composition patterns:

(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1), (1, 0, 3, 2), (1, 0, 2, 2).

Our second result gives a characterization of when κα(x) reaches the upper bound.

Theorem 1.2. The key polynomial κα(x) equals Maxα(x) if and only if α avoids the
composition pattern (0, 2), that is, there do not exist i < j such that αj − αi ≥ 2.

4



Huh, Matherne, Mészáros and St. Dizier [14, Conjecture 23] conjectured that for any
composition α ∈ Zn≥0, the normalized key polynomial N(κα(x)) is Lorentzian. Notice
that the support of κα(x) is the set of integral points in the Minkowski sum of matroid
polytopes associated to the skyline diagram D(α) [10, Theorem 11]. This, along with
Theorem 1.2, enables us to invoke the same arguments as in the proof of [14, Proposition
17] to verify the above conjecture for compositions avoiding (0, 2).

Corollary 1.3. If α avoids the composition pattern (0, 2), then the key polynomial κα(x)
is Lorentzian, and hence N(κα(x)) is Lorentzian.

Note that the key polynomial κ(0,2)(x) is not Lorentzian. This is because κ(0,2)(x)
equals the Schubert polynomial S1423(x), and the latter is not Lorentzian, as mentioned
after Theorem 1.1.

This paper is structured as follows. In Section 2, we give an overview of flagged Weyl
modules as well as the fact that Schubert and key polynomials are the dual characters of
flagged Weyl modules respectively associated to Rothe diagrams and skyline diagrams.
We complete the proofs of Theorems 1.1 and 1.2 respectively in Sections 3 and 4.

2 Dual characters of flagged Weyl modules

Let us start with an overview of the flagged Weyl module MD associated to a diagram
D. The moduleMD can be constructed by means of determinants [24]. Here we use the
notation in [10,11]. Let GL(n,C) be the group of n× n invertible matrices over C, and
let B be the subgroup consisting of the n × n upper-triangular matrices. Let Y be the
n× n upper-triangular matrix whose entries are indeterminates yij where i ≤ j. Denote
by C[Y ] the ring of polynomials in the variables {yij}i≤j. The group B acts on C[Y ] (on
the right) as follows. Given a matrix g ∈ B and a polynomial f(Y ) ∈ C[Y ],

f(Y ) · g = f(g−1Y ).

To a diagram D = (D1, . . . , Dn), the associated flagged Weyl moduleMD is a B-module
defined by

MD = SpanC

{
n∏
j=1

det
(
Y
Cj
Dj

)
: C ≤ D

}
, (2.1)

where, for two subsets R and S of [n], Y R
S denotes the submatrix of Y with row indices

in R and column indices in S. It should be noted that
∏n

j=1 det
(
Y
Cj
Dj

)
6= 0 if and only

if C ≤ D.

Let X = diag(x1, . . . , xn) be a diagonal matrix, which can be viewed as a linear
transformation from MD to MD via the B-action. The character of MD is defined as
the trace of X:

char(MD)(x) = tr(X : MD →MD).

The dual character of MD is the character of the dual module M∗
D, which is given by

char∗(MD)(x) = tr(X : M∗
D →M∗

D)
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= char(MD)(x−11 , . . . , x−1n ).

The Schubert and key polynomials are equal to the dual characters of flag Weyl
modules respectively corresponding to the Rothe and skyline diagrams. Recall that
Schubert polynomials are defined based on the divided difference operator ∂i, which
sends a polynomial f(x) ∈ Z[x1, . . . , xn] to

∂if(x) =
f(x)− sif(x)

xi − xi+1

,

where sif(x) is obtained from f(x) by exchanging xi and xi+1. For the longest permu-
tation w0 = n (n − 1) · · · 1, set Sw0(x) = xn−11 xn−22 · · ·xn−1. For w 6= w0, there exists a
position 1 ≤ i < n such that wi < wi+1. Let wsi be the permutation obtained from w
by interchanging wi and wi+1. Set Sw(x) = ∂iSwsi(x). The above definition is indepen-
dent of the choice of i since the operators ∂i satisfy the braid relations: ∂i∂j = ∂j∂i for
|i− j| > 1, and ∂i∂i+1∂i = ∂i+1∂i∂i+1.

