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Abstract

A graph is edge-primitive if its automorphism group acts primitively on the edge set, and
2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs. In this
paper, we present a classification for those edge-primitive graphs which are 2-arc-transitive
and have soluble edge-stabilizers.
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1. Introduction

In this paper, all graphs are assumed to be finite and simple, and all
groups are assumed to be finite.

A graph is a pair Γ = (V,E) of a nonempty set V and a set E of 2-
subsets of V . The elements in V and E are called the vertices and edges of
Γ , respectively. For v ∈ V , the set Γ (v) = {u ∈ V | {u, v} ∈ E} is called the
neighborhood of v in Γ , while |Γ (v)| is called the valency of v. We say that
the graph Γ has valency d or Γ is d-regular if its vertices have equal valency
d. For an integer s ≥ 1, an s-arc in Γ is an (s+1)-tuple (v0, v1, . . . , vs)
of vertices such that {vi−1, vi} ∈ E for 1 ≤ i ≤ s and vi−1 6= vi+1 for
1 ≤ i ≤ s− 1. A 1-arc is also called an arc.

Let Γ = (V,E) be a graph. A permutation g on V is called an automor-
phism of Γ if {ug, vg} ∈ E for all {u, v} ∈ E. All automorphisms of Γ form a
subgroup of the symmetric group Sym(V ), denoted by AutΓ , which is called
the automorphism group of Γ . The group AutΓ has a natural action on E,
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namely, {u, v}g = {ug, vg} for {u, v} ∈ E and g ∈ AutΓ . If this action is
transitive, that is, for each pair of edges there exists some g ∈ AutΓ map-
ping one edge to the other one, then Γ is called edge-transitive. Similarly, we
may define the vertex-transitivity, arc-transitivity and s-arc-transitivity of Γ .
The graph Γ is called edge-primitive if AutΓ acts primitively on E, that is,
Γ is edge-transitive and the stabilizer (AutΓ ){u,v} of some (and hence every)
edge {u, v} in AutΓ is a maximal subgroup.

The class of edge-primitive graphs includes may famous graphs such as
the Heawood graph, the Tutte’s 8-cage, the Biggs-Smith graph, the Hoffman-
Singleton graph, the Higman-Sims graph and the rank 3 graphs associated
with the sporadic simple groups M22, J2, McL, Ru, Suz and Fi23, and so on.
In 1973, Weiss [34] determined all edge-primitive graphs of valency three.
Up to isomorphism, all edge-primitive cubic graphs consist of the complete
bipartite graph K3,3 and the first three graphs mentioned above. After that,
edge-primitive graphs had received little attention until Giudici and Li [9]
systematically investigated the existence and the general structure of such
graphs in 2000. Giudici and Li’s work has stimulated a lot of progress in the
study of edge-primitive graphs, see [8, 11, 12, 18, 22, 25] for example. Also,
their work reveals that those graphs associated with almost simple groups
play an important role in the study of edge-primitive graphs. This is one of
the main motivations of [22] and the present paper.

Let Γ = (V,E) be an edge-primitive graph of valency no less than 3.
Then, as observed in [9], Γ is also arc-transitive. If Γ is 2-arc-transitive
then Praeger’s reduction theorems [26, 27] will be effective tools for us to
investigate the group-theoretic and graph-theoretic properties of Γ . How-
ever, Γ is not necessarily 2-arc-transitive; for example, by the Atlas [3],
the sporadic Rudvalis group Ru is the automorphism group of a rank 3
graph, which is edge-primitive and of valency 2304 but not 2-arc-transitive.
Using O’Nan-Scott Theorem for (quasi)primitive groups [26], Giudici and
Li [9] gave a reduction theorem on the automorphism group of Γ . They
proved that, as a primitive group on E, only four of the eight O’Nan-Scott
types for primitive groups may occur for AutΓ , say SD, CD, PA and AS.
They also considered the possible O’Nan-Scott types for AutΓ acting on
V , and presented constructions or examples to verify the existence of cor-
responding graphs. Then what will happen if we assume further that Γ is
2-arc-transitive? The third author of this paper showed that either AutΓ is
almost simple or Γ is a complete bipartite graph if Γ is 2-arc-transitive, see
[22]. This stimulate our interest in classifying those edge-primitive graphs
which are 2-arc-transitive.

In this paper, we present a classification result stated as follows.

Theorem 1.1. Let Γ = (V,E) be a graph of valency d ≥ 6, and let G ≤
AutΓ such that G acts primitively on the edge set and transitively on the
2-arc set of Γ . Assume further that G is almost simple and, for {u, v} ∈ E,
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the edge-stabilizer G{u,v} is soluble. Then either Γ is (G, 4)-arc-transitive,
or G, G{u,v}, Gv and d are listed as in Table 1.

Remark. If Γ is edge-primitive and either 4-arc-transitive or of valency less
than 6, then the edge-stabilizers must be soluble. The reader may find a
complete list of such graphs in [11, 12, 18, 34]. For each triple (G,Gv, G{u,v})
listed in Table 1, the coset graph Cos(G,Gv, G{u,v}), see Section 2 for the
definition, is both (G, 2)-arc-transitive and G-edge-primitive.

G G{u,v} Gv d Remark

PSL4(2).2 24:S4 23:SL3(2) 7

PSL5(2).2 [28]:S2
3.2 26:(S3×SL3(2)) 7

F4(2).2 [222]:S2
3.2 [220].(S3×SL3(2)) 7

PSL4(3).2 31+4
+ :(2S4×2) 33:SL3(3) 13

PSL4(3).22 31+4
+ :(2S4×Z2

2) 33:(SL3(3)×Z2) 13

PSL5(3).2 [38]:(2S4)2.2 36.2S4.SL3(3) 13

Sp Zp:Zp−1 PSL2(p) p+1 p ∈ {7, 11}
M11 32:Q8.2 M10 10 K11

J1 Z11:Z10 PSL2(11) 12

J3.2 Z19:Z18 PSL2(19) 20

O′N.2 Z31:Z30 PSL2(31) 32

B Z19:Z18×Z2 PGL2(19) 20

B Z23:Z11×Z2 PSL2(23) 24

M Z41:Z40 PSL2(41) 42

PSL2(19) D20 PSL2(5) 6

A6.2,A6.2
2 Z5:[4],Z10:Z4 PSL2(5),PGL2(5) 6 K6,6, G 6∼= S6

PGL2(11) D20 PSL2(5) 6

PSL3(r) 32:Q8 PSL2(9) 10 r is a prime with
PSL3(r).2 32:Q8.2 PGL2(9) r ≡ 4, 16, 31, 34 mod 45

PSU3(r) 32:Q8 PSL2(9) 10 r is a prime with
PSU3(r).2 32:Q8.2 PGL2(9) r ≡ 11, 14, 29, 41 mod 45

HS.2 [53]:[25] PSU3(5):2 126

Ru [53]:[25] PSU3(5):2 126

M10 Z8:Z2 32:Q8 9 K10

PSL3(3).2 GL2(3):2 32:GL2(3) 9

J1 Z7:Z6 Z3
2:Z7:Z3 8

PSL2(pf ).[o] D 2(pf−1)
(2,p−1)

.[o] Zf
p :Z pf−1

(2,p−1)

.[o] pf Kpf+1, o | (2, p− 1)f

Sz(2f ).o D2(2f−1).o Zf
2 :Z2f−1.o 2f f is odd, o | f

Table 1. Graphs.

2. Preliminaries

Let G be a finite group and H,K ≤ G with |K : (H ∩ K)| = 2
and ∩g∈GHg = 1, and let [G : H] = {Hx | x ∈ G}. We define a
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graph Cos(G,H,K) on [G : H] such that {Hx,Hy} is an edge if and on-
ly if yx−1 ∈ HKH \ H. The group G can be viewed as a subgroup of
AutCos(G,H,K), where G acts on [G : H] by right multiplication. Then
Cos(G,H,K) is G-arc-transitive and, for x ∈ K \H, the edge {H,Hx} has
stabilizer K in G. Thus Cos(G,H,K) is G-edge-primitive if and only if K
is maximal in G.

Assume that Γ = (V,E) is a G-edge-primitive graph of valency d ≥ 3.
Then Γ is G-arc-transitive by [9, Lemma 3.4]. Take an edge {u, v} ∈ E, let
H = Gv and K = G{u,v}. Then K is maximal in G, and H∩K = Guv, which
has index 2 in K. Noting that ∩g∈GHg fixes V pointwise, ∩g∈GHg = 1.
Further, vg 7→ Gvg, ∀g ∈ G gives an isomorphism from Γ to Cos(G,H,K).
Then, by [5, Theorem 2.1], the following lemma holds.

Lemma 2.1. Let Γ = (V,E) be a connected graph of valency d ≥ 3, and
G ≤ AutΓ . Then Γ is both (G, 2)-arc-transitive and G-edge-primitive if and
only if Γ ∼= Cos(G,H,K) for some subgroups H and K of G satisfying

(1) |K : (H ∩K)| = 2, ∩g∈GHg = 1 and K is maximal in G;

(2) H acts 2-transitively on [H : (H ∩K)] by right multiplication.

Let Γ = (V,E) be a connected graph of valency at least 3, {u, v} ∈ E
and G ≤ AutΓ . Assume that Γ is (G, s)-arc-transitive for some s ≥ 1, that
is, G acts transitively on the s-arc set of Γ . Then Gv acts transitively on

the neighborhood Γ (v) of v in Γ . Let G
Γ (v)
v be the transitive permutation

group induced by Gv on Γ (v), and let G
[1]
v be the kernel of Gv acting on

Γ (v). Then G
Γ (v)
v

∼= Gv/G
[1]
v . Considering the action of Guv on Γ (v), we

have
(GΓ (v)

v )u = GΓ (v)
uv
∼= Guv/G

[1]
v .

Similarly, (G
Γ (u)
u )v = G

Γ (u)
uv
∼= Guv/G

[1]
u . Since G is transitive on the arcs of

Γ , there is some element in G interchanging u and v. This implies that

|G{u,v}:Guv| = 2 and (GΓ (v)
v )u ∼= (GΓ (u)

u )v.

Set G
[1]
uv = G

[1]
u ∩G[1]

v . Then G
[1]
uv is the kernel of Guv acting on Γ (u) ∪ Γ (v)

and, noting that Guv/(G
[1]
u ∩G[1]

v ) . (Guv/G
[1]
u )× (Guv/G

[1]
v ), we have

Guv/G
[1]
uv = Guv/(G

[1]
u ∩G[1]

v ) . (GΓ (v)
v )u × (GΓ (u)

u )v.

Since G
[1]
v EGuv, we know that G

[1]
v induces a normal subgroup (G

[1]
v )Γ (u) of

(G
Γ (u)
u )v. In particular,

G[1]
v /G

[1]
uv
∼= (G[1]

v )Γ (u) E (GΓ (u)
u )v.

Writing G
[1]
v , Guv and Gv in group extensions, the next lemma follows.

Lemma 2.2. (1) G
[1]
v = G

[1]
uv.(G

[1]
v )Γ (u), (G

[1]
v )Γ (u) E (G

Γ (u)
u )v.
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(2) Guv = (G
[1]
uv.(G

[1]
v )Γ (u)).(G

Γ (v)
v )u, Gv = (G

[1]
uv.(G

[1]
v )Γ (u)).G

Γ (v)
v .

(3) If G
[1]
uv = 1 then Guv . (G

Γ (v)
v )u × (G

Γ (u)
u )v.

By [32], s ≤ 7 , and if s ≥ 2 then G
[1]
uv is a p-group for some prime p,

refer to [7]. Thus Lemma 2.2 yields a fact as follows.

Corollary 2.3. Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph,

and {u, v} ∈ E. Then G{u,v} is soluble if and only if (G
Γ (v)
v )u is soluble,

and Gv is soluble if and only if G
Γ (v)
v is soluble.

Choose s maximal as possible, that is, Γ is (G, s)-arc-transitive but
not (G, s+1)-arc-transitive. In this case, Γ is said to be (G, s)-transitive. If

further G
[1]
uv 6= 1, then one can read out the vertex-stabilizer Gv from [31, 33]

for s ≥ 4 and from [29] for 2 ≤ s ≤ 3. In particular, we have the following
result from [29, 33].

Theorem 2.4. Let Γ = (V,E) be a connected (G, s)-transitive graph of
valency at least 3, and {u, v} ∈ E. Assume that s ≥ 2.

