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Abstract

For a graph G = (V,E) and i, j ∈ V , denote by di, dj the degrees of
vertices i, j in G. Let f(di, dj) > 0 be a function symmetric in i and j. Define
a matrix Af (G), called the weighted adjacency matrix of G, with the ij-entry
Af (G)(i, j) = f(di, dj) if i ∼ j and Af (G)(i, j) = 0 otherwise. In this paper, we
find the extremal trees with the largest radius of Af when f(x, y) is increasing
and convex in variable x. We also find the extremal tree with the smallest
radius of Af when f(x, y) has a form P (x, y) or

√
P (x, y), where P (x, y) is

a symmetric polynomial with nonnegative coefficients and zero constant term.
This paper tries to unify the spectral study of weighted adjacency matrices of
graphs weighted by some topological indices.
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1 Introduction

Throughout the paper, we denote a simple graph by G = (V,E) with order
|V (G)| = n. The adjacency matrix of G is denoted by A(G). If e ∈ E is an edge with
two ends i and j, we say that e = ij ∈ E or simply i ∼ j. We use di to represent
the degree of a vertex i in G. N(i) is the set of neighbors of vertex i in G, and
N [i] = N(i) ∪ {i}.

In molecular graph theory, topological indices in chemistry are used to represen-
t structural properties of molecular graphs. The general form of these indices is

1Supported by NSFC No.11871034.
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∑
i∼j

f(di, dj), where f is a symmetric real function. Gutman [12] collected some impor-

tant and well-studied indices. We list them below, as well as some recently introduced
so-called “exponential” indices, see [3, 4, 5, 21, 23].

Table 1: Some chemical indices

f(x, y) name

x+ y First Zagreb index
xy Second Zagreb index

(x+ y)2 First hyper-Zagreb index
(xy)2 Second hyper-Zagreb index

x−3 + y−3 Modified first Zagreb index
|x− y| Albertson index

(x/y + y/x)/2 Extended index
(x− y)2 Sigma index
1/
√
xy Randić index√
xy Reciprocal Randić index

1/
√
x+ y Sum-connectivity index√
x+ y Reciprocal sum-connectivity index

2/(x+ y) Harmonic index√
(x+ y − 2)/(xy) ABC index

[xy/(x+ y − 2)]3 Augmented Zagreb index
x2 + y2 Forgotten index
x−2 + y−2 Inverse degree

2
√
xy/(x+ y) Geometric-arithmetic index

(x+ y)/2
√
xy Arithmetic-geometric index

xy/(x+ y) Inverse sum index
x+ y + xy First Gourava index
(x+ y)xy Second Gourava index

(x+ y + xy)2 First hyper-Gourava index
[(x+ y)xy]2 Second hyper-Gourava index

1/
√
x+ y + xy Sum-connectivity Gourava index√
(x+ y)xy Product-connectivity Gourava index√
x2 + y2 Somber index
ex+y Exponential first Zagreb index
exy Exponential second Zagreb index

e
1√
xy Exponential Randić index

e

√
x+y−2
xy Exponential ABC index

e2
√
xy

x+y Exponential Geometric-arithmetic index

Each index maps a molecular graph into a single number, obtained by summing up
the weights of all pairs of adjacent vertices in a molecular graph. If we use a matrix
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to represent the structure of a molecular graph with weights separately on its pairs of
adjacent vertices, it will completely keep the structural information of the graph, i.e.,
a matrix keeps much more structural information than an index. So, further study
on the algebraic properties of these structural matrices should be made in the future.
This idea was first proposed by one of the authors Li in [16]. Several special examples
were ever studied, such as the Zagreb matrix [13], Randić matrix, ABC matrix [2, 9],
Harmonic matrix [14] and AG matrix [10, 11, 24], which are essentially the adjacency
matrix weighted by a symmetric function f(di, dj) defined in the degrees of vertices i
and j. On the basis of these examples, the authors in [8] gave the following definition
of the weighted adjacency matrix of a graph weighted by its degrees as a generalization.

Definition 1.1. Let G = (V,E) be a graph. Denote by di the degree of a vertex i in
G. Let f(di, dj) be a function symmetric in i and j. The weighted adjacency matrix
Af (G) of G is defined as follows: the ij-entry of Af (G)

Af (G)(i, j) =

{
f(di, dj), i ∼ j,

0, otherwise.