As mentioned above, Sw(x) coincides with the dual character of MD(w) [17, 18]:

Sw(x) = char∗(MD(w))(x). (2.2)

For C ≤ D, the effect of the action of X on the polynomial
∏n

j=1 det
(
Y
Cj
Dj

)
is

n∏
j=1

det
(
Y
Cj
Dj

)
·X =

n∏
j=1

∏
i∈Cj

x−1i ·
n∏
j=1

det
(
Y
Cj
Dj

)
.

Thus the polynomial
∏n

j=1 det
(
Y
Cj
Dj

)
is an eigenvector of X with eigenvalue

n∏
j=1

∏
i∈Cj

x−1i .

Therefore, the set of monomials appearing in Sw(x) is exactly{
xC : C ≤ D(w)

}
.

Moreover, the coefficient of a monomial xα appearing in Sw(x) is equal to the dimension
of the corresponding eigenspace

SpanC

{
n∏
j=1

det
(
Y
Cj
Dj

)
: C ≤ D(w), xC = xα

}
. (2.3)

By the above observations, we obtain the lower and the upper bounds for Schubert
polynomials as given in (1.1).

Obviously, Sw(x) equals the lower bound Minw(x) if and only if for each monomial
xα appearing in Sw(x), the eigenspace in (2.3) has dimension one. While, Sw(x) equals
the upper bound Maxw(x) if and only if for each monomial xα appearing in Sw(x), the
dimension of the eigenspace in (2.3) is

#{C : C ≤ D(w), xC = xα},
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that is, the collection of polynomials

n∏
j=1

det
(
Y
Cj
Dj

)
, where C ≤ D(w),

are linearly independent.

Let us use an example to illustrate (2.2). Consider the permutation w = 1432. We
have D(1432) = (∅, {2, 3}, {2}, ∅). There are six diagrams C ≤ D(1432) as listed below:

C(1) = (∅, {1, 2}, {1}, ∅), C(2) = (∅, {1, 3}, {1}, ∅), C(3) = (∅, {2, 3}, {1}, ∅),

C(4) = (∅, {1, 2}, {2}, ∅), C(5) = (∅, {1, 3}, {2}, ∅), C(6) = (∅, {2, 3}, {2}, ∅). (2.4)

Notice that the diagrams C(3) and C(5) give rise to the same monomial y12y22y33. So the
module MD(w) is spanned by the following set of polynomials

{(y12y23 − y13y23)y12, (y12y23 − y13y23)y22, y212y33, y12y22y33, y222y33}.

It is easily checked that the above five polynomials are linearly independent. So,

char∗(MD(1432))(x) = xC
(1)

+ xC
(2)

+ xC
(3)

+ xC
(4)

+ xC
(6)

= x21x2 + x21x3 + x1x2x3 + x1x
2
2 + x22x3,

which agrees with the Schubert polynomial S1432(x).

We finally turn to key polynomials. Key polynomials are defined using the Demazure
operator πi = ∂ixi. If α is a partition, set κα(x) = xα. Otherwise, choose i such that
αi < αi+1. Let α′ be the composition obtained from α by interchanging αi and αi+1. Set
κα(x) = πiκα′(x). The key polynomial κα(x) equals the dual character of the flag Weyl
module associated to the skyline diagram D(α):

κα(x) = char∗(MD(α))(x).

In view of the arguments for Schubert polynomials, we obtain the lower and the upper
bounds for key polynomials given in (1.2).

3 Proof of Theorem 1.1

In this section, we shall prove the necessity and the sufficiency of Theorem 1.1 in Theorem
3.1 and Theorem 3.2, respectively.

Theorem 3.1. If Sw(x) = Maxw(x), then w avoids the patterns 1432 and 1423.

To prove Theorem 3.1, we shall show that when w has a pattern 1432 or a pattern
1423, one can construct a collection of diagrams, which are less than D(w), such that the
corresponding polynomials in (2.1) are linearly dependent. For example, let w = 13542.
The subsequence 1542 of w forms a 1432 pattern. The Rothe diagram of D(w) is given
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•

•
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Figure 3.3: The Rothe diagram of w = 13542.

in Figure 3.3. We see that D(w) = (∅, {2, 3, 4}, ∅, {3}, ∅). Choose three diagrams less
than D(w) as follows:

C(1) = (∅, {2, 3, 4}, ∅, {1}, ∅), C(2) = (∅, {1, 3, 4}, ∅, {2}, ∅), C(3) = (∅, {1, 2, 4}, ∅, {3}, ∅).