(1) If G
[1]
uv = 1 then s = 2 or 3.

(2) If G
[1]
uv 6= 1 then G

[1]
uv is a p-group for some prime p, PSLn(q) EG

Γ (v)
v ,

|Γ (v)| = qn−1
q−1 and 6 6= s ≤ 7, where n ≥ 2 and q = pf for some integer

f ≥ 1; moreover, either

(i) n = 2 and s ≥ 4; or

(ii) n ≥ 3, s ≤ 3 and Op(Gv) is given as in Table 2, where Op(Gv)
is the maximal normal p-subgroup of Gv.

Op(Gv) G
[1]
uv s n q Gv

Zn(n−1)f
p Z(n−1)2f

p 3 SLn−1(q)×SLn(q) EGv/Op(Gv)

Znf
p Zf

p 2 a.PSLn(q) EGv/Op(Gv) with a | q − 1

Z
n(n−1)f

2
p Z

(n−1)(n−2)f
2

p 2 a.PSLn(q) EGv/Op(Gv) with a | q − 1

[q20] [q18] 3 3 even SL2(q)×SL3(q) EGv/Op(Gv)

[36] Z4
3 2 3 3 [36]:SL3(3)

Zn+1
2 Z2

2 2 2 Zn+1
2 :SLn(2)

Z11
2 ,Z14

2 Z8
2,Z11

2 2 4 2 Z11
2 :SL4(2),Z14

2 :SL4(2)

[230] [226] 2 5 2 [230]:SL5(2)

Table 2.

Lemma 2.5. Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph, and

{u, v} ∈ E. If r is a prime divisor of |Γ (v)| then Or(G
[1]
v ) = 1, Or(Guv) = 1,

and either Or(Gv) = 1, or Or(Gv) ∼= Ze
r
∼= soc(G

Γ (v)
v ) and |Γ (v)| = re for

some integer e ≥ 1.
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Proof. Since Γ is (G, 2)-arc-transitive, G
Γ (v)
v is a 2-transitive group, and

thus Guv is transitive on Γ (v)\{u}. Since Or(Guv)EGuv, all Or(Guv)-orbits
on Γ (v)\{u} have the same size. Noting that |Γ (v)\{u}| is coprime to r, it

follows that Or(Guv) ≤ G[1]
v . Since G

[1]
v EGuv, we have Or(G

[1]
v ) ≤ Or(Guv),

and so Or(G
[1]
v ) = Or(Guv). Similarly, considering the action of Guv on

Γ (u) \ {v}, we get Or(G
[1]
u ) = Or(Guv). Then Or(G

[1]
u ) = Or(Guv) =

Or(G
[1]
v ) ≤ G

[1]
uv. By Theorem 2.4, either G

[1]
uv = 1, or G

[1]
uv is a nontrivial

p-group for a prime divisor p of |Γ (v)| − 1. It follows that Or(G
[1]
u ) =

Or(Guv) = Or(G
[1]
v ) = 1.

Note that Or(Gv)G
[1]
v /G

[1]
v
∼= Or(Gv)/(Or(Gv)∩G[1]

v ). Clearly, Or(Gv)∩
G

[1]
v ≤ Or(G

[1]
v ), we have Or(Gv) ∩ G[1]

v = 1. It follows that Or(Gv) ∼=
Or(Gv)G

[1]
v /G

[1]
v EGv/G

[1]
v
∼= G

Γ (v)
v . Thus Or(Gv) is isomorphic to a normal

r-subgroup of G
Γ (v)
v . This implies that either Or(Gv) = 1, or G

Γ (v)
v is an

affine 2-transitive group of degree re for some e. Thus the lemma follows.

Let a ≥ 2 and f ≥ 1 be integers. A prime divisor r of af − 1 is primitive
if r is not a divisor of ae−1 for all 1 ≤ e < f . By Zsigmondy’s theorem [37],
if f > 1 and af − 1 has no primitive prime divisor then af = 26, or f = 2
and a = 2t − 1 for some prime t. Assume that af − 1 has a primitive prime
divisor r. Then a has order f modulo r. Thus f is a divisor of r− 1, and if
r is a divisor of af

′ − 1 for some f ′ ≥ 1 then f is a divisor of f ′. Thus we
have the following lemma.

Lemma 2.6. Let a ≥ 2, f ≥ 1 and f ′ ≥ 1 be integers. If af − 1 has a
primitive prime divisor r then f is a divisor of r − 1, and r is a divisor of
af
′ − 1 if and only if f is a divisor of f ′. If f ≥ 3 then af − 1 has a prime

divisor no less than 5.

We end this section with a fact on finite primitive groups.

Lemma 2.7. Assume that G is a finite primitive group with a point-stabilizer
H. If H has a normal Sylow subgroup P 6= 1, then P is also a Sylow subgroup
of G.

Proof. Assume that P 6= 1 is a normal Sylow subgroup of H. Clearly, P
is not normal in G. Take a Sylow subgroup Q of G with P ≤ Q. Then
H ≤ 〈NQ(P ), H〉 ≤ NG(P ) 6= G. Since H is maximal in G, we have
H = 〈NQ(P ), H〉 and so NQ(P ) ≤ H. It follows that NQ(P ) = P , and
hence P = Q. Then the lemma follows.

3. Some restrictions on stabilizers

In Sections 4 and 5, we shall prove Theorem 1.1 using the result given in
[18] which classifies finite primitive groups with soluble point-stabilizers. Let
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Γ = (V,E) be a graph of valency d ≥ 6, {u, v} ∈ E and G ≤ AutΓ . Assume
that G is almost simple, G{u,v} is soluble, Γ is G-edge-primitive and (G, 2)-
arc-transitive. Clearly, each nontrivial normal subgroup of G acts transitive-
ly on the edge set E. Choose a minimal X among the normal subgroups of G
which act primitively on E. By the choice of X, we have soc(X) = soc(G),
X{u,v} = X∩G{u,v}, G = XG{u,v} and G/X = XG{u,v}/X ∼= G{u,v}/X{u,v}.
Then, considering the restrictions on both X{u,v} and Xv caused by the 2-
arc-transitivity of Γ , we may work out the pair (X,X{u,v}) from [18, Theo-
rem 1.1], and then determine the group G and the graph Γ . Thus we make
the following assumptions.

Hypothesis 3.1. Let Γ = (V,E) be a G-edge-primitive graph of valency
d ≥ 6, and {u, v} ∈ E, where G is an almost simple group with socle T .
Assume that

(1) Γ is (G, 2)-arc-transitive, and the edge-stabilizer G{u,v} is soluble;

(2) G has a normal subgroup X such that soc(X) = T , X{u,v} is maximal
in X, and (X,X{u,v}) is one of the pairs (G0, H0) listed in [18, Tables
14-20].

For the group X in Hypothesis 3.1, we have 1 6= X
Γ (v)
v E G

Γ (v)
v . Note

that G
Γ (v)
v is 2-transitive (on Γ (v)). Then G

Γ (v)
v is affine or almost simple,

see [4, Theorem 4.1B] for example. It follows that soc(G
Γ (v)
v ) = soc(X

Γ (v)
v ).

3.1. Assume that Gv is insoluble. Then G
Γ (v)
v is an almost simple 2-

transitive group (on Γ (v)). Recall that soc(G
Γ (v)
v ) = soc(X

Γ (v)
v ). Checking

the point-stabilizers of almost simple 2-transitive groups (see [17, Table 2.1]

for example), since (G
Γ (v)
v )u is soluble, we conclude that either X

Γ (v)
v is 2-

transitive, or G
Γ (v)
v
∼= PSL2(8).3 and d = 28. (For a complete list of finite

2-transitive groups, the reader may refer to [2, Tables 7.3 and 7.4].)

Lemma 3.2. Suppose that Hypothesis 3.1 holds. If d = 28 then G
Γ (v)
v is not

isomorphc to PSL2(8).3.

Proof. Suppose that G
Γ (v)
v

∼= PSL2(8).3 and d = 28. Note that X
[1]
uv ≤

G
[1]
uv = 1, see Theorem 2.4. Thus Xuv . (X

Γ (v)
v )u×(X

Γ (u)
u )v by Lemma 2.2.

Assume that X
Γ (v)
v

∼= PSL2(8). Then (X
Γ (v)
v )u ∼= D18, and Xuv

∼= D18,
(Z3×Z9):Z2, (Z9×Z9):Z2 or D18×D18. In particular, the unique Sylow 3-
subgroup of X{u,v} = Xuv.2 is isomorphic to Zm×Z9, where m = 1, 3 or
9. Checking the primitive groups listed in [18, Tables 14-20], we know that
only the pairs (PSL2(q),D 2(q±1)

(2,q−1)

) possibly meet our requirements on X{u,v},

yielding X{u,v} ∼= D 2(q±1)
(2,q−1)

. Then D36
∼= X{u,v} ∼= D 2(q±1)

(2,q−1)

. Calculation

shows that q = 37; however, PSL2(37) has no subgroup which has a quotient
PSL2(8), a contradiction.
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Now let X
Γ (v)
v = G

Γ (v)
v

∼= PSL2(8).3. Then (X
Γ (v)
v )u ∼= (X

Γ (u)
u )v ∼=

Z9:Z6 and Xuv . Z9:Z6×Z9:Z6. In particular, a Sylow 2-subgroup of
X{u,v} = Xuv.2 is not a cyclic group of order 8, and the unique Sylow
3-subgroup of X{u,v} is nonabelian and contains elements of order 9. Since

X{u,v} = Xuv.2 = X
[1]
v .(X

Γ (v)
v )u.2 and X

[1]
v
∼= (X

[1]
v )Γ (u)E (X

Γ (u)
u )v, we have

|X{u,v}| = 22 · 33, 22 · 34, 22 · 35, 22 · 36, 23 · 35 or 23 · 36. Checking the Tables
14-20 given in [18], we conclude that X = G2(3).2, and X{u,v} ∼= [36]:D8. In

this case, X
[1]
v
∼= Z9:Z6 and Xv

∼= Z9:Z6.PSL2(8).3; however, X has no such
subgroup by the Atlas [3], a contradiction. This completes the proof.

By Lemma 3.2, combining with Theorem 2.4, the next lemma follows
from checking the point-stabilizers of finite almost simple 2-transitive group-
s, refer to [17, Table 2.1].

Lemma 3.3. Suppose that Hypothesis 3.1 holds and G
Γ (v)
v is almost simple.

Then one of the following holds:

(1) G
Γ (v)
v = X

Γ (v)
v = PSL3(2) or PSL3(3), and d = 7 or 13, respectively;

(2) soc(X
Γ (v)
v ) = PSL2(q) with q > 4, and d = q+1;

(3) G
[1]
uv = 1, soc(X

Γ (v)
v ) = PSU3(q) with q > 2, and d = q3+1;

(4) G
[1]
uv = 1, soc(X

Γ (v)
v ) = Sz(q) with q = 22n+1 > 2, and d = q2+1;

(5) G
[1]
uv = 1, soc(X

Γ (v)
v ) = Ree(q) with q = 32n+1 > 3, and d = q3+1.

In particular, Γ is (X, 2)-arc-transitive.

Recall that the Fitting subgroup Fit(H) of a finite group H is the direct
product of Or(H), where r runs over the set of prime divisors of |H|.

Lemma 3.4. Suppose that Hypothesis 3.1 holds and (2) or (5) of Lemma 3.3

occurs. Let q = pf for some prime p. Assume that X
[1]
uv = 1. Then

Fit(Xuv) = Op(Xuv), and either Fit(Xuv) = Fit(X{u,v}) or Fit(X{u,v}) =
Fit(Xuv).2; in particular, |Fit(X{u,v}) : Op(X{u,v})| ≤ 2.

Proof. Let r be a prime divisor of |Xuv|. Then Or(Xuv) is normal in Xuv.
Since Γ is (X, 2)-arc-transitive, Xuv acts transitively on Γ (v) \ {u}. Thus
all Or(Xuv)-orbits (on Γ (v)\{u}) have equal size, which is a power of r and
a divisor of |Γ (v) \ {u}|. Note that |Γ (v) \ {u}| = d− 1, which is a power of
p. It follows that either r = p or Or(Xuv) = 1. Then Fit(Xuv) = Op(Xuv).