Now, for any topological index we can define the corresponding weighted adjacency
matrix of a graph weighted by this index. Let λi(A) (i = 1, 2, · · · , n) be the eigen-
values of a matrix A. Remember that the spectral radius of A is ρ(A) = max

i
|λi(A)|.

We are interested in the extremal trees with the largest and smallest spectral radii
of Af (G) for a fixed index f(di, dj). In order to study the properties of these various
matrices, we need to classify the indices and try to find unified methods suitable for
as many indices as possible, as we have done in [17, 18, 19], where we managed to get
the asymptotic values of energy and four Laplacian-type energies of random graphs
in Gn,p, under the assumption that f((1+o(1))np, (1+o(1))np) = (1+o(1))f(np, np),
which covers almost all the topological indices proposed so far. The idea of unification
was also adopted by some mathematicians in the study of extremal values for chem-
ical indices of graphs, see [3, 4, 5, 6, 7], but on the whole, the spectral properties of
weighted adjacency matrices have been hardly studied except for very few examples,
and they have been treated one by one for different topological indices, without using
unified approaches. We will list the former results below as far as we know, including
the case of classical adjacency matrix. We use Pn and Sn to represent a path and star
on n vertices, and Sd,n−d to represent a double star on n vertices with the degrees of
two centers equal to d and n− d.

Theorem 1.2. (Lovas and Pelikan, see [22]) Let T be a tree of order n ≥ 3, and
A(T ) is the adjacency matrix of T . Then

ρ(A(Pn)) ≤ ρ(A(T )) ≤ ρ(A(Sn)).

The equalities hold if and only if T ∼= Pn or Sn, respectively.

Theorem 1.3. ([20]) Let f(x, y) be the weight function for Randić index. If G is a
non-empty graph, then ρ(Af (G)) = 1.
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Theorem 1.4. ([2]) Let f(x, y) be the weight function for ABC index. Then

ρ(Af (Pn)) ≤ ρ(A(T )) ≤ ρ(Af (Sn)).

The equalities hold if and only if T ∼= Pn or Sn, respectively.

The question is that can we give a unified approach to solve the spectral extremal
problem like we did in [17, 18, 19] for the asymptotic values of energies for random
graphs weighted by chemical indices. This time we are not that lucky for all kinds
of chemical indices, but fortunately we can get some substantial progress for some
classes of chemical indices. See the following.

Theorem 1.5. Assume that f(x, y) > 0 is a symmetric real function, increasing and
convex in variable x. Then the tree on n vertices with the largest spectral radius of
Af (T ) is Sn or a double star Sd,n−d for some d ∈ {2, . . . , n− 2}.
Theorem 1.6. Assume that f(x, y) has a form P (x, y) or

√
P (x, y), where P (x, y) is

a symmetric polynomial with nonnegative coefficients and zero constant term. Then
the tree on n (n ≥ 9) vertices with the smallest spectral radius of Af (T ) is uniquely
Pn.

In the next two sections, we shall present the proofs of the two theorems, separately.
We will need some important results in linear algebra from [1] as follows.

Lemma 1.7. Let A be an n× n real symmetric matrix. Then the largest eigenvalue
λ1(A) = max

x∈Rn,‖x‖=1
x>Ax.

Lemma 1.8. Let A, B be nonnegative matrices and A ≤ B. Then ρ(A) ≤ ρ(B).

Lemma 1.9. Let A ≥ 0 be an irreducible matrix. For t ∈ R, if there exists a nonzero
vector x ≥ 0 such that Ax ≥ tx (Ax ≤ tx), then ρ(A) ≥ t (ρ(A) ≤ t).

Lemma 1.10. Let A ≥ 0 be an irreducible matrix. ρ(A) equals the largest eigenvalue
with multiplicity 1, and the principal eigenvector x > 0. If u ≥ 0 satisfies Au ≥ ρ(A)u,
then u is an eigenvector of ρ(A).

Lemma 1.11. Let A ≥ 0 be an irreducible matrix. Then R ≤ ρ(A) ≤ Rmax, where R
is the average value of row sums of A and Rmax is the value of the largest row sum.
Either equality holds if and only if the row sums are equal.