The reason why we choose the above three diagrams will be clear in the proof of Theorem
3.1. The polynomials in (2.1) generated by C(1), C(2) and C(3) are listed below:

det


y22 y23 y24

0 y33 y34

0 0 y44

 · y13 = y44 · y13y22y33,

det


y12 y13 y14

0 y33 y34

0 0 y44

 · y23 = y44 · y12y23y33,

det


y12 y13 y14

y22 y23 y24

0 0 y44

 · y33 = y44 · (y12y23y33 − y13y22y33).

which are obviously linearly dependent. Hence, when w = 13542, Sw(x) is not equal to
the upper bound Maxw(x).

We now present a proof of Theorem 3.1.

Proof of Theorem 3.1. We first show that if Sw(x) = Maxw(x), then w must avoid 1432.
The proof is by contradiction. Suppose otherwise that w contains a subsequence that is
order isomorphic to 1432. Let i0 be the largest i such that wiwkwpwq is order isomorphic
to 1432. Once i0 is determined, let k0 be the smallest k such that wi0wk0wpwq is order
isomorphic to 1432. Now, let wi0wk0wp0wq0 be any fixed subsequence order isomorphic
to 1432. By the choices of i0 and k0, we see that wq0 < wi < wp0 for any i0 < i < k0.
Denote j0 = wq0 and l0 = wp0 . We have the following two observations.

(1) The box (i0, j0) /∈ D(w). For i0 < i ≤ k0, the box (i, j0) ∈ D(w).

(2) The box (k0, l0) ∈ D(w). For i0 ≤ i < k0, the box (i, l0) /∈ D(w).

So the configuration of the boxes of D(w) in column j0 and column l0 that lie between
row i0 and row k0 is as illustrated in Figure 3.4.
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j0 l0

Figure 3.4: Local configuration of the boxes in column j0 and column l0.

Assume that D(w) = (D1, . . . , Dn). For ease of description, we denote the polynomial
generated by a diagram C ≤ D(w) by

fC(Y ) =
n∏
j=1

det
(
Y
Cj
Dj

)
. (3.1)

Let t = k0 − i0 + 1. We shall construct t distinct diagrams C(1), . . . , C(t) such that the
corresponding polynomials fC(1)(Y ), . . . , fC(t)(Y ) are linearly dependent. For 1 ≤ m ≤ t,

assume that C(m) = (C
(m)
1 , . . . , C

(m)
n ). The diagram C(m) is defined as follows.

(1) For j /∈ {j0, l0}, let C
(m)
j = Dj.

(2) For j = l0, let

C
(m)
l0

= (Dl0 \ {k0}) ∪ {i0 +m− 1}.

(3) For j = j0, let

C
(m)
j0

= (Dj0 ∪ {i0}) \ {i0 +m− 1}.

By the above constructions, it is easily seen that C
(m)
l0
≤ Dl0 and C

(m)
j0
≤ Dj0 , and hence

C(m) ≤ D(w) for each 1 ≤ m ≤ t.

By definition, we have

fC(m)(x) = det

(
Y
C

(m)
j0

Dj0

)
· det

(
Y
C

(m)
l0

Dl0

)
·
∏

j /∈{j0,l0}

det

(
Y
C

(m)
j

Dj

)
. (3.2)

Now we evaluate the three factors appearing in (3.2). For j /∈ {j0, l0}, since C
(m)
j = Dj,

it follows that det

(
Y
C

(m)
j

Dj

)
is an upper-triangular matrix, and thus

det

(
Y
C

(m)
j

Dj

)
=

∏
j /∈{j0,l0}

∏
i∈Dj

yii. (3.3)
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To calculate det

(
Y
C

(m)
j0

Dj0

)
, let

R(m) = [i0, k0] \ {i0 +m− 1}

and
S = Dj0 \ [i0 + 1, k0],

where, for two integers a < b, we use [a, b] to denote the interval {a, a+1, . . . , b}. Clearly,

C
(m)
j0

is the disjoint union of R(m) and S, and Dj0 is the disjoint union of [i0 + 1, k0] and

S. Noticing that the submatrix of Y
C

(m)
j0

Dj0
obtained by restricting both the row and the

column indices to S is upper-triangular, we have

det

(
Y
C

(m)
j0

Dj0

)
= det

(
Y R(m)

[i0+1,k0]

)
·
∏
i∈S

yii. (3.4)

Moreover, by the choice of C
(m)
l0

, it is easy to see that the matrix Y
C

(m)
l0

Dl0
is an upper-

triangular matrix. So we obtain that

det

(
Y
C

(m)
l0

Dl0

)
= yamk0 ·

∏
i∈Dl0\{k0}

yii, (3.5)

where am = i0 +m− 1.