Note that Xuv is normal in X{u,v} as |X{u,v} : Xuv| = 2. Since Op(Xuv)
is a characteristic subgroup of Xuv, it follows that Op(Xuv) is normal in
X{u,v}, and so Op(Xuv) ≤ Op(X{u,v}) ≤ Fit(X{u,v}). For each odd prime
divisor r of |X{u,v}|, since |X{u,v} : Xuv| = 2, we have Or(X{u,v}) ≤ Xuv,
and so Or(X{u,v}) = Or(Xuv). It follows that

Fit(X{u,v}) = Fit(Xuv)O2(X{u,v}) = Op(Xuv)O2(X{u,v}).
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In particular, Op(Xuv) = Op(X{u,v}) if p 6= 2.
It is easily shown thatXuv∩O2(X{u,v}) = O2(Xuv). IfXuv ≥ O2(X{u,v})

then p = 2, Fit(X{u,v}) = O2(X{u,v}) = Fit(Xuv), and the lemma is true.
Assume that O2(X{u,v}) 6≤ Xuv. Since |X{u,v} : Xuv| = 2, we have X{u,v} =
XuvO2(X{u,v}). Then

2|Xuv| = |X{u,v}| = |Xuv||O2(X{u,v}) : (Xuv ∩O2(X{u,v}))|
= |Xuv||O2(X{u,v}) : O2(Xuv)|,

yielding |O2(X{u,v}) : O2(Xuv)| = 2. If p = 2 then Fit(X{u,v}) = O2(X{u,v})
and Fit(Xuv) = O2(Xuv). If p 6= 2 then O2(Xuv) = 1, |O2(X{u,v})| = 2,
and so Fit(X{u,v}) = Op(Xuv)× Z2. This completes the proof.

3.2. Assume that Hypothesis 3.1 holds and Gv is soluble. Then G
Γ (v)
v

is an affine 2-transitive group. Let soc(G
Γ (v)
v ) = Zf

p . Then d = pf . Re-

calling that d ≥ 6, we have G
[1]
uv = 1 by Theorem 2.4, and so Guv .

(G
Γ (v)
v )u×(G

Γ (u)
u )v. If Guv is abelian then Γ is known by [22]. Thus we

assume further that Guv is not abelian. Then (G
Γ (v)
v )u is nonabelian, and

so (G
Γ (v)
v )u 6≤ GL1(p

f ); in particular, f > 1. Since (G
Γ (v)
v )u is soluble, by

[2, Table 7.3], we have the following lemma.

Lemma 3.5. Suppose that Hypothesis 3.1 holds, Gv is soluble and Guv is not

abelian. Let soc(G
Γ (v)
v ) = Zf

p , where p is a prime. Then f > 1, and one of
the following holds:

(1) f = 2, and either SL2(3)E (G
Γ (v)
v )u ≤ GL2(p) and p ∈ {3, 5, 7, 11, 23},

or p = 3 and (G
Γ (v)
v )u = Q8;

(2) 21+4
+ :Z5 ≤ (G

Γ (v)
v )u ≤ 21+4

+ .(Z5:Z4) < 21+4
+ .S5, and pf = 34;

(3) (G
Γ (v)
v )u 6≤ GL1(p

f ), (G
Γ (v)
v )u ≤ ΓL1(p

f ) and |(GΓ (v)
v )u| is divisible by

pf − 1.

Consider the case (3) in Lemma 3.5. Write

ΓL1(p
f ) = 〈τ, σ | τpf−1 = 1 = σf , σ−1τσ = τp〉.

Let 〈τ〉 ∩ (G
Γ (v)
v )u = 〈τm〉, where m | (pf − 1). Then

(GΓ (v)
v )u/〈τm〉 ∼= 〈τ〉(GΓ (v)

v )u/〈τ〉 . 〈σ〉.

Set (G
Γ (v)
v )u/〈τm〉 ∼= 〈σe〉 for some divisor e of f . Then

(GΓ (v)
v )u ∼= Z pf−1

m

.Z f
e
.

Choose τ lσk ∈ (G
Γ (v)
v )u with (G

Γ (v)
v )u = 〈τm〉〈τ lσk〉. Then (τ lσk)

f
e ∈ 〈τm〉

but (τ lσk)j 6∈ 〈τm〉 for 1 ≤ j < f
e . It follows that σk has order f

e . Then

9



σk = σie for some i with (i, fe ) = 1, and then (σk)i
′

= σe for some i′. Thus,
replacing τ lσk by a power of it if necessary, we may let k = e. Then

(GΓ (v)
v )u = 〈τm〉〈τ lσe〉.

Further, (G
Γ (v)
v )u = 〈τm〉〈(τm)iτ lσe〉 for an arbitrary integer i, thus we may

assume further 0 ≤ l < m. By [6, Proposition 15.3], letting π(n) be the set
of prime divisors of a positive integer n, we have

(>) π(m) ⊆ π(pe− 1), me | f and (m, l) = 1; in particular, m = 1 if l = 0.

Suppose that Xuv is nonabelian. (The case where Xuv is abelian is left

in Section 5.) Since X
[1]
uv ≤ G

[1]
uv = 1, we have

X [1]
v E (XΓ (u)

u )v ∼= (XΓ (v)
v )u, Xuv . (XΓ (u)

u )v×(XΓ (v)
v )u.

This yields that (X
Γ (v)
v )u is nonabelian. Then a limitation on π(|Xuv|) is

given as follows.

Lemma 3.6. Assume that Lemma 3.5 (3) holds and Xuv is nonabelian. Then

(X
Γ (v)
v )u ∼= Zm′ .Z f

e′
, where m′ and e′ satisfy

(1) Zm′
∼= (X

Γ (v)
v )u ∩ 〈τm〉, mm′ | pf − 1, e | e′ | f ; and

(2) m′ > 1, e′ < f , π(pf − 1) \ π(pe
′ − 1) ⊆ π(m′) ⊆ π(|Xuv|).

Proof. Recall that (X
Γ (v)
v )u E (G

Γ (v)
v )u = 〈τm〉〈τ lσe〉 ∼= Z pf−1

m

.Z f
e
. Then

(XΓ (v)
v )u/((X

Γ (v)
v )u ∩ 〈τm〉) ∼= (XΓ (v)

v )u〈τm〉/〈τm〉 . Z f
e
,

yielding (X
Γ (v)
v )u ∼= Zm′ .Z f

e′
with m′ and e′ satisfying (1). Since Xuv is

nonabelian, (X
Γ (v)
v )u is nonabelian, and so m′ > 1 and e′ < f .

By the above (>), each prime r ∈ π(pf − 1) \ π(pe
′ − 1) is a divisor of

|〈τm〉| = pf−1
m . Let R be the unique subgroup of order r of 〈τm〉. Then, since

R is normal in (G
Γ (v)
v )u, either R ≤ (X

Γ (v)
v )u or R(X

Γ (v)
v )u = R×(X

Γ (v)
v )u.

Suppose that the latter case occurs. Since e′ < f , we may let τnσe
′ ∈

(X
Γ (v)
v )u \ 〈τm〉. Then σe

′
centralizes R. Thus xp

e′
= x for x ∈ R, yielding

r | (pe′−1), a contradiction. Then R ≤ (X
Γ (v)
v )u∩〈τm〉 ∼= Zm′ . Noting that

m′ is a divisor of |Xuv|, the result follows.

4. Graphs with insoluble vertex-stabilizers

In this and next sections, we prove Theorem 1.1. Thus, we let G, T , X
and Γ = (V,E) be as in Hypothesis 3.1. Our task is to determine which pair
(G0, H0) listed in [18, Tables 14-20] is a possible candidate for (X,X{u,v}),
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and determine whether or not the resulting triple (G,Gv, G{u,v}) meets the
conditions (1) and (2) in Lemma 2.1.

In this section, we deal with the case where Gv is insoluble, that is, Xv

is described as in Lemma 3.3. First, by the following lemma, (4) and (5) of
Lemma 3.3 are excluded.

Lemma 4.1. (4) and (5) of Lemma 3.3 do not occur.

Proof. Suppose that Lemma 3.3 (4) or (5) holds. By Theorem 2.4, X
[1]
uv =

1. Then Xv = X
[1]
v .X

Γ (v)
v , X

[1]
v
∼= (X

[1]
v )Γ (u) E (X

Γ (u)
u )v ∼= (X

Γ (v)
v )u, and

Xuv . (X
Γ (v)
v )u×(X

Γ (u)
u )v. Set q = pf with p a prime. Then the pair

(X
Γ (v)
v , (X

Γ (v)
v )u) is given as follows:

X
Γ(v)
v (X

Γ(v)
v )u

Sz(q).e pf+f :(q − 1).e e a divisor of f, p = 2, odd f > 1

Ree(q).e pf+2f :(q − 1).e e a divisor of f, p = 3, odd f > 1

In particular, Op(X{u,v}) is not abelian.
We next show that none of the pairs (G0, H0) in [18, Tables 14-20]

gives a desired pair (X,X{u,v}). Since Op(X{u,v}) is nonabelian, those pairs
(G0, H0) with Op(H0) abelian are not in our consideration. In particular,
soc(X) is not isomorphic to an alternating group. Also, noting that X{u,v}
has a subgroup of index 2, those H0 having no subgroup of index 2 are
excluded.
Case 1. Suppose that soc(X

Γ (v)
v ) = Ree(q). Then p = 3, O3(X{u,v}) is

nonabelian and of order 33f , 34f , 35f or 36f , |X{u,v}| is a divisor of 2 · 36f ·
(q − 1)2f2 and divisible by 2(q − 1). Checking the orders of those H0 given
in [18, Tables 15], we conclude that soc(X) is not a sporadic simple group.

Suppose that soc(X) is a simple exceptional group of Lie type. By
[18, Table 20], we conclude that (X,X{u,v}) is one of (Ree(3t), [33t]:Z3t−1)

and (G2(3
t).Z2l+1 , [36t]:Z2

3t−1.Z2l+1), where 2l is the 2-part of t. Recall that

|X{u,v}| is a divisor of 2 · 36f · (q− 1)2f2 and divisible by 2(q− 1). It follows
that f = t, X = G2(q).Z2l+1 and X{u,v} ∼= [q6]:Z2

q−1.Z2l+1 . This implies

that X
[1]
v 6= 1, in fact, |O3(X

[1]
v )| = q3. Thus O3(Xv) 6= 1 and Xv has a

quotient Ree(q).e. Checking the maximal subgroups of G2(q).Z2l+1 , refer
to [15, Theorems A and B], we conclude that G2(q).Z2l+1 has no maximal
subgroup containing such Xv as a subgroup, a contradiction.

Suppose that soc(X) is a simple classical group over a finite field of order
rt, where r is a prime. Since f > 1 is odd, 3f − 1 has an odd prime divisor,
and so X{u,v} is not a {2, 3}-group as |X{u,v}| is divisible by 3f − 1. Recall

that O3(X{u,v}) is nonabelian and of order 33f , 34f , 35f or 36f . Checking the
groups H0 given in [18, Table 16-19], we conclude that soc(X) = PSLn(rt)
or PSUn(rt), where n ∈ {3, 4}. Take a maximal subgroup M of X such
that Xv ≤ M . Then M has a simple section (that is, a quotient of some
subgroup) Ree(q). Recall that q > 3. Checking Tables 8.3-8.6 and 8.8-8.11

11



given in [1], we conclude that none of PSL3(r
t), PSL4(r

t), PSU3(r
t) and

PSU4(r
t) has such maximal subgroups, a contradiction.