Suppose that A is a symmetric real matrix whose rows and columns are indexed
by X = {1, . . . , n}. Let {X1, . . . , Xm} be a partition of X, and rewrite A according
to {X1, . . . , Xm} as follows:

A =

A1,1 . . . A1,m
...

...
Am,1 . . . Am,m


wherein Ai,j denotes the blocks of A formed by rows in Xi and the columns in Xj.
Let bi,j denote the average row sum of Ai,j. Then the matrix B = [bi,j] is called the
quotient matrix. If the row sum of each block Ai,j is constant, then the partition is
called an equitable partition.
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Lemma 1.12. Let A ≥ 0 be an irreducible matrix, B be the quotient matrix of an
equitable partition of A. Then ρ(A) = ρ(B).

2 Proof of Theorem 1.5

As well-known [15], Kelmans once used a simple local modification of a graph G to
describe the relationship between edge moving and spectral radius. He showed that
the spectral radius increases after the operation. Fortunately enough, it also behaves
well under our assumption that f(x, y) is increasing and convex in x (in y too, of
course). Now we give a description of it below:

The Kelmans operation: Given a graph G and two specified vertices u and v,
replace the edge uw by a new edge vw for all vertices w such that u ∼ w � v.

Lemma 2.1. Let T be a tree and T ′ be the tree after a Kelmans operation on T . If
T � T ′, then ρ(Af (T )) < ρ(Af (T

′)).

Proof. Suppose the two involved vertices are u and v. For convenience, we introduce
some new notations: N1 := N(u) − N(v), N2 := N(u) ∩ N(v), N3 := N(v) − N(u),
n1 = |N1|, and the principal eigenvector of Af (T ) is x. We assume that N1 6= ∅ and
N3 6= ∅ or it makes no sense. Notice that the two graphs obtained from moving edges
from N1 to N3 and from N3 to N1 are essentially the same, and so we can suppose
xu ≤ xv. Then,

N1 N2 N3

u v

N1 N2 N3

u v

Figure 1: The Kelmans operation

x>Af (T
′)x− x>Af (T )x = 2

∑
w∈N1

(f(dv + n1, dw)xvxw − f(du, dw)xuxw)+

2
∑
w∈N2

[(f(du − n1, dw)− f(du, dw))xuxw + (f(dv + n1, dw)− f(dv, dw))xvxw]+

2
∑
w∈N3

(f(dv + n1, dw)− f(dv, dw))xvxw.

Since f(x, y) is convex in x, we have that for every w ∈ N2, f(dv+n1, dw)−f(dv, dw) ≥
f(du, dw) − f(du − n1, dw), and thus ρ(Af (T

′)) ≥ ρ(Af (T )). If the equality holds, x
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is also the principal eigenvector of Af (T
′). It can be deduced from

ρ(Af (T ))xu =
∑
w∈N1

f(du, dw)xw +
∑
w∈N2

f(du, dw)xw,

Af (T
′)xu =

∑
w∈N2

f(du − n1, dw)xw

that
∑
w∈N1

f(du, dw)xw = 0, a contradiction.

For any tree T rooted at a vertex r, if there exists a vertex r′ ∈ N(r) such that r′

is not a pendent vertex, apply the Kelmans operation to r′ and other non-pendent
vertices in N(r) by removing edges to r′, until all vertices except r′ in N(r) are
pendent. Now we obtain a new tree with more leaves, denoted by T ′. Replace T by the
smaller tree induced by V (T ′)−N [r]+{r′} and replace r by r′, and repeat the process
above recursively. The whole process ends up with a caterpillar tree. According to
Lemma 2.1, the spectral radius of any tree is not larger than the spectral radius of
some caterpillar tree, and thus the extremal tree lies in the family of caterpillar trees.

For a caterpillar tree, suppose its backbone is P`. Label the vertices of P` by
w1, w2, . . . , w` successively. When ` ≥ 3, apply the Kelmans operation to w1 and
w3 and obtain a new caterpillar tree with the length of backbone reduced by 1. The
process ends up with a double star. Now we can say that the extremal tree is a double
star or a star.

r

r′

r

r′

Figure 2: The concentration of edges

. . . . . . . . . . . .

w1 w1w2 w2w3 w3

Figure 3: Reducing the length of backbone

Actually we can calculate the spectral radius of any star and double star weighted
by f(x, y) directly. It is easy to check that ρ(A(Sn)) =

√
n− 1, and so ρ(Af (Sn)) =

f(1, n−1)
√
n− 1. As for double stars, assume that the two centers are u and v, with

degrees d and n − d (2 ≤ d ≤ bn
2
c). The quotient matrix of the equitable partition
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{N(u)− v, {u}, {v}, N(v)− u} is
0 α 0 0

(d− 1)α 0 β 0
0 β 0 (n− 1− d)γ
0 0 γ 0

 ,
where α = f(1, d), β = f(d, n− d), γ = f(1, n− d).