In view of (3.3), (3.4) and (3.5), we find that the polynomials fC(1)(Y ), . . . , fC(t)(Y )
have the following common factor∏

j /∈{j0,l0}

∏
i∈Dj

yii ·
∏
i∈S

yii ·
∏

i∈Dl0\{k0}

yii.

Therefore, to prove that the polynomials fC(1)(Y ), . . . , fC(t)(Y ) are linearly dependent,
it is enough to verify that for 1 ≤ m ≤ t, the polynomials

gm(Y ) = yamk0 · det
(
Y R(m)

[i0+1,k0]

)
are linearly dependent. For simplicity, let b = k0. Without loss of generality, assume
that i0 = 1. Then we have am = m and R(m) = [b] \ {m}, and hence

gm(Y ) = ymb · det
(
Y

[b]\{m}
[2,b]

)
, where 1 ≤ m ≤ b.

We claim that

gb(Y ) = gb−1(Y )− gb−2(Y ) + · · ·+ (−1)bg1(Y ). (3.6)

To prove the claim, let us first consider

gb(Y ) = ybb · det
(
Y

[b−1]
[2,b]

)
.
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Notice that in the last row of the matrix Y
[b−1]
[2,b] , the only nonzero entries are y(b−1)(b−1)

and y(b−1)b. Using the Laplace expansion along the last row, we have

gb(Y ) = ybb

(
−y(b−1)(b−1) · det

(
Y

[b−2]
[2,b]\{b−1}

)
+ y(b−1)b · det

(
Y

[b−2]
[2,b−1]

))
. (3.7)

Then we consider
gb−1(Y ) = y(b−1)b · det

(
Y

[b]\{b−1}
[2,b]

)
.

Since the last row of Y
[b]\{b−1}
[2,b] has only one nonzero element ybb, applying the Laplace

expansion along the last row gives

gb−1(Y ) = y(b−1)b · ybb · det
(
Y

[b−2]
[2,b−1]

)
. (3.8)

Combining (3.7) and (3.8), we are led to

gb(Y ) = gb−1(Y )− ybb · y(b−1)(b−1) · det
(
Y

[b−2]
[2,b]\{b−1}

)
. (3.9)

Let us proceed to consider the summand

ybb · y(b−1)(b−1) · det
(
Y

[b−2]
[2,b]\{b−1}

)
appearing in (3.9). Again, applying the Laplace expansion to Y

[b−2]
[2,b]\{b−1} along the last

row yields

ybb · y(b−1)(b−1) · det
(
Y

[b−2]
[2,b]\{b−1}

)
= ybb · y(b−1)(b−1)

(
−y(b−2)(b−2) · det

(
Y

[b−3]
[2,b]\{b−1,b−2}

)
+ y(b−2)b det

(
Y

[b−3]
[2,b−2]

))
. (3.10)

On the other hand,

gb−2(Y ) = y(b−2)b · det
(
Y

[b]\{b−2}
[2,b]

)
= y(b−2)b · ybb · det

(
Y

[b−1]\{b−2}
[2,b−1]

)
= y(b−2)b · ybb · y(b−1)(b−1) · det

(
Y

[b−3]
[2,b−2]

)
. (3.11)

In view of (3.9), (3.10) and (3.11), it follows that

gb(Y ) = gb−1(Y )− gb−2(Y ) + ybb · y(b−1)(b−1) · y(b−2)(b−2) · det
(
Y

[b−3]
[2,b]\{b−1,b−2}

)
.

Continuing the same procedure, we can arrive at the assertion in (3.6) eventually.
This implies that the polynomials gm(Y ) are linearly dependent, and so the polynomials
fC(1)(Y ), . . . , fC(t)(Y ) are linearly dependent. Hence we conclude that Sw(x) 6= Maxw(x).

The same arguments can be employed to show that if w contains a subsequence
order-isomorphic to 1423, then Sw(x) 6= Maxw(x). In fact, the proof for the case 1432
does not use the relative order of wp0 and wq0 in the subsequence wi0wk0wp0wq0 . This
completes the proof.