Case 2. Suppose that soc(X
Γ (v)
v ) = Sz(q). Then q = 2f , |O2(X{u,v})| =

22fa, 23fa or 24fa, where f > 1 is odd, and a = 1 or 2. Noting that
|X{u,v}| is divisible by 2(2f − 1), by Lemma 2.6, we conclude that X{u,v}
is not a {2, 3}-group. Since X{u,v} is nonabelian, it follows from [18, Table
15-20] that either (X,X{u,v}) is one of (2F4(2)′, [29]:5:4), (Sz(2t), [22t]:Z2t−1)
and (PSp4(2

t).Z2l+1 , [24t]:Z2
2t−1.Z2l+1), or soc(X) is one of PSLn(rt) and

PSUn(rt), where n ∈ {3, 4}, 2l is the 2-part of t, and r is odd if n =
4. The first pair leads to q = 23, and so |X{u,v}| is divisible by 7, a
contradiction. Checking the maximal subgroups of soc(X) (refer to [1,
Tables 8.3-8.6, 8.8-8.14]), the groups PSL3(r

t), PSU3(r
t), PSL4(r

t) and
PSU4(r

t) are excluded as they have no maximal subgroup with a sim-
ple section Sz(q). Thus (X,X{u,v}) = (PSp4(2

t).Z2l+1 , [24t]:Z2
2t−1.Z2l+1) or

(Sz(2t), [22t]:Z2t−1). Note that |X{u,v}| is a divisor of 2 · 24f · (q − 1)2f2

and divisible by 22f+1(2f − 1). It follows that X = PSp4(q).Z2l+1 , and

X
[1]
v
∼= [q2]:Zq−1. However, by [1, Table 8.14], PSp4(q).Z2l+1 has no max-

imal subgroup containing [q2]:Zq−1.Sz(q), a contradiction. This completes
the proof.

Lemma 4.2. Assume that (1) of Lemma 3.3 occurs. Then G, X, X{u,v} and
Xv are listed as in Table 3.

G X X{u,v} Xv s d

X PSL4(2).2, S8 24:S4 23:SL3(2) 2 7

X PSL5(2).2 [28]:S2
3.2 26:(S3×SL3(2)) 3 7

X F4(2).2 [222]:S2
3.2 [220].(S3×SL3(2)) 3 7

X,X.2 PSL4(3).2 31+4
+ :(2S4×2) 33:SL3(3) 2 13

X PSL5(3).2 [38]:(2S4)2.2 36.2S4.SL3(3) 3 13

Table 3.

Proof. Assume first that X
[1]
uv = 1. Then Xv = X

[1]
v .X

Γ (v)
v , X

[1]
v
∼=

(X
[1]
v )Γ (u) E (X

Γ (u)
u )v ∼= (X

Γ (v)
v )u, and Xuv . (X

Γ (v)
v )u×(X

Γ (u)
u )v.

Suppose that X
Γ (v)
v = PSL3(2). Then (X

Γ (v)
v )u ∼= S4, and thus X

[1]
v and

X{u,v} are given as follows:

X
[1]
v 1 22 A4 S4

X{u,v} 22:S3.2 24.S3.2 24:32.[4] 24:S2
3.2

In particular, 22 ≤ |O2(X{u,v})| ≤ 25. Check all possible pairs (X,X{u,v})
in [18, Tables 14-20]. Noting that A8

∼= PSL4(2) and PSU4(2) ∼= PSp4(3),

we conclude that X ∼= A8, X{u,v} ∼= 24:S2
3 and X

[1]
v
∼= A4; or X = M12 with

X{u,v} ∼= 21+4
+ :S3; or X ∼= PSU4(2) with X{u,v} ∼= 2A2

4.2. The group A8 is

12



excluded as it has no subgroup of the form of X
[1]
v .PSL3(2). The groups M12

and PSU4(2) are excluded as their orders are not divisible by d = 7.

Suppose that X
Γ (v)
v = PSL3(3). Then (X

Γ (v)
v )u ∼= 32:2S4. Thus X

[1]
v

and X{u,v} are given as follows:

X
[1]
v 1 32 32:2 32Q8 32:2A4 32:2S4

X{u,v} 32:2S4.2 34:2S4.2 34:([4].S4).2 34:Q2
8.S3.2 34:(2A4)2.[4] 34:(2S4)2.2

Note that O3(X{u,v}) ∼= 32 or 34. Checking the possible pairs (X,X{u,v}),

we have X{u,v} ∼= 34:23.S4 and X = A12 or PΩ+
8 (2); in this case, d = 13 is

not a divisor of |X|, a contradiction.

Now let X
[1]
uv be a nontrivial p-group. Then, by Theorem 2.4, Xv and

X{u,v} are given as follows:

Xv X{u,v} s d p

26.(S3×SL3(2)) [28].S2
3.2 3 7 2

[220].(S3×SL3(2)) [222].S2
3.2 3 7 2

23.SL3(2) [25].S3.2 2 7 2

24:SL3(2) [26].S3.2 2 7 2

36.(2A4×SL3(3)) [38].(2A4×2S4).2 3 13 3
36.(2S4×SL3(3)) [38].(2S4)2.2 3 13 3

33.SL3(3) [35].2S4.2 2 13 3
33.(2×SL3(3)) [35].(2×2S4).2 2 13 3

36:SL3(3) [38].2S4.2 2 13 3

Suppose that p = 2. Then |X{u,v}| is divisible by 9 if and only if
|O2(X{u,v})| ≥ 8, and O2(X{u,v}) contains no elements of order 8 unless
|O2(X{u,v})| ≥ 222. Check the pairs (G0, H0) given in [18, Tables 14-20] by
estimating |H0| and |O2(H0)|. We conclude that one of the following holds:

(i) X = PSL4(2).2 ∼= S8 and X{u,v} = 24:S4;

(ii) X = PSL5(2).2 and X{u,v} = [28].S2
3.2;

(iii) X = F4(2).2 and X{u,v} = [222].S2
3.2;

(iv) soc(X) = PSL3(4) and |O2(X{u,v})| = 26;

(v) X = PSU4(3).23 and |O2(X{u,v})| = 27;

(vi) X = He.2 and X{u,v} = [28]:S2
3.2.

Case (iv) yields that Xv
∼= 23:SL3(2) or 24:SL3(2); however, X has no such

subgroup by the Atlas [3]. Similarly, cases (v) and (vi) are excluded. For
(i), G = X and Γ is (isomorphic to) the point-plane incidence graph of the
projective geometry PG(3, 2). For (ii), G = X and Γ is (isomorphic to) the
line-plane incidence graph of the projective geometry PG(4, 2). If (iii) holds
then G = X and Γ is the line-plane incidence graph of the metasymplectic
space associated with F4(2), see [30].

Now let p = 3. Then |O3(X{u,v})| = 35 or 38, and X{u,v} has no normal
Sylow subgroup. Checking all possible pairs (X,X{u,v}) in [18, Tables 14-20],
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we know that (X,X{u,v}) is one of the following pairs:

(F4(8).2, 94.(21+4
+ :S2

3).2),

(PSL5(3).2, [38]:(2S4)
2.2), (PSL4(3).2, 31+4

+ :(2×2S4)).

Note that O3(Xv) ≤ O3(X{u,v}). Then, for the first pair, O3(X{u,v}) ∼= Z4
9

has no subgroup isomorphic to Z6
3, which is impossible. For the second

pair, G = X and Γ is (isomorphic to) the line-plane incidence graph of the
projective geometry PG(4, 3). The last pair implies that X ∼= PGL4(3),
G = X or X.2, and Γ is (isomorphic to) the line-plane incidence graph of
the projective geometry PG(3, 3). This completes the proof.

Lemma 4.3. Assume that Lemma 3.3 (2) holds. Then d = q+ 1, and either
Γ is (X, 4)-arc-transitive, or G, X, X{u,v} and Xv are listed as in Table 4.

Proof. Let X
Γ (v)
v = PSL2(q).[o], and q = pf > 4, where p is a prime and

o | (2, q − 1)f . Note that Γ is (X, 2)-arc-transitive, see Lemma 3.3. By

Theorem 2.4, if X
[1]
uv 6= 1 then Γ is (X, 4)-arc-transitive. Thus we assume

next that X
[1]
uv = 1, and then Lemma 3.4 works.

Note that Xv = X
[1]
v .X

Γ (v)
v , X

[1]
v
∼= (X

[1]
v )Γ (u) E (X

Γ (u)
u )v ∼= (X

Γ (v)
v )u =

pf : q−1
(2,q−1) .[o], and Xuv . (X

Γ (v)
v )u×(X

Γ (u)
u )v. We have Op(X{u,v}) = Zif

p .a,

where i ∈ {1, 2} and a is a divisor of (2, p). It is easily shown that i = 2

if and only if Op(X
[1]
v ) = Zf

p . Combining with Lemma 3.4, we need only
consider those pairs (G0, H0) in [18, Tables 14-20] which satisfy

(a) Op(H0) = Zif
p .a, where i ∈ {1, 2} and a is a divisor of (2, p); |Fit(H0) :

Op(H0)| ≤ 2; G0 has a subgroup, say M0, such that |M0 : (M0∩H0)| =
q + 1, |H0 : (M0 ∩H0)| = 2, and M0 has a simple section PSL2(q);

(b) |H0:Op(H0)| is a divisor of 2(q − 1)2f2 and divisible by q − 1; if i = 1
then |H0:Op(H0)| is a divisor of 2(q − 1)f .

Case 1. Assume that soc(X) is an alternating group. Using [18, Table 14],
we have G = X = Sp and X{u,v} ∼= Zp:Zp−1, where p ∈ {7, 11, 17, 23}. Then
Xv = PSL2(p) and d = p+1. In particular, Γ is a bipartite graph with
two parts being the orbits of Ap on the vertex set V . For p = 17 or 23,
the group PSL2(p) has no transitive permutation representation of degree
p, and thus it cannot occur as a subgroup of Sp. Therefore, p = 7 or 11,
and G, X and X{u,v} are listed in Table 4. In fact, Xuv and X{u,v} are
the normalizers of some Syolw p-subgroup in PSL2(p) and Sp, respectively.
(Note that A7 can be embedded in PSL4(2) acting on the projective points
or the hyperplanes of the projective geometry PG(3, 2), see [19, Table III]
for example. Then, for p = 7, it is easily shown that the resulting graph is
the point-plane nonincidence graph of PG(3, 2).)

Case 2. Assume that soc(X) is a simple sporadic group. By [18, Table 15],
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G X X{u,v} Xv d Remark

Sp Sp Zp:Zp−1 PSL2(p) p+1 p ∈ {7, 11},Γ bipartite

M11 M11 32:Q8.2 M10 10 K11

J1 J1 Z11:Z10 PSL2(11) 12

J3.2 J3.2 Z19:Z18 PSL2(19) 20 Γ bipartite

O′N.2 O′N.2 Z31:Z30 PSL2(31) 32 Γ bipartite

B B Z19:Z18×Z2 PGL2(19) 20 Xv < Th < B
Z23:Z11×Z2 PSL2(23) 24 Xv < Fi23 < B

M M Z41:Z40 PSL2(41) 42 see [24] for Xv

PSL2(19) PSL2(19) D20 PSL2(5) 6

X,X.2 PGL2(9) D20 PSL2(5) 6 K6,6

X,X.2 M10 Z5:Z4 PSL2(5) 6 K6,6

PGL2(11) PGL2(11) D20 PSL2(5) 6 Γ bipartite

X,X.2 PSL3(r) 32:Q8 PSL2(9) 10 r prime, [1, Tables 8.3, 8.4]
r ≡ 4, 16, 31, 34 mod 45

X,X.2 PSU3(r) 32:Q8 PSL2(9) 10 r prime, [1, Tables 8.5, 8.6]
r ≡ 11, 14, 29, 41 mod 45

Table 4.

with the restrictions (a) and (b), the only pairs (G0, H0) are listed as follows:

(M11, 3
2:Q8.2), (J1,Z11:Z10), (J1,Z7:Z6), (J3.2,Z19:Z18), (J4,Z29:Z28),

(O′N.2,Z31:Z30), (B,Z19:Z18×Z2), (B,Z23:Z11×Z2),
(M,Z41:Z40), (M,Z47:Z23×Z2).

In particular, Op(H0) is a Sylow p-subgroup of G0. This yields that X
[1]
v = 1,

and so soc(Xv) = PSL2(p
f ).

If (X,X{u,v}) is one of (J1,Z7:Z6), (J4,Z29:Z28) and (M,Z47:Z23×Z2),
then Xv = PSL2(p) for p = 7, 29 and 47, respectively; however, by the
Altas [3] and [36, Tables 5.6 and 5.11], X has no subgroup PSL2(p), a
contradiction. Thus G, X and X{u,v} are listed in Table 4. (Note that the
Monster M has a maximal subgroup PSL2(41) by [24].)
Case 3. Assume that soc(X) is a simple group of Lie type over a finite field
of order rt, where r is a prime. We first show r 6= p.