The characteristic polynomial is

φ(λ) = λ4 − [(n− 1− d)γ2 + (d− 1)α2 + β2]λ2 + (d− 1)(n− 1− d)α2γ2,

and the spectral radius is

√
(n−1−d)γ2+(d−1)α2+β2+

√
[(n−1−d)γ2+(d−1)α2+β2]2−4(d−1)(n−1−d)α2γ2

2
.

Denote this formula by DS(n, d). The extremal tree is a star or a double star
depending on the size relationship between f(1, n− 1)

√
n− 1 and max

2≤d≤bn
2
c
DS(n, d).

Remark 2.2. An important special case is when f(x, y) = g(x) + g(y) for some
function g, and g is increasing and convex. For any edge e = ij ∈ E(T ), assume
1 ≤ di ≤ bn2 c, f(di, dj) = g(di)+g(dj) ≤ g(di)+g(n−di) ≤ g(1)+g(n−1) = f(1, n−1).
Combining Lemma 1.8 and Theorem 1.2, Sn is the unique extremal tree with the
maximum spectral radius. Thus, the extremal trees with weight functions as the two
Zagreb indices, first hyper-Zagreb index, reciprocal sum-connectivity index, forgotten
index and Somber index are determined. But in general, the precise structure and
uniqueness of the extremal trees are hard to tell since the formula DS(n, d) is too
complicated to deal with. With the aid of MATLAB, we have computed the extremal
trees with weight functions as some indices, as well as some new weight functions
we invented as guinea pigs, but the data did not show much sign of regularity. For
example, take f(x, y) = x3y + xy3.

3 Proof of Theorem 1.6

Based on the example indices listed in Table 1, we construct two classes of weight
functions. Let P (x, y) be a symmetric polynomial with nonnegative coefficients and
zero constant term, and f(x, y) = P (x, y) or

√
P (x, y). We find that Pn is the

only extremal tree with the smallest spectral radius of Af (T ). The theorem covers
about half of the indices listed in Table 1, including the two (hyper-)Zagreb indices,
reciprocal Randić index, reciprocal sum-connectivity index, forgotten index, somber
index, the two (hyper-)Gourava indices, and product-connectivity Gourava index.

We will show this fact by a series of siftings. It is easy to check that ρ(Af (Pn)) =
2f(2, 2)+O( 1

n
) by Lemma 1.11, so it is reasonable that we regard 2f(2, 2) as ρ(Af (Pn)).

From now on, we use a, b, c and d to represent f(1, 2), f(2, 2), f(1, 3) and f(2, 3),
respectively. The four values are indispensable in our proof.

Denote by T ∗ the smallest extremal tree.
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Claim 3.1.
∆(T ∗) ≤ 3.

Proof. Otherwise, ρ(Af (T
∗)) ≥ 2f(1, 4) ≥ 2f(2, 2) > ρ(Pn), a contradiction.

Claim 3.2. Every 3-degree vertex in T ∗ has a pendent vertex as a neighbor.

Proof. Otherwise, according to Lemma 1.8, ρ(Af (T
∗)) is larger than that of the graph

shown in Figure 4. Then it has an obvious equitable partition of three parts and the

a

a a

d

d d

Figure 4: The figure for Claim 3.2.

quotient matrix is

0 a 0
a 0 d
0 3d 0

, whose characteristic polynomial is φ(λ) = λ(λ2 −

3d2 − a2). Because f 2(x, y) is a convex function, we have d2 − b2 ≥ b2 − a2, and so
3d2 + a2 ≥ 4b2, i.e., ρ(Af (T

∗)) ≥ 2b > ρ(Pn), a contradiction.

Claim 3.3. Every 3-degree vertex in T ∗ has at most one neighbor with degree > 1.

