
Proper disconnection of graphs∗

Xuqing Bai, You Chen, Meng Ji, Xueliang Li, Yindi Weng, Wenyan Wu

Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, China

baixuqing0@163.com, chen you@163.com, jimengecho@163.com

lxl@nankai.edu.cn, 1033174075@qq.com, wuwenyanhn@163.com

Abstract

For an edge-colored graph G, a set F of edges of G is called a proper

edge-cut if F is an edge-cut of G and any pair of adjacent edges in F are as-

signed different colors. An edge-colored graph is proper disconnected if for each

pair of distinct vertices of G there exists a proper edge-cut separating them.

For a connected graph G, the proper disconnection number of G, denoted by

pd(G), is the minimum number of colors that are needed in order to make

G proper disconnected. In this paper, we first give the exact values of the

proper disconnection numbers for some special families of graphs. Next, we

obtain a sharp upper bound of pd(G) for a connected graph G of order n, i.e,

pd(G) ≤ min{χ′(G) − 1,
⌈
n
2

⌉
}. Finally, we show that for given integers k and

n, the minimum size of a connected graph G of order n with pd(G) = k is n−1

for k = 1 and n+ 2k − 4 for 2 ≤ k ≤ dn2 e.

Keywords: edge-coloring; proper edge-cut; proper disconnection number; out-

erplanar graph

AMS subject classification 2010: 05C15, 05C40, 05C75.

1 Introduction

All graphs considered in this paper are simple, nontrivial, finite and undirected.

Let G = (V (G), E(G)) be a connected graph with vertex set V (G) and edge set
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E(G). For v ∈ V (G), let d(v) denote the degree of v, N(v) denote the neighborhood

of v, and N [v] denote the closed neighborhood of v in G. For a subset S of V (G),

denote by N(S) the set of neighbors of S in G. Denote the diameter of G by D(G).

For any notation or terminology not defined here, we follow those used in [2].

Throughout this paper, we use Pn, Cn, Kn to denote the path, the cycle and the

complete graph of order n, respectively. Given two disjoint graphs G and H, the join

of G and H, denoted by G ∨H, is obtained from the vertex-disjoint copies of G and

H by adding all edges between V (G) and V (H).

For a graph G, let c : E(G) → [k] = {1, 2, ..., k}, k ∈ N, be an edge-coloring of

G. For an edge e of G, we denote the color of e by c(e). When adjacent edges of

G receive different colors by c, the edge-coloring c is called proper. The chromatic

index of G, denoted by χ′(G), is the minimum number of colors needed in a proper

edge-coloring of G.

Chartrand et al. in [3] introduced the concept of rainbow disconnection of graphs.

An edge-cut of a graph G is a set R of edges such that G − R is disconnected. An

edge-coloring is called a rainbow disconnection coloring of G if for every two vertices

of G, there exists a rainbow cut in G separating them. For a connected graph G,

the rainbow disconnection number of G, denoted by rd(G), is the smallest number of

colors required for a rainbow disconnection coloring of G. A rainbow disconnection

coloring with rd(G) colors is called an rd-coloring of G. In [1] the authors have

obtained many results.

Inspired by the concept of rainbow disconnection, we naturally put forward a

concept of proper disconnection. For an edge-colored graph G, a set F of edges of

G is a proper edge-cut if F is an edge-cut of G and any pair of adjacent edges in

F are assigned different colors. An edge-colored graph is called proper disconnected

if for each pair of distinct vertices of G, there exists a proper edge-cut separating

them. For a connected graph G, the proper disconnection number of G, denoted by

pd(G), is defined as the minimum number of colors that are needed in order to make

G proper disconnected. A proper disconnection coloring with pd(G) colors is called

an pd-coloring of G. Clearly, for any pair of vertices of a graph, a rainbow cut is

definitely a proper edge-cut. In [3], we know that if G is a nontrivial connected graph,

then λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1. Hence, we immediately have the

following observation.

Observation 1.1 If G is a nontrivial connected graph, then 1 ≤ pd(G) ≤ rd(G) ≤
χ′(G) ≤ ∆(G) + 1.

Some complexity results on the proper disconnection of graphs are obtained in
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our recent paper [4].

The concept of monochromatic disconnection of graphs is discussed in [5, 6].

2 Preliminaries

At the very beginning, we state some fundamental results on the proper discon-

nection numbers of graphs, which will be used in this paper. Let G be a connected

graph. An edge-cut of G is a matching cut if the edge-cut is a matching of G. For

vertices u and v of G, a matching cut F is called a u-v matching cut if F separates

u and v in G. For a vertex v ∈ V (G), let Ev be the set of all the edges incident with

v in G.

Theorem 2.1 Let G be a nontrivial connected graph. Then pd(G) = 1 if and only if

for any two vertices of G, there exists a matching cut separating them.

Proof. Let pd(G) = 1 and c be a pd-coloring of G with one color. Assume, to the

contrary, that there exist two vertices x and y which have no matching cut, i.e. each

x-y proper cut has two adjacent edges. Obviously, the two adjacent edges are colored

differently. That is, pd(G) ≥ 2. This is a contradiction.

For the converse, define an edge-coloring c such that c(e) = 1 for every e ∈ E(G).

For any two vertices x and y in G, there is a matching cut which is an x-y proper

edge-cut. Thus, c is a proper disconnection coloring of G and so pd(G) = 1. �

For trees and cycles, we get the following results immediately by Theorem 2.1.

Proposition 2.2 If G is a tree, then pd(G) = 1.

Proposition 2.3 If Cn is a cycle, then

pd(Cn) =

{
2, if n = 3,

1, if n ≥ 4.

Lemma 2.4 If H is a connected subgraph of a connected graph G, then pd(H) ≤
pd(G).

Proof. Let c be a pd-coloring of G and cH be a coloring of H by restricting c to H.

Let x and y be two vertices of H. Suppose that F is an x-y proper edge-cut in G.

Then F ∩ E(H) is an x-y proper edge-cut in H. Hence, the coloring c restricted to

H is a proper disconnection coloring of H. Thus, pd(H) ≤ pd(G). �
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A block of a graph G is a maximal connected subgraph of G that has no cut vertex.

Then the block is either a cut edge, say trivial block, or a maximal 2-connected

subgraph. Let {B1, B2, ..., Bt} be the block set of G.

Lemma 2.5 Let G be a nontrivial connected graph with blocks B1, B2, · · · , Bt. Then

pd(G) = max{pd(Bi)| i ∈ [t]}.

Proof. Let k = max{pd(Bi) | 1 ≤ i ≤ t}. If G has no cut vertex, then G = B1 and

the result follows. Next, we assume that G has at least one cut vertex. Since each

block is a subgraph of G, pd(G) ≥ k by Lemma 2.4.

For each i ∈ [t], let ci be a pd-coloring of Bi. We define the edge-coloring c :

E(G)→ [k] of G by c(e) = ci(e) if e ∈ E(Bi).

Let x, y ∈ V (G). If there exists a block, say Bi, that contains both x and y, then

any x-y proper edge-cut in Bi is an x-y proper edge-cut in G. Next, we consider that

no block of G contains both x and y. Assume that x ∈ Bi and y ∈ Bj, where i 6= j.

Now every x-y path contains a cut vertex, say v, of G in Bi and a cut vertex, say w,

of G in Bj. Note that v could equal w. If x 6= v, then any x-v proper cut of Bi is an

x-y proper edge-cut in G. Similarly, if y 6= w, then any y-w proper cut of Bj is an

x-y proper edge-cut in G. Thus, we may assume that x = v and