Suppose that r = p. Then, by (a), either Op(H0) is abelian or r = p = 2.
For r = p > 2, noting that |H0| has a divisor q − 1, there does not exist H0

in [18, Tables 16-20] such that Op(H0) is abelian. Thus we have r = p = 2.
Recalling that pf > 4 and |H0/Op(H0)| is divisible by 2f −1, it follows from
Lemma 2.6 that H0/Op(H0) is not a {2, 3}-group. Checking those H0 given
in [18, Tables 16-20], we conclude that (G0, H0) is one of the following pairs:

(PSL2(2
t),Zt

2:Z2t−1), (PSL3(2
t), [23t]:[ (2

t−1)2
(3,2t−1) ].2),

(PSU3(2
t), [23t]:Z 22t−1

(3,2t+1)

),

(PSp4(2
t).Z2l+1 , [24t]:Z2

2t−1.Z2l+1), where 2l is the 2-part of t,

(Sz(2t), [22t]:Z2t−1), (
3D4(2), [211]:(Z7 × S3)), (2F4(2)′, [29]:5:4).
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First, the pair (Sz(2t), [22t]:Z2t−1) is excluded as Sz(2t) has no subgroup with
a section PSL2(2

f ). For the last two pairs, we have f = 5 and 4 respectively,
which yields that 2f − 1 is not a divisor of |H0|, a contradiction. For the
three pairs after the first one, we have t < f , thus G0 has no maximal
subgroup with a section PSL2(2

f ), a contradiction. Suppose finally that
(X,X{u,v}) = (PSL2(2

t),Zt
2:Z2t−1). Then 3 ≤ f < t ≤ 2f + 1. Noting that

2f − 1 is a divisor of 2t − 1, it follows that f is a divisor of t, and so t = 2f .

Then O2(X{u,v}) = 22f , yielding |O2(X
[1]
v )| = 2f . Thus O2(Xv) 6= 1 and

Xv has a section PSL2(2
f ). Check the subgroups of PSL2(2

2f ), refer to [13,
II.8.27]. We conclude that PSL2(2

2f ) has no subgroup isomorphic to Xv, a
contradiction.

We assume that r 6= p in the following.
Subcase 3.1. We first deal with those pairs (G0, H0) such that H0 is included
in some infinite families in [18, Tables 16-20]. Note that r 6= p, and we
consider only those H0 having subgroups of index 2. It follows that either
H0/Fit(H0) is a {2, 3}-group, or G0 = E8(q

′) and |H0| = 30(q′8±q′7∓q′5 −
q′4∓q′3±q′+1), where q′ = rt. Suppose the latter case occurs. It is easily
shown that q′8±q′7∓q′5− q′4∓q′3±q′+1 is divisible by some primitive prime
divisor s of q′15 − 1 or of q′30 − 1. Noting that s ≥ 17, we know that H0

has normal cyclic Sylow s-subgroup. It follows from (a) that 17 ≤ p = s =
q′8±q′7∓q′5− q′4∓q′3±q′+1. In particular, Op(H0) = Zp and f = 1. By (b),
|H0| is divisible by p − 1, and then 30 is divisible by p − 1. This implies
that 30 = p− 1 = q′8±q′7∓q′5 − q′4∓q′3±q′, which is impossible. Therefore,
H0/Fit(H0) is a {2, 3}-group.

By (a), Fit(H0) a {2, p}-group. Then |H0| has no prime divisor other
than 2, 3 and p. Since pf − 1 is a divisor of |H0|, by Lemma 2.6, we

have f < 3. Recall that (X
Γ (u)
u )v ∼= (X

Γ (v)
v )u = pf : q−1

(2,q−1) .[o], and Xuv .

(X
Γ (v)
v )u×(X

Γ (u)
u )v, where o is a divisor of (2, q − 1)f . Then Xuv/Op(Xuv)

has an abelian Hall 2′-subgroup. Note that XuvOp(X{u,v})/Op(X{u,v}) ∼=
Xuv/(Op(X{u,v} ∩Xuv) = Xuv/Op(Xuv), and |X{u,v} : XuvOp(X{u,v})| ≤ 2.
It follows that X{u,v}/Op(X{u,v}) has an abelian Hall 2′-subgroup. Thus, as
a possible candidate for X{u,v}, the quotient of H0 over Op(H0) has abelian
Hall 2′-subgroups. In particular, H0/Op(H0) has no section A4.

Considering the restrictions on H0, r and f , we conclude that (G0, H0)
can only be one of the following pairs:

(PSL2(r
t),Z rt±1

(2,rt−1)

:Z2), (PSL3(r
t), [ (r

t−1)2
(3,rt−1) ].S3), (PSU3(r

t), [ (r
t+1)2

(3,rt+1) ].S3);

(PSp4(2
t).Z2l+1 ,Z2

2t±1.[2
l+4]), (PSp4(2

t).Z2l+1 ,Z22t+1.[2
l+3]), t ≥ 3;

(Sz(2t),Z2t−1:Z2), (Sz(2t),Z
2t±
√
2t+1+1

:Z4), t ≥ 3;

(Ree(3t),Z
3t±
√
3t+1+1

.Z6), (Ree(3t),Z3t+1.Z6), t ≥ 3;

(G2(3
t).Z2l+1 ,Z2

3t±1.[3 · 2
l+3]), (G2(3

t).Z2l+1 ,Z32t±3t+1.[3 · 2l+2]), t ≥ 2;

(3D4(r
t),Zr4t−r2t+1:Z4), (2F4(2

t),Z
22t±

√
23t+1+2t±

√
2t+1+1

.Z12), t ≥ 3;

(F4(2
t).Z2l+1 ,Z24t−22t+1.[3 · 2l+3]), t ≥ 2;
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where the power 2l appeared means the 2-part of t. Recall that |Fit(H0) :
Op(H0)| ≤ 2 and |H0 : Op(H0)| is divisible by pf − 1. This allows us
determine the values of pf and rt. As an example, we only deal with the

second pair. Suppose that (G0, H0) = (PSL3(r
t), [ (r

t−1)2
(3,rt−1) ].S3). Considering

the structures of Fit(H0) and Op(H0), either (3, rt − 1) = 1, p = rt − 1 and
f ∈ {1, 2}, or f = 1 and p = rt − 1 = 3. The latter implies that PSL2(q)
is soluble, which is not the case. Assume that the former case holds. Then
|S3| is divisible by rt − 1 − 1 or (rt − 1)2 − 1. Then the only possibility is
that (pf , rt) = (7, 8). The other pairs can be fixed out in a similar way, the
details is omitted here. Eventually, we conclude that (G0, H0, p, f) is one of
(PSL2(19),D20, 5, 1), (PSL3(8), 72:S3, 7, 1) and (Sz(8),Z5:Z4, 5, 1). By the
Atlas [3], neither PSL3(8) nor Sz(8) has subgroup with a section PSL2(p).
Thus, in this case, G, X and X{u,v} are given as in Table 4.

Subcase 3.2. For the pairs (G0, H0) not appearing in Subcase 3.1, we check
the finite number of H0 one by one. We observed that either p = 2, or
H0/Op(H0) is a {2, 3}-group. Recall that r 6= p.

Suppose that p = 2. Recalling that q = 2f > 4, we have f ≥ 3.
In particular, since |H0| is divisible by 2f − 1, H0 is not a {2, 3}-group by
Lemma 2.6. Then the only possibility is thatG0 = 2F4(2)′ andH0 = [29]:5:4.
Thus |O2(H0)| = 29, it follows from (a) that f = 4 or 9, and then G0 has a
section PSL2(2

4) or PSL2(2
9), which is impossible by checking the (maximal)

subgroups of 2F4(2)′. Thus p > 2, and H0/Op(H0) is a {2, 3}-group; in

particular, by (a), Op(H0) = Zif
p for some i ∈ {1, 2}.

Suppose that H0 has a section A4. Then H0 has no normal Sylow 3-
subgroup. Further, H0 has no quotient A4 as H0 has a subgroup of index
2. If (3, (q − 1)f) = 1 then, by (b), we conclude that p = 3 and Op(H0) is
the unique Sylow 3-subgroup of H0, a contradiction. Thus 3 is a divisor of
(q − 1)f . Check those H0 in [18, Table 16-20] which have a section A4 and

do not appear in Subcase 3.1. Recalling r 6= p > 2 and Op(H0) = Zif
p , it

follows that either Op(H0) = Z2
3 or (G0, H0) = (F4(2).4,Z2

7:(3× SL2(3)).4).
Since 3 is a divisor of (q − 1)f , we get G0 = F4(2).4 and q = pf = 7 or 72.
By (b), for q = 7 or 72, the order of H0 should be a divisor of 72 or 192
respectively, which is impossible.

The above argument allows us ignore many cases without further inspec-
tion. Inspecting carefully the remaining pairs, the possible candidates for
(X,X{u,v}) are as follows:

(PGL2(9),D20), (M10,Z5:Z4), (PGL2(11),D20);
(PSL3(r), 3

2:Q8), where r ≡ 4, 7 mod 9;
(PSp4(4).4,Z17:Z16), (PSp4(4).4, 52:[25]);
(PSU3(r), 3

2:Q8), where 5 < r ≡ 2, 5 mod 9;
(PSU3(2

t), 32:Q8), where t is a prime no less than 5;
(2F4(2),Z13:Z12).
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For the first three pairs, G, X and X{u,v} are easily determined and given
as in Table 4. The pair (PSp4(4).4,Z17:Z16) is excluded as PSp4(4).4 has no
subgroup PSL2(17), and the pair (2F4(2),Z13:Z12) is excluded as 2F4(2) has
no subgroup PSL2(13). Suppose that X ∼= PSU3(2

t) and X{u,v} ∼= 32:Q8.
Then we have Xv

∼= PSL2(9); however, by [1, Tables 8.3, 8.4], PSU3(2
t)

has no subgroup PSL2(9), a contradiction. Suppose that (X,X{u,v}) =
(PSp4(4).4, 52:[25]). Then Xv contains a Sylow 5-subgroup P of X and has
a section PSL2(5) or PSL2(25). By the information for PSp4(4).4 given in
the Atlas [3], we conclude that Xv ≤ M ∼= (A5 × A5):2

2 < PSp4(4).2 <
PSp4(4).4. Note that Xuv = 52:[24], which should be the normalizer of
P in Xv. Using GAP [10], computation shows that |NL(P )| ≤ 200 for
any maximal subgroup L of M with P ≤ L. It follows that Xv = M ∼=
(A5 ×A5):2

2, yielding d = |Xv : Xuv| = 36 6= q + 1, a contradiction.
Let (X,X{u,v}) = (PSL3(r), 3

2:Q8). Then Xuv
∼= 32:4. It is easily shown

that p = 3 and Xv
∼= PSL2(9). Since r ≡ 4, 7 mod 9, we know that

PSL3(r) has a Sylow 3-subgroup Z2
3. By [1, Tables 8.3, 8.4], PSL3(r) has

a subgroup PSL2(9) if and only if r ≡ 1, 4 mod 15. Thus, in this case,
we have r ≡ 11, 14, 29, 41 mod 45. For a subgroup PSL2(9) of PSL3(r),
taking a Sylow 3-subgroup Q of PSL2(9), the normalizers of Q in PSL2(9)
and PSL3(r) are (isomorphic to) 32:4 and 32:Q8, respectively. Then these
two normalizers of Q can serve as the roles of Xuv and X{u,v}, respectively.
Thus X and X{u,v} are given as in Table 4. Noting that G = XG{u,v},
we have G{u,v}/X{u,v} ∼= G/X . Out(PSL3(r)) ∼= S3, and so G = X.[m]
and G{u,v} = X{u,v}.[m], where m is a divisor of 6. Thus |Guv:Xuv| = m,
since |Gv:Guv| = 10 = |Xv:Xuv|, we have |Gv:Xv| = m. By [1, Table
8.4], NAut(PSL3(r))(Xv) = Xv.2. Since Xv E Gv, it follows that m ≤ 2.
Thus G = X or X.2, and if G = X.2 then Gv = Xv.2 ∼= PGL2(9) and
G{u,v} ∼= 32:Q8.2. The pair (PSU3(r), 3

2:Q8) is similarly dealt with, the
details are omitted. This completes the proof.

Lemma 4.4. If (3) of Lemma 3.3 holds then G, X, X{u,v} and Xv are listed
in Table 5.

G X X{u,v} Xv d Remark

HS.2 HS.2 [53]:[25] PSU3(5):2 126 Γ bipartite

Ru Ru [53]:[25] PSU3(5):2 126

Table 5.