Proof. Otherwise, according to Lemma 1.8, ρ(Af (T
∗)) is larger than that of the graph

shown in Figure 5. Then it also has an equitable partition of four parts and the

aa d d

c

Figure 5: The figure for Claim 3.3.

quotient matrix is 
0 a 0 0
a 0 d 0
0 2d 0 c
0 0 c 0

 ,
whose characteristic polynomial is φ(λ) = λ4 − (a2 + c2 + 2d2)λ2 + a2c2.
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We will show that the spectral radius of this weighted graph is larger than 2b by
showing that φ(4b2) ≤ 0 as follows:

φ(4b2) = 16b4−4(a2 + c2 + 2d2)b2 +a2c2 ≤ φ(4b2) = 16b4−4(a2 + c2 + 2d2)b2 + b2c2,
the inequality

φ(4b2) = 16b4 − 4(a2 + c2 + 2d2)b2 + b2c2 ≤ 0

is equivalent to
4a2 + 3c2 + 8d2

b2
≥ 16. (*)

Every monomial term of a symmetric polynomial P (x, y) has the following three
different types: (i) xα + yα (α ≥ 1); (ii) (xy)α (α ≥ 1); (iii) (xy)α(xβ + yβ) (α, β ≥ 1).
We use M(x, y) to denote the monomial term. The inequality (∗) holds if and only
if the inequality

4M(1, 2) + 3M(1, 3) + 8M(2, 3)

M(2, 2)
≥ 16

holds for the three kinds of monomials, respectively. We will proceed the proof by
distinguishing three cases.

Case 1. M(x, y) = xα + yα.

4M(1, 2) + 3M(1, 3) + 8M(2, 3)

M(2, 2)
=

7

2
· 1

2α
+

11

2
· (3

2
)α + 6,

this is an increasing function in α, achieving the minimum value 16 when α = 1.

Case 2. M(x, y) = (xy)α.

4M(1, 2) + 3M(1, 3) + 8M(2, 3)

M(2, 2)
= 8(

3

2
)α + 3(

3

4
)α + 4(

1

2
)α,

this is an increasing function in α, achieving the minimum value 16 + 1
4

when α = 1.

Case 3. M(x, y) = (xy)α(xβ + yβ).

4M(1, 2) + 3M(1, 3) + 8M(2, 3)

M(2, 2)
= 2(

1

2
)α(1+

1

2β
)+

3

2
(
3

4
)α((

3

2
)β+

1

2β
)+4(

3

2
)α(1+(

3

2
)β).

For any fixed α ≥ 1, this is an increasing function in β. So by taking β = 1, the
formula becomes

10(
3

2
)α + 3(

1

2
)α + 3(

3

4
)α.

One can check that it is an increasing function in α by derivation. So, the minimum
value is 10 · 3

2
+ 3

2
+ 3 · 3

4
= 18 + 3

4
> 16.

From the three claims above, one can see that T ∗ has three possible forms: (1) Pn;
(2) Dn; (3) D̂n; see Figure 6. We will compare their weighted spectral radius by more
accurate discussion.

Claim 3.4. When n ≥ 9, Af (Pn) < Af (Dn) < Af (D̂n).
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· · ·
Dn

· · ·
D̂n

Figure 6: The trees D and D̂n.

Proof. Let us show the former inequality first. We use two different methods for the
cases f(x, y) = P (x, y) or

√
P (x, y).

If f(x, y) = P (x, y), cut off one pendent vertex of Pn and link it to the neighbor
of the other pendent vertex, and the new graph obtained is just Dn. We use a figure
labeled by the components of the principal eigenvector Y of Af (Pn); see Figure 7.
The components of symmetric vertices are equal, of course. Then, Y >Af (Dn)Y −

Y0 Y0Y1 Y1
Y2 Y2

· · ·

Y0

Y0

Y1Y1 Y2Y2
· · ·

Figure 7: The figure for f(x, y) = P (x, y).

Y >Af (Pn)Y = 2[(2c − 2a)Y0Y1 + (a + d − 2b)Y1Y2]. Since f(x, y) is increasing and
convex in x, we have a+ d− 2b ≥ 0, and ρ(Af (Dn)) ≥ ρ(Af (Pn)).