We next prove the sufficiency of Theorem 1.1.
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Theorem 3.2. If w avoids the patterns 1432 and 1423, then Sw(x) = Maxw(x).

Proof. Suppose that {C : C ≤ D(w)} = {C(1), . . . , C(t)}. For a diagram C, the polyno-
mial fC(Y ) is as defined in (3.1). To prove Sw(x) = Maxw(x), it is equivalent to show
that the polynomials fC(1)(Y ), . . . , fC(t)(Y ) are linearly independent.

Assume that D(w) = (D1, . . . , Dn). For 1 ≤ j ≤ n, let

D′j = {i ∈ Dj : there exists some 1 ≤ k < i such that k 6∈ Dj}.

Equivalently, if we let aj be the largest integer such that [aj] ⊆ Dj, then

D′j = Dj \ [aj].

It is easy to see that for any diagram C = (C1, . . . , Cn) ≤ D(w), we must have [aj] ⊆ Cj.
This allows us to obtain the following equality

det
(
Y
Cj
Dj

)
=

aj∏
i=1

yii · det
(
Y
Cj\[aj ]
Dj\[aj ]

)
=

aj∏
i=1

yii · det
(
Y
Cj\[aj ]
D′
j

)
,

and so we have

fC(Y ) =
n∏
j=1

aj∏
i=1

yii ·
n∏
j=1

det
(
Y
Cj\[aj ]
D′
j

)
.

Hence, to show that the polynomials fC(1)(Y ), . . . , fC(t)(Y ) are linearly independent, it
suffices to show that the following polynomials are linearly independent:

hm(Y ) =
n∏
j=1

det

(
Y
C

(m)
j \[aj ]

D′
j

)
, where 1 ≤ m ≤ t.

To this end, we claim that for 1 ≤ j1 < j2 ≤ n, D′j1 ∩ D
′
j2

= ∅. Suppose otherwise
that D′j1 ∩ D

′
j2
6= ∅. Choose an element i0 ∈ Dj1 ∩ Dj2 . By the definition of D′j, there

exists 1 ≤ k < i0 that does not belong to Dj1 . This means that the box (k, j1) /∈ D(w),
implying that wk < j1. Now we consider the subsequence wkwi0wpwq, where {wp, wq} =
{j1, j2}. Since the box (i0, j2) belongs to D(w), it follows that wi0 > j2. So we have
wk < j1 < j2 < wi0 . This implies that the subsequence wkwi0wpwq is order isomorphic
to 1432 or 1423, leading to a contradiction. This verifies the claim.

By the above claim, we see that for 1 ≤ t1 6= t2 ≤ t, ht1(Y ) and ht2(Y ) do not
contain any monomial in common, which obviously implies that the polynomials hm(Y )
are linearly independent. This completes the proof.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 can be carried out in the same vein as Theorem 1.1.

Proof of Theorem 1.2. We first prove the necessity, that is, if κα(x) = Maxα(x), then
α avoids the pattern (0, 2). Suppose otherwise that α contains a (0, 2) pattern. Write
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α = (α1, . . . , αn). Among the (0, 2) patterns of α, choose the largest index i0 such that
(αi0 , αk) is a (0, 2) pattern for some k > i0. Once i0 is fixed, locate the smallest index k0
such that (αi0 , αk0) is a (0, 2) pattern. Since (αi0 , αk0) is a (0, 2) pattern, by definition
we have

αk0 − αi0 ≥ 2. (4.1)

By the choices of i0 and k0, it is easy to check that for i0 < i < k0

αi − αi0 = 1. (4.2)

By (4.1) and (4.2), the configuration of the boxes of D(α) lying between row i0 and
row k0 is depicted in Figure 4.5. Let j0 = αi0 +1 and l0 = αk0 . Clearly, the configuration

...

k0

i0

j0 l0

Figure 4.5: An illustration of the boxes of D(α) in row i0 and k0.

of the boxes of D(α) in column j0 and column l0 that lie between row i0 and row k0 is
completely the same as that in Figure 3.4. Therefore, using the same arguments as in
the proof of Theorem 3.1, we obtain that the assumption that α contains a (0, 2) pattern
is false. This verifies the necessity.

It remains to prove the sufficiency. The analysis is similar to that in the proof of
Theorem 3.2, and is sketched below. Assume that α avoids the composition pattern
(0, 2). Write D(α) = (D1, . . . , Dn). For 1 ≤ j ≤ n, let aj be the largest integer such that
[aj] ⊆ Dj. Define

D′j = Dj \ [aj].