Proof. Let X
Γ (v)
v = PSU3(q).[o] and q = pf > 2, where p is a prime and

o | 2(3, q+1)f . Then (X
Γ (v)
v )u = pf+2f : q2−1

(3,q+1) .[o], and X
[1]
uv = 1 by Theorem

2.4. Thus |Op(X{u,v})| = p3f .a, p4f .a, p5f .a or p6f .a, where a is a divisor
of (2, p). Moreover, Op(X{u,v}) is nonabelian, and X{u,v}/Op(X{u,v}) has
a subgroup Z q2−1

(3,q+1)

. We next determine which pair (G0, H0) in [18, Tables
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14-20] is a possible candidate for (X,X{u,v}). Note that we may ignore those
H0 which either has no subgroup of index 2 or has abelian maximal normal
p-subgroup. In particular, soc(X) is not an alternating group.

Case 1. Let (G0, H0) be a pair with H0 included in some infinite families
given in [18, Table 16-20]. Since Op(X{u,v}) is nonabelian, we conclude that
(X,Op(X{u,v})) is one of the following pairs:

(PSL3(p
t).2, [p3t]), (PGL3(p

t).2, [p3t]) (with p = 2),
(PSU3(p

t), [p3t]), (PSp4(p
t).Z2l+1 , [p4t]) (with p = 2),

(Sz(pt), [p2t]), (Ree(pt), [p3t]) and (G2(p
t).Z2l+1 , [p6t]),

where 2l is the 2-part of t. Check the maximal subgroups of PSp4(p
t).Z2l+1 ,

Sz(pt) and Ree(pt), refer to [1, Table 8.14], [28, Theorem 9] and [15, Theo-
rem C], respectively. We conclude that none of PSp4(t

f ).Z2l+1 , Sz(pt) and
Ree(pt) has maximal subgroups with a simple section PSU3(q), and they are
excluded. For the first three and the last pairs, |X/Op(X{u,v})| is a divisor
of 2(pt − 1)2, and Op(X{u,v}) = [p3t] or [p6t]. Clearly, t ≤ 2f .

Suppose that t = 2f . Then soc(X) = PSL3(q
2) or PSU3(q

2), and

Op(X{u,v}) = [q6]. It follows that Op(X
[1]
v ) = [q3]. Thus Op(Xv) 6= 1 and

Xv has an almost simple quotient PSU3(q).[o]. Checking Tables 8.3 and 8.5
given in [1], we conclude that X has no maximal subgroup containing Xv, a
contradiction. If t = f then we have (X,Op(X{u,v})) = (G2(p

t).Z2l+1 , [q6]),
and we get a similar contradiction by checking the maximal subgroups of
G2(p

t).Z2l+1 .

Suppose that f 6= t < 2f . Then f > 1. Recalling that X{u,v}/Op(X{u,v})

has a subgroup Z q2−1
(3,q+1)

, we know that p2f−1 is a divisor of 2(3, q+1)(pt−1)2.

If p2f − 1 has a primitive prime divisor say s, then s ≥ 2f + 1 ≥ 5, and
s is not a divisor of 2(3, q + 1)(pt − 1)2, a contradiction. It follows from
Zsigmondy’s theorem that 2f = 6 and p = 2, and so t = 1 or 2. Then 7 is a
divisor of p2f − 1 but not a divisor of 2(3, q + 1)(pt − 1)2, a contradiction.

Case 2. Let (G0, H0) be one of the pairs in [18, Table 15-20] which is not
considered in Case 1. Assume that X{u,v}/Op(X{u,v}) is a {2, 3}-group.

Then p2f −1 has no prime divisor other than 2 and 3. It follows that f = 1,
and so p = q > 2. Calculation shows that p ∈ {3, 5, 7}. For q = p = 3, it is
easily shown that X{u,v}/Op(X{u,v}) is a 2-group. These observations yield
that either q = p = 3 and X{u,v}/Op(X{u,v}) is a 2-group, or X{u,v} is not a
{2, 3}-group.

Recall that X{u,v}/Op(X{u,v}) has a subgroup Z q2−1
(3,q+1)

, and Op(X{u,v})

has order pif .a, where 3 ≤ i ≤ 6. It follows that (X,X{u,v}) is one of the
following pairs:

(HS.2, [53]:[25]), (Ru, [53]:[25]), (McL, [53]:3:8), (Co2, [5
3]:4S4),

(Th, [53]:4S4), (J4, [113]:(5× 2S4)).
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Then q = p ∈ {5, 11} and X
[1]
v = 1. In particular, soc(Xv) = PSU3(p),

and X{u,v} is the normalizer NX(P ) of some Sylow p-subgroup P of X.
Thus Xuv = Xv ∩ X{u,v} ≤ NXv(P ). For the pairs (HS.2, [53]:[25]) and
(Ru, [53]:[25]), by the Atlas [3], X{u,v} is a normalizer of some Sylow 5-
subgroup, which intersects a maximal subgroup PSU3(5):2 of soc(X) at
[53]:8:2, thus G, X and X{u,v} are listed in Table 5. The other pairs are
excluded as follows.

First, the group Th is excluded as it has no maximal subgroup with a
simple section PSU3(5), refer to [36, Table 5.8]. For the pair (McL, [53]:3:8),
by the Atlas [3], we have Xv = PSU3(5), and so Xuv ≤ NPSU3(5)(P ) =
[53]:8, which contradicts that |X{u,v} : Xuv| = 2. For the pair (J4, [113]:(5×
2S4)), by [36, Table 5.8], Xv = PSU3(11).2, yielding Xuv ≤ NXv(P ) =
[113]:(5 × 8:2), we get a similar contradiction. For the pair (X,X{u,v}) =
(Co2, [5

3]:4S4), by the Atlas [3], Xv < HS.2 < Co2. Checking the maximal
subgroups of HS.2, we have Xv = PSU3(5) or Xv = PSU3(5):2. It follows
that Xuv ≤ NXv(P ) = [53]:8 or [53]:[25], and then |X{u,v} : Xuv| 6= 2, a
contradiction. This completes the proof.

5. Graphs with soluble vertex-stabilizers

Let G, T , X and Γ = (V,E) be as in Hypothesis 3.1. The following

lemma says that if Γ is a complete bipartite graph then Γ ∼= K6,6 and G
Γ (v)
v

is insoluble.

Lemma 5.1. Assume that Γ ∼= Kd,d. Then T ∼= A6, d = 6, Tv = PSL2(5)
and Tuv ∼= D10. In particular, Xuv is nonabelian.

Proof. Let G+ be the subgroup of G fixing the bipartition of Γ . Then
Gv ≤ G+, and Gv is 2-transitive on the partite set which does not contain
v. Thus G+ acts 2-transitively on each partite set, and these two actions
are not equivalent. Check the almost simple 2-transitive groups, refer to [2,
Table 7.4]. We conclude that T ∼= A6 or M12, Tv ∼= A5 or M11, and Tuv ∼= D10

or PSL2(11), respectively. Since Tuv is soluble, the lemma follows.

Assume that Gv is soluble, and let soc(G
Γ (v)
v ) = Zf

p , where p is a prime.
By Lemma 5.1, since Gv is soluble, Γ is not a complete bipartite graph.
Then we have the following result by [22, Theorem 3.3].

Lemma 5.2. Assume that Xuv is abelian. Then one of the following holds:

(1) T ∼= PSL2(p
f ), T{u,v} ∼= D 2(pf−1)

(2,p−1)

, Tv ∼= Zf
p :Z pf−1

(2,p−1)

and Γ ∼= Kpf+1;

(2) T = Sz(2f ), T{u,v} ∼= D2(2f−1), Tv
∼= Zf

2 :Z2f−1 and Γ is (T, 2)-arc-
transitive, where f ≥ 3 is odd.
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Remark. In Lemma 5.2, T{u,v} is soluble and maximal in T , and thus
X = T by the choice of X. For part (1), since Γ is (G, 2)-arc-transitive, G is
a 3-transitive group of degree pf +1, and thus X 6= G if p is odd. The graphs
satisfying part (2) are determined by [5, Construction 5.4 and Proposition
5.5]; in particular, for any given odd f ≥ 3, there is a unique (Sz(2f ), 2)-arc-
transitive of valency 2f , which has automorphism group Aut(Sz(2f )).

Lemma 5.3. Assume that (1) or (2) of Lemma 3.5 holds, and Xuv is non-
abelian. Then one of the following holds:

(1) G = X or X.2, X = M10, X{u,v} ∼= Z8:Z2, Xv
∼= 32:Q8 and Γ ∼= K10;

(2) G = X = PSL3(3).2, X{u,v} ∼= GL2(3):2, Xv
∼= 32:GL2(3), and Γ is

the point-line nonincidence graph of PG(2, 3).

Proof. Case 1. Assume that Lemma 3.5 (1) holds. Suppose first that

(X
Γ (v)
v )u = Q8. Then Xuv . Q8×Q8. This implies that |X{u,v}| is a divisor

of 27 and divisible by 24. Checking the Tables 14-20 in [18], we have X ∼=
PSL2(9).2 = M10 and X{u,v} ∼= Z8:Z2. In this case, Xv

∼= 32:Q8, and d = 9.
Since Γ has valency 9 and order |X : Xv| = 10, we have Γ ∼= K10, desired
as in part (1).

Suppose that (X
Γ (v)
v )u 6= Q8. If p = 3 and (G

Γ (v)
v )u = Q8, then (X

Γ (v)
v )u

is abelian, it follows that Xuv is abelian, a contradiction. Thus we have

SL2(3) E (G
Γ (v)
v )u ≤ GL2(p), and p ∈ {3, 5, 7, 11, 23}. Then (G

Γ (v)
v )u ≤

NGL2(p)(SL2(3)) = Zp−1 ◦GL2(3). Since (X
Γ (v)
v )u is nonabelian and normal

in (G
Γ (v)
v )u, we have Q8E(X

Γ (v)
v )u, and hence SL2(3)E(X

Γ (v)
v )u. Moreover,

|X{u,v}| is a divisor of 27 · 32 · (p − 1)2 and divisible by 24. Let M be an
arbitrary normal abelian subgroup of X{u,v}. Then M ∩ Xuv has index at

most 2 in M , and (M ∩Xuv)X
[1]
v /X

[1]
v is isomorphic to a normal subgroup of

(X
Γ (v)
v )u. Thus (M ∩Xuv)X

[1]
v /X

[1]
v . Zp−1. Since M ∩X [1]

v EX [1]
v and X

[1]
v

is isomorphic to a normal subgroup of (X
Γ (v)
v )u, we have M ∩X [1]

v . Zp−1.

Noting that (M ∩ Xuv)X
[1]
v /X

[1]
v
∼= M ∩ Xuv/(M ∩ X [1]

v ), it follows that
|M ∩Xuv| is a divisor of (p− 1)2. Thus |M | is a divisor of 2(p− 1)2.

The above observations allow us to consider only the pairs (G0, H0) in
[18, Tables 14-20] which satisfy the following conditions:

(c1) |H0| is a divisor of 27 · 32 · (p− 1)2 and divisible by 24; H0 has a factor
(a quotient of some subnormal subgroup) Q8; and H0 has no element
of order 32, 52 or 112;

(c2) If M is a normal abelian subgroup of H0 then |M | is a divisor of
2(p − 1)2; if p ∈ {7, 11, 23}, the order of O p−1

2
(H0) is a divisor of

(p−1)2
4 .

Checking the those H0 which satisfy conditions (c1) and (c2), we conclude
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that the possible pairs (X,X{u,v}) are listed as follows:

(M11, 3
2:Q8.2), (M11, 2S4), (M12, [2

5].S3), (M12, 3
2:2S4),

(J2, [2
6]:(3×S3)), (J3, [2

6]:(3×S3)), (Co3, [2
9].32.S3)),

(He.2, [28]:32.D8)), (McL.2, [26]:S2
3),

(PSL3(3), 32:2S4), (PSL3(3).2, 2S4:2), (PSL3(4).2, 22+4.3.2),
(PGL3(4).2, [26].3.S3), (PSL4(3).2, 2.S2

4.2), (PSL5(2).2, [28].S2
3.2),

(PSp4(4).4, [28]:3.12), (PSp4(4).4, 52:[25]), (PSp6(2), [27]:S2
3),

(PSp6(3), [28]:33.S3), (PSU3(3), 4.S4), (PSU4(2), 2.A2
4.2),

(PSU4(3), 2.A2
4.4), (PSU4(3).2, [25].S4), (PΩ+

8 (3).A4, 102:4A4),
(G2(2)′, 4.S4), (G2(3), SL2(3) ◦ SL2(3):2), (2F4(2)′, 52:4A4).