If the inequality holds, Y is also the principal eigenvector of Af (Dn). It can be
deduced from {

ρ(Af (Pn))Y1 = aY0 + bY2,

ρ(Af (Dn))Y1 = aY2

that Y0 = 0, a contradiction.

If f(x, y) =
√
P (x, y), we wish to find a nonnegative vector X ≥ 0 so that AX ≥

2bX, by means of Lemma 1.9. Relabel the graph Dn using the components of X
as shown in Figure 8. Then, write AX ≥ 2bX open in the following form of linear
equation system:


X1 = X2

cX3 ≥ 2bX1

cX1 + cX2 + dX4 ≥ 2bX3

dX3 + bX5 ≥ 2bX4

and



aXn−1 ≥ 2bXn

aXn + bXn−2 ≥ 2bXn−1

b(Xn−1 +Xn−3) ≥ 2bXn−2
...

b(X4 +X6) ≥ 2bX5

Let all the equalities hold except the underlined one, and let Xn = a. The latter part
of the linear equations produces a formula of Xi: Xi = 2(n− i)b− (n− 1− i)a2

b
for
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· · ·

X1

X2

X3 X4 Xn−2 Xn−1 Xn

Figure 8: The figure for f(x, y) =
√
P (x, y).

i = 4, . . . , n− 1. As for the former part, compute X1, X2, X3 and X5 in the form of
an expression about X4, we get

X1 = X2 =
c(bX4 + 2b2 − a2)

2bd
, X3 =

bX4 + 2b2 − a2
d

, X5 = X4 − 2b+
a2

b
.

The only thing we need to do is to check the correctness of the underlined inequality.
Since X4 = 2(n− 4)b− (n− 5)a

2

b
, the inequality is equivalent to

(c2 + d2 − 2b2)(2(n− 4)b2 − (n− 5)a2) ≥ (2b2 − c2)(2b2 − a2).

It is true if

(n− 4)(c2 + d2 − 2b2) ≥ 2b2 − c2 ⇔ (n− 3)c2 + (n− 4)d2

b2
≥ 2(n− 3).

The method is the same as that in the proof of Claim 3.3. We prove (n−3)M(1,3)+(n−4)M(2,3)
M(2,2)

≥
2(n− 3) for any symmetric monomial M(x, y).

Case 1. M(x, y) = xα + yα (α ≥ 1).

(n− 3)M(1, 3) + (n− 4)M(2, 3)

M(2, 2)
=
n− 3

2
(

1

2α
+ (

3

2
)α) +

n− 4

2
(1 + (

3

2
)α),

this is an increasing function in α, achieving the minimum value 9
4
n− 8 when α = 1,

and 9
4
n− 8 ≥ 2(n− 3) (n ≥ 8).

Case 2. M(x, y) = (xy)α (α ≥ 1).

(n− 3)M(1, 3) + (n− 4)M(2, 3)

M(2, 2)
= (n− 4)(

3

2
)α + (n− 3)(

3

4
)α,

this is an increasing function in α, achieving the minimum value 9n−33
4

when α = 1,
and 9n−33

4
≥ 2(n− 3) (n ≥ 9).

Case 3. M(x, y) = (xy)α(xβ + yβ) (α, β ≥ 1).

(n− 3)M(1, 3) + (n− 4)M(2, 3)

M(2, 2)
=

1

2
[(n−3)(

3

4
)α(

1

2β
+(

3

2
)β)+(n−4)(

3

2
)α(1+(

3

2
)β)],
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this is an increasing function in β, By taking β = 1, one can check that (n− 3)(3
4
)α +

5(n−4)
4

(3
2
)α is increasing in α by derivation. The minimum value is 21n−78

8
≥ 2(n− 3)

(n ≥ 6).

Now the proof of the first inequality of Claim 3.4 is complete. We turn to proving
the second one. Assume that ρ(Af (Dn)) = r, the principal eigenvector of Af (Dn) is

Z, and label the vertices of Dn by the components of Z. Then D̂n can be obtained
from Dn in a similar way as we used to transform Pn into Dn; see Figure 9. Then

· · · · · ·
Z1Z2Z3Z4

Z1

Z2

Z3Z4

Figure 9: D̂n is obtained from Dn.

from 
rZ1 = aZ2

rZ2 = aZ1 + bZ3

rZ3 = bZ2 + bZ4,

one can get that 
Z2 = r

a
Z1

Z3 = r2−a2
ab

Z1

Z4 = r(r2−a2−b2)
ab2

.