For 1 ≤ j1 < j2 ≤ n, we claim that D′j1 ∩ D
′
j2

= ∅. Suppose to the contrary that
D′j1 ∩ D

′
j2
6= ∅. Assume that t ∈ D′j1 ∩ D

′
j2

. Denote s = aj1 + 1. By the definition of
aj, we see that s is smaller than any integer appearing in D′j1 . Since t ∈ D′j1 , we have
s < t. Consider the parts αs and αt. Since D(α) is a skyline diagram, it is clear that
Dj1 ⊇ Dj2 , which, along with the fact that s 6∈ Dj1 , implies s 6∈ Dj2 . Combining the
assumption that t ∈ Dj1 ∩ Dj2 , we see that αs ≤ αt − 2, and so (αs, αt) forms a (0, 2)
patten, leading to a contradiction. This verifies the claim.

Based on the above claim, we can now use the same arguments as in the proof of
Theorem 3.2 to conclude the sufficiency. This finishes the proof.

5 Concluding remarks

In the final section, we investigate the dual character for a more general diagram, called
NW diagrams, which include Rothe diagrams and skyline diagrams as special cases.
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As pointed out by one referee, combining the discussions in Section 3, we are led to a
characterization of when the dual character of an NW diagram reaches the upper bound.

For a diagram D, let

MinD(x) =
∑

xβ∈{xC : C≤D}

xβ and MaxD(x) =
∑
C≤D

xC .

By the explanations in Section 2, the dual character char∗(MD)(x) satisfies that

MinD(x) ≤ char∗(MD)(x) ≤ MaxD(x).

A diagram D is called a North-West diagram (or simply, a NW diagram) if D has
two boxes (i, j) and (k, l) with i < k and j > l, then the box (i, l) belongs to D. It can
be easily checked that both Rothe diagrams and skyline diagrams are NW diagrams.

Theorem 5.1. Let D = (D1, . . . , Dn) be a NW diagram. Then we have the following
equivalent statements:

(i) the dual character char∗(MD)(x) equals MaxD(x);

(ii) for any 1 ≤ j1 < j2 ≤ n, the boxes in column Cj1 and column Cj2 avoid the local
configuration of the form illustrated in Figure 3.4. This means there do not exit
row indices 1 ≤ i1 < i2 ≤ n such that (1) (i1, j1) 6∈ D, and the box (i, j1) ∈ D for
each i1 < i ≤ i2; (2) (i2, j2) ∈ D, and the box (i, j2) /∈ D for each i1 ≤ i < i2.

Proof. By the proof of Theorem 3.1, we see that (i) implies (ii). We next prove the
reverse direction. For 1 ≤ j ≤ n, let aj be the largest integer such that [aj] ⊆ Dj, and
set

D′j = Dj \ [aj]. (5.1)

In view of the proof Theorem 3.2, it suffices to verify that for any 1 ≤ j1 < j2 ≤ n,
D′j1 ∩ D

′
j2

= ∅. Suppose otherwise that there exist 1 ≤ j1 < j2 ≤ n, D′j1 ∩ D
′
j2
6= ∅.

Assume that m = min(D′j1∩D
′
j2

). By the definition in (5.1), there exist positive numbers
less than m and not belonging to Dj1 . Choose that largest one, say m, among such
positive numbers. This means that m 6∈ Dj1 , while every m < i ≤ m belongs to D′j1 .

We claim that every m ≤ i < m does not belong to Dj2 . Suppose otherwise some
m ≤ i0 < m belongs to Dj2 . There are two cases.

Case 1. i0 = m. In this case, notice that both the boxes (m + 1, j1) and (m, j2)
belong to D. Since D is a NW diagram, it follows that the box (m, j1) belongs to D,
contrary to the fact that m 6∈ Dj1 .

Case 2. m < i0 < m. In this case, by the choice of m, we have i0 6∈ D′j2 . This implies
that [i0] ⊆ Dj2 . In particular, m ∈ [i0] belongs to Dj2 . The argument in Case 1 would
yield the contradiction that (m, j1) ∈ D.

By the above arguments, the boxes in column j1 and column j2 that lie between row
m and row m form a local configuration as in Figure 3.4, leading to a contradiction.
This completes the proof.
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