Note these groups X are included in the Atlas [3]. Inspecting the subgroups
of X, only the pair (PSL3(3).2, 2S4:2) gives a desired Xv

∼= 32:GL2(3), and
then the desired graph Γ has valency d = 9. In this case, the socle PSL3(3) of
X has two orbits on the vertex set of Γ , each of them has size 13 and can be
viewed as the point set or the line set of the projective plane PG(2, 3). This
forces that Γ is (isomorphic to) one of the following graphs: K13,13−13K2, the
point-line incidence graph and the point-line nonincidence graph of PG(2, 3).
Since Γ has valency 9, the graph Γ is the point-line nonincidence graph of
PG(2, 3). Then part (2) of this lemma follows.

Case 2. Let 21+4
+ :Z5 ≤ (G

Γ (v)
v )u ≤ 21+4

+ .(Z5:Z4). Then 21+4
+ E (X

Γ (v)
v )u,

and so, |X{u,v}| is a divisor of 215 · 52 and divisible by 26. Further, if M is
a normal abelian subgroup of X{u,v} then a similar argument as in Case 1
yields that |M | is a divisor of 25. It is easily shown that O2(Xuv) 6= 1, and
hence O2(X{u,v}) 6= 1. Checking the pairs (G0, H0) in [18, Tables 14-20],
either O2(H0) = 1 or |H0| has an odd prime divisor other than 5. Thus, in
this case, no desired pair (X,X{u,v}) exists. This completes the proof.

We assume next that Lemma 3.5 (3) occurs. Thus (G
Γ (v)
v )u 6≤ GL1(p

f )

and (G
Γ (v)
v )u ≤ ΓL1(p

f ). Then f > 1 and (G
Γ (v)
v )u . Zpf−1:Zf . Recall-

ing Xuv . (X
Γ (u)
u )v×(X

Γ (v)
v )u ≤ (G

Γ (u)
u )v×(G

Γ (v)
v )u, we have the following

simple fact.

Lemma 5.4. If (3) of Lemma 3.5 occurs then X{u,v} has no section Z3
t , Z5

r

or Z6
2, where t is a primitive prime divisor of pf − 1 and r is an arbitrary

odd prime.

Lemma 5.5. Assume that Xuv is nonabelian and (3) of Lemma 3.5 occurs.
Then pf 6= 26.

Proof. Suppose that pf = 26. Then X has order divisible by 26, Xuv .
Z63:Z6×Z63:Z6, and thus X{u,v} has a normal Hall 2′-subgroup and |X{u,v}|
is indivisible by 24. Checking Tables 14-20 given in [18], (X,X{u,v}) is one
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of the following pairs:

(S7,Z7:Z6), (M12.2, 3
1+2
+ :D8), (PSL2(2

6),D126), (PSL2(5
3),D126),

(PSL2(7937),D7938), (PSL3(8), 72:S3), (Sz(8),D14), (G2(3).2, [36]:D8).

The pair (PSL2(2
6),D126) yields that Xv

∼= 26:Z63, and thus Xuv is abelian,
this is not the case. The other pairs are easily excluded as none of them
gives a desired Xv. This completes the proof.

Lemma 5.6. Assume that Xuv is nonabelian and (3) of Lemma 3.5 occurs.
Suppose that Xuv has a normal abelian Hall 2′-subgroup. Then G = X or
X.2, X = M10, X{u,v} ∼= Z8:Z2, Xv

∼= 32:Q8 and Γ ∼= K10.

Proof. Note that X{u,v} = Xuv.2. The unique Hall 2′-subgroup of Xuv is
also the Hall 2′-subgroup of X{u,v}. Checking Tables 14-20 given in [18], we
know that (X,X{u,v}) is one of the following pairs:

(i) (PGL2(7),D16), (PSL3(2).2,D16), (PGL2(9),D16), (M10,Z8:Z2),
(A5,D10), (A6, 3

2:Z4), (M11, 3
2:Q8.2), (J1,D6×D10),

(PGL2(7),D12), (PGL2(9),D20), (M10,Z5:Z4), (PGL2(11),D20),
(PSL2(t

a),D 2(ta±1)
(2,t−1)

), (PSp4(4).4,Z17:Z16);

(ii) (PSL2(t
a),Za

t :Z ta−1
2

), t is a prime a ≤ 4 and ta − 1 is a power of 2;

(PSL3(t),Z2
3:Q8), t is a prime with t ≡ 4, 7 mod 9;

(PSU3(t),Z2
3:Q8), t is a prime with t ≡ 2, 5 mod 9;

(PSU3(2
a),Z2

3:Q8) with prime a > 3;
(PSp4(2

a).Z2b+1 ,D2
2(q±1):2.Z2b+1), (PSp4(2

a).Z2b+1 ,Z22a+1.4.Z2b+1), 2b

is the 2-part of a;
(Sz(22a+1),D2(22a+1−1)), (Sz(22a+1),Z22a+1±2a+1+1:Z4);
(3D4(t

a),Zt4a−t2a+1:Z4), t is a prime.

The pair (M10,Z8:Z2) yields that Xv
∼= 32:Q8 and d = 9. The third pair

in (i) implies that Xv
∼= Z2

3:Z8; however, Xuv is abelian, which is not the
case. For (PSL2(t

a),D 2(ta±1)
(2,ta−1)

), checking the subgroups of PSL2(t
a), we have

ta = pf and Xv
∼= Zf

p :Z pf−1
(2,p−1)

, and then Xuv is abelian, a contradction. The

other pairs in (i) are also excluded as |X| is indivisible by pf . (Note that
f > 1.)

Now we deal with the pairs in (ii). Note that, for an odd prime r,
the edge-stabilizer X{u,v} has a unique Sylow r-subgroup Or(X{u,v}). Then
Or(X{u,v}) is a Sylow subgroup of X by Lemma 2.7. This implies that the
unique Hall 2′-subgroup of X{u,v}, say K, is a Hall subgroup of X. Since

X{u,v} = Xuv.2, we have K ≤ Xuv. Note that |Xv:Xuv| = d = pf and
Xv is contained in a maximal subgroup of X. We now check the maximal
subgroups of X which contain K, refer to [13, II.8.27], [1, Tables 8.3-8.6,
8.14, 8.15] and [14, 16, 28]. Then one of the following occurs:

(iii) X = Sz(22a+1) and Xv
∼= Z2a+1

2 :Z22a+1−1;

23



(iv) X = PSp4(2
a).Z2b+1 and Xv . Sp2(2

2a):2.Z2b ;

(v) X = PSp4(2
a).Z2b+1 and Xv . Sp2(2

a) o S2.Z2b .

Item (iii) yields that Xuv is abelian, which is not the case. Item (iv)
gives Xuv = Xv, a contradiction. Suppose that (v) occurs, we have Xv

∼=
(Za

2:Z2a−1)
2:2.Z2b . Then 1 6= O2(Xv) ≤ O2(Gv), and hence d = |O2(Gv)|

by Lemma 2.5. Since Xv is transitive on Γ (v), it follows that pf = d = 22a.
Thus |Xuv| = (2a−1)22b+1, and so |X{u,v}:Xuv| = 8 > 2, a contradiction.

Corollary 5.7. Assume that Xuv is nonabelian and (3) of Lemma 3.5
occurs. If f = 2 then G = X or X.2, X = M10, X{u,v} ∼= Z8:Z2, Xv

∼= 32:Q8

and Γ ∼= K10.

Proof. Let f = 2. Then (X
Γ (v)
v )u . Zp2−1.Z2. Note that X{u,v} = Xuv.2

and Xuv . Zp2−1.Z2×Zp2−1.Z2. Then Lemma 5.6 is applicable, and the
result follows.

Let π0(p
f − 1) be the set of primitive primes of pf − 1. By Zsigmondy’s

theorem, if π0(p
f − 1) = ∅ and f > 1 then pf = 26, or f = 2 and p = 2t− 1,

where t is a prime. Thus, in view of Lemma 5.5 and Corollary 5.7, we assume
next that π0(p

f − 1) 6= ∅.

Lemma 5.8. Assume that π: = π0(p
f − 1) 6= ∅, Xuv is nonabelian and (3)

of Lemma 3.5 occurs. Then f ≥ 3, and

(1) π 6= π(|X{u,v}|) \ {2}, min(π) ≥ max{5, f+1};
(2) p 6≡ ±1 mod r and Or(X{u,v}) 6= 1 for each r ∈ π;

(3) X{u,v} has a unique (nontrivial) Hall π-subgroup, which is either cyclic
or a direct product of two cyclic subgroups.

Proof. By the assumptions in this lemma and Lemma 3.6, we have that

(X
Γ (v)
v )u ∼= Zm′ .Z f

e′
, and ∅ 6= π = π0(p

f − 1) ⊆ π(m′). For r ∈ π, since

pr−1 ≡ 1 mod r, we have f ≤ r−1, and so r ≥ f+1. In particular, r ≥ 5 and
p 6≡ ±1 mod r. Recall that X{u,v} = Xuv.2 and Xuv . Zm′ .Z f

e′
×Zm′ .Z f

e′
.

It follows that Or(X{u,v}) 6= 1, and Or(X{u,v}) is the unique Sylow r-
subgroup of X{u,v}. Clearly, Or(X{u,v}) is either cyclic or a direct product of
two cyclic subgroups. Then X{u,v} has a unique Hall π-subgroup F , which
is either cyclic or a direct product of two cyclic subgroups. Clearly, F 6= 1
and, by Lemma 5.6, X{u,v} has no normal abelian Hall 2′-subgroup. Then
π 6= π(|X{u,v}|) \ {2}, and the lemma follows.

Recall that X{u,v} has no section Z6
2 or Z5

3, see Lemma 5.4. Combining
with Lemma 5.8, we next check the pairs (G0, H0) listed in [18, Tables 14-20].

Lemma 5.9. Assume that π0(p
f − 1) 6= ∅, Xuv is nonabelian and (3) of

Lemma 3.5 occurs. Then T = soc(X) is not a simple group of Lie type.
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Proof. Suppose that T is a simple group of Lie type over a finite field
of order q′ = ta, where t is a prime. Since T E G, we know that T is

transitive on the edge set of Γ . Then T
Γ (v)
v 6= 1. Noting that T

Γ (v)
v EGΓ (v)

v ,

we have soc(G
Γ (v)
v ) ≤ T

Γ (v)
v . In particular, Tv is transitive on Γ (v), and

so |Tv| = pf |Tuv|. In view of this, noting that Tv = T ∩ Xv = T ∩ Gv

and T{u,v} = T ∩ X{u,v} = T ∩ G{u,v}, we sometimes work on the triple
(T, Tv, T{u,v}) instead of (X,Xv, X{u,v}).

By Lemmas 5.6 and 5.8, X{u,v} is not a {2, 3}-group and has no normal

abelian Hall 2′-subgroup. Assume that t ∈ π0(pf − 1). By Lemmas 5.4 and
5.8, t ≥ 5, X{u,v} has no section Z3

t and Ot(X{u,v}) 6= 1 is abelian. Checking
the pairs (G0, H0) listed in [18, Tables 16-20], we have X = PSL2(t

2) and
X{u,v} ∼= Z2

t :Z t2−1
2

. For this case, checking the subgroups of PSL2(t
2), no

desired Xv arises, a contradiction. Therefore, t 6∈ π0(pf − 1).

By Lemma 5.8, Or(X{u,v}) 6= 1 for each r ∈ π0(p
f − 1). Recall that

X{u,v} is not a {2, 3}-group and has a subgroup of index 2. Checking the
pairs (G0, H0) listed in [18, Tables 16-20], we conclude that Ot(X{u,v}) = 1.
Further, we observe that a desiredX{u,v} if exists has the form ofN.K, where
N is an abelian subgroup of T and either K is a {2, 3}-group or (X,K) =
(E8(q

′),Z30). For the case where K 6∼= Z30, by Lemma 3.6, π0(p
f − 1) ⊆

π(|N |), and thus, by Lemma 5.4, N has no subgroup Z3
r for r ∈ π0(pf − 1).