Because r > 2b > b+
√
b2+4a2

2
, r2− br−a2 > 0, Z2 < Z3, and r(r2−a2−b2)

ab2
> 2(r2−a2−b2)

ab
>

r2−a2
ab

, we have Z3 < Z4.

From Z>Af (D̂n)Z −Z>Af (Dn)Z = 2[cZ1Z3− aZ1Z2 + (c− b)Z2Z3 + (d− b)Z3Z4],

we will show that Z>Af (D̂n)Z − Z>Af (Dn)Z > 0 by showing |d − b| ≥ |b − c|.
After taking square for both sides and doing some simplification, it is equivalent to
d + c ≥ 2b, which is obvious when f(x, y) = P (x, y). If f(x, y) =

√
P (x, y), take

squares again, and it is sufficient if we can show cd ≥ b2. The monomial method
remains suitable, but with a little difference. Denote the three types of monomials
by M1, M2, M3, in the order of that in the previous proofs. We need to show that
for i, j ∈ {1, 2, 3}, Mi(1, 3)Mj(2, 3) +Mj(1, 3)Mi(2, 3) > 2Mi(2, 2)Mj(2, 2). The case
i = j is easy to check and we omit the routine. Assume i 6= j.

Case 1. {i, j} = {1, 2}.
Prove 3α(2β+3β)+6α(1+3β)

4α(2β+2β)
> 2 when α, β ≥ 1. The function

1

2
[(

3

4
)α(1 + (

3

2
)β) + (

3

2
)α(

1

2β
+ (

3

2
)β)]
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is increasing in β. Taking β = 1, the function 5
4
(3
4
)α + (3

2
)α is increasing in α, and so

the minimum value is 39
16
> 2.

Case 2. {i, j} = {1, 3}.
Prove (1+3α)·6γ(2β+3β)+(2α+3α)·3γ(1+3β)

(2α+2α)·4γ(2β+2β)
> 2 when α, β, γ ≥ 1. The function

1

4
[(

1

2α
+ (

3

2
)α)(

3

2
)γ(1 + (

3

2
)β) + (1 + (

3

2
)α)(

3

4
)γ(

1

2β
+ (

3

2
)β)]

is increasing in α and β. Taking α = β = 1, the function 5
4
[(3

2
)γ + (3

4
)γ] is increasing

in γ, and so the minimum value is 45
16
> 2.

Case 3. {i, j} = {2, 3}.
Prove 3α·6γ(2β+3β)+6α·3γ(1+3β)

4α+γ(2β+2β)
> 2. The function

1

2
[(

3

4
)α(

3

2
)γ(1 + (

3

2
)β) + (

3

2
)α(

3

4
)γ(

1

2β
+ (

3

2
)β)]

is increasing in β. Taking β = 1, 5
4
(3
4
)α(3

2
)γ + (3

2
)α(3

4
)γ ≥

√
5(9

8
)
α+γ
2 > 2. Combining

all the cases, the second inequality has thus been proved.

4 Concluding remarks

In this paper we try to unify the solution for spectral extremal trees weighted by
some topological indices. In this way we do not need to deal with the weighted
adjacency matrix of graphs with weight functions as topological indices one by one
separately. However, at the moment we only solve the case when the indices are de-
fined by a symmetric function f(x, y) such that f(x, y) has some nice properties. For
those functions f(x, y) with complicated forms, further study is needed, by dividing
them into several suitable classes. We hope that in the near future more results can
be worked out for much wider classes of topological indices.

Acknowledgement. The authors are very grateful to the reviewers and editor for
their very useful suggestions and comments, which helped to improving the presen-
tation of the paper.
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Discrete Appl. Math. 283 (2020), 634-643.

13



[4] R. Cruz, J. Monsalve, J. Rada, On chemical trees that maximize atom-bond
connectivity index, its exponential version, and minimize exponential geometric-
arithmetic index, MATCH Commun. Math. Comput. Chem. 84 (2020), 691-718.

[5] R. Cruz, J. D. Monsalve, J. Rada, The balanced double star has maximum expo-
nential second Zagreb index, J. Combin. Optim. https://doi.org/10.1007/s10878-
021-00696-3.
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