With these restrictions, only one of the following Cases 1-4 occurs.

Case 1. Either X = PSL3(q
′) and X{u,v} ∼= 1

(3,q′−1)Z
2
q′−1.S3 with q′ 6= 2, 4, or

X = PSU3(q
′) and X{u,v} ∼= 1

(3,q′+1)Z
2
q′+1.S3. Then |Xv| = 3

(3,q′∓1)p
f (q′∓1)2.

Checking Tables 8.3-8.6 given in [1], we have X = PSL3(q
′) and Xv .

[q′3]: 1
(3,q′−1)Z

2
q′−1. It follows that p = t = 3, and |O3(Xv)| = 3f+1 = 3d,

which contradicts Lemma 2.5.

Case 2. T = soc(X) = PΩ+
8 (q′) and T{u,v} ∼= D2

2(q′2+1)

(2,q′−1)

.[22]. In this case,

noting that |T{u,v}:Tuv| ≤ 2, we have |Tv| = 24pf (q′2+1)2

(2,q′−1)2 or 23pf (q′2+1)2

(2,q′−1)2 .

Let M be a maximal subgroup of T with Tv ≤ M . By [14], since |M | is
divisible by (q′2+1)2, we have M ∼= PSL2(q

′2)2.22. It is easily shown that

PSL2(q
′2)2.22 does not have subgroups of order 24pf (q′2+1)2

(2,q′−1)2 or 23pf (q′2+1)2

(2,q′−1)2 ,

a contradiction.

Case 3. (X,X{u,v}) is one of (2F4(2)′, 52:4A4) and (2F4(2), 13:12). For the

first pair, we have π0(p
f − 1) = {5} and, since pf is a divisor of |2F4(2)′|, we

conclude that pf = 24 or 34. The second pair implies that π0(p
f−1) = {13},

and then pf = 212 or 33. By the Atlas [3], X has no maximal subgroup
containing Xuv as a subgroup of index divisible by pf , a contradiction.
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Case 4. T{u,v} has a normal abelian subgroup N listed as follows:

T N |T{u,v}:N | Remark

Ree(3a) Z
3a±3

a+1
2 +1

6 odd a ≥ 3

Z2×Z 3a+1
2

6 &X = T

G2(3a) Z2
3a±1 12 odd a ≥ 2

Z32a±3a+1 6

Z2
2a+1 48 odd a ≥ 3

2F4(2a) Z2

2a±2
a+1
2 +1

96 &X = T

Z
22a±2

3a+1
2 +2a±2

a+1
2 +1

12 & 2a±2
a+1
2 +1 > 5

Z2
22a±2a+1 72

F4(2a) Z2
22a+1 96 a ≥ 2

Z24a−22a+1 12

E8(q′) Z2
q′4−q′2+1 288 X = T

Zq′8±q′7∓q′5−q′4∓q′3±q′+1 30

Let M be a maximal subgroup of T with Tv ≤M . Then |M | is divisible by
pf |N |. Check the maximal subgroups of T of order divisible by |N |, refer to
[15, 21, 23]. Then we may deduce a contradiction. First, by [15, Theorem
C], we conclude that Ree(3a) has no maximal subgroup of order divisible by
pf |N |. Similarly, by [23], the group 2F4(2

a) is excluded. We next deal with
the remaining cases.

Suppose that T = G2(3
a). For |N | = 32a±3a+1, by [15, Theorems A and

B]. Since |M | is divisible by 32a±3a+1, we have M ∼= SL3(3
a):2 or SU3(3

a):2.
By [1, Tables 8.3-8.6], we conclude that Tv . Z32a±3a+1:[6], which is impos-
sible. Similarly, for |N | = (3a±1)2, we have that Tv . (SL2(3

a)◦SL2(3
a)).2,

SL3(3
a):2 or SU3(3

a):2. Since |Tv| is divisible by 1
2 |T{u,v}|p

f = 6pf (3a±1)2,
checking the maximal subgroups of SL2(3

a), SL3(3
a) and SU3(3

a), we have
p = 3 and Tv . [3ba]:Z2

3a−1.2 for b = 2 or 3. Since Tuv has order divisible by
3, it follows that O3(Tuv) 6= 1, which contradicts Lemma 2.5.

Suppose that T = F4(2
a). By [20, 21], noting that |M | is divisible by

pf |N |, we conclude that M ∼= Sp8(2
a) or PΩ+

8 (2a).S3 with |N | = (22a+1)2,
or M ∼= c.PSL3(2

a)2.c.2 or c.PSU3(2
a)2.c.2 with |N | = (22a±2a+1)2, where

c = (3, 2a ± 1). Then a contradiction follows from checking the maximal
subgroups of Sp8(2

a), PΩ+
8 (2a), PSL3(2

a) and PSU3(2
a), refer to [1, Tables

8.3-8.6, 8.48-8.50].
Finally, suppose that T = E8(q

′). Then |N | = (q′4 − q′2+1)2 and M ∼=
PSU3(q

′2)2.8. For this case, checking the maximal subgroups PSU3(q
′2), we

get a contradiction. This completes the proof.

Lemma 5.10. Assume that π0(p
f − 1) 6= ∅, Xuv is not abelian and (3) of

Lemma 3.5 occurs. Then G = X = J1, X{u,v} ∼= Z7:Z6, Xv
∼= Z3

2:Z7:Z3 and
d = 8.

Proof. By Lemma 5.9, T = soc(X) is either an alternating group or a
sporadic simple group. Note that X{u,v} is not a {2, 3}-group and has no
normal abelian Hall 2′-subgroup.
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Assume that T is an alternating group. Then, by [18, Table 14], ei-
ther X = Ar and X{u,v} ∼= Zr:Z r−1

2
for r 6∈ {7, 11, 17, 23}, or X = Sr

and X{u,v} ∼= Zr:Zr−1 for r ∈ {7, 11, 17, 23}. For these two cases, Xv is
a transitive subgroup of Sr in the natural action of Sr. Then either Xv is
almost simple or Xv . Zr:Zr−1 (refer to [4, page 99, Corollary 3.5B]), a
contradiction.

Assume that T is a sporadic simple group, and let r ∈ π0(pf − 1). Then
(X,X{u,v}, r) is one of the following triples:

(J1,Z7:Z6, 7), (J1,Z11:Z10, 11), (J1,Z19:Z6, 19), (J2,Z2
5:D12, 5),

(J3.2,Z19:Z18, 19), (J4,Z29:Z28, 29), (J4,Z37:Z12, 37), (J4,Z43:Z14, 43),
(O′N.2,Z31:Z30, 31), (He,Z2

5:4A4, 5), (Co1,Z2
7:(3×2A4), 7),

(Ly,Z37:Z18, 37), (Ly,Z67:Z22, 67), (Fi′24,Z29:Z14, 29),
(B,Z13:Z12×S4, 13), (B,Z19:Z18×Z2, 19), (B,Z23:Z11×2, 23),
(M,Z23:Z11×S4, 23), (M, (Z29:Z14×3).2, 29), (M,Z31:Z15×S3, 31),
(M,Z41:Z40, 41), (M,Z47:Z23×2, 47).

Recall that pf is a divisor of |X| and r is a primitive prime divisor of pf −1.
Searching all possible pairs (pf , r), we get the following table:

X J1 J2 J4 Co1 O′N.2 He B
|X{u,v}| 2·3·7 22·3·52 2·7·43 23·32·72 2·3·5·31 24·3·52 25·34·13
r 7 5 43 7 31 5 13

pf 23 24 214 23, 36 25 24 33, 54, 212

pf − 1 | |Guv | X X × X, × X X X,X,×
X B B M M M M M
|X{u,v}| 22·32·19 2·11·23 23·3·11·23 22·3·7·29 2·32·5·31 23·5·41 2·23·47
r 19 23 23 29 31 41 47

pf 218 211, 311 211, 311 228 25, 53 220, 38 223

pf−1 | |Guv | × ×, × ×, × × X,× ×, × ×

Recalling that G{u,v} = X{u,v}.(G/X), we have 2|Guv| = |G{u,v}| =
|X{u,v}||G:X| = 2|Xuv||G:X|, and so |Guv| = |Xuv||G:X|. Since Gv is 2-

transitive on Γ (v), we know that (pf −1) is a divisor of |Guv| = |Xuv||G:X|.
It follows that (X,X{u,v}, r, p

f ) is one of the following quadruples:

(J1,Z7:Z6, 7, 2
3), (J2,Z2

5:D12, 5, 2
4), (Co1,Z2

7:(3×2A4), 7, 2
3),

(O′N.2,Z31:Z30, 31, 25), (He,Z2
5:4A4, 5, 2

4), (B,Z13:Z12×S4, 13, 33),
(B,Z13:Z12×S4, 13, 54), (M,Z31:Z15×S3, 31, 25).

For (Co1,Z2
7:(3×2A4), 7, 2

3), we have Xuv . ΓL1(2
3)×ΓL1(2

3), yielding
that |Xuv| is odd, a contradiction. Similarly, for (B,Z13:Z12×S4, 13, 33), the
order of Xuv is indivisible by 24, a contradiction; for (M,Z31:Z15×S3, 31, 25),
the order of Xuv is indivisible by 3, a contradiction. For (He,Z2

5:4A4, 5, 2
4),

the order of Xuv is divisible by 23 ·3 ·52 and, since pf = 24, the order of Xu is
divisible by 27 ·3 ·52; however, He has no soluble subgroup of order divisible
by 27 · 3 · 52, a contradiction. Similarly, (O′N.2,Z31:Z30, 31, 25) is excluded
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as O′N.2 has no soluble subgroup with order divisible by 25 · 31. (Note that
Gv is soluble.) By the Altas [3], J2 has no subgroup with order divisible
by 24 · 52, and then (J2,Z2

5:D12, 5, 2
4) is excluded. By the Altas [3] and [35,

Theorem 2.1], B has no subgroup with order divisible by 32 · 54 · 13, and so
(B,Z13:Z12×S4, 13, 54) is excluded. Then only (J1,Z7:Z6, 7, 2

3) is left, which
gives Xv

∼= Z3
2:Z7:Z3, d = pf = 8 and G = X. This completes the proof.

Finally, we summarize the argument for proving Theorem 1.1 as follows.

Proof of Theorem 1.1. Clearly, each (G,Gv, G{u,v}) in Table 1 gives a
G-edge-primitive graph Cos(G,Gv, G{u,v}). It is not difficult to check the
2-arc-transitivity of G acting on Cos(G,Gv, G{u,v}), we omit the details.

Now let G and Γ = (V,E) satisfy the assumptions in Theorem 1.1.
Let T = soc(G) and {u, v} ∈ E. Choose a minimal X among the normal
subgroups of G which act primitively on E. Then soc(X) = T . Since
G{u,v} is soluble, X{u,v} is soluble. Then (X,X{u,v}) is one of the pairs
(G0, H0) listed in [18, Tables 14-20]. Thus Γ , G, G{u,v}, X and X{u,v}

satisfy Hypothesis 3.1, and then Lemmas 3.3 and 3.5 work here. If G
Γ (v)
v is

an almost simple 2-transitive group then, by Lemma 3.3 and Lemmas 4.1-

4.4, the triple (G,Gv, G{u,v}) is listed in Table 1. Assume next that G
Γ (v)
v

is a soluble 2-transitive group of degree d = pf , where p is a prime.

If Xuv is abelian then the triple (G,Gv, G{u,v}) is desired as in Table 1
by Lemma 5.2. Thus assume further that Xuv is nonabelian. Then Guv is

nonabelian. By Lemma 3.5, either G
Γ (v)
v 6≤ GL1(p

f ) and G
Γ (v)
v ≤ ΓL1(p

f ),

or G
Γ (v)
v has a normal subgroup SL2(3) or 21+4

+ . For the latter case, the

triple (G,Gv, G{u,v}) is known by Lemma 5.3. Let G
Γ (v)
v ≤ ΓL1(p

f ) and

consider the primitive prime divisors of pf − 1. If pf − 1 has no primitive
prime divisor then, by Lemma 5.5 and Corollary 5.7, (G,Gv, G{u,v}) is listed

in Table 1. If pf − 1 has primitive prime divisors, then (G,Gv, G{u,v}) is
known by Lemma 5.10. This completes the proof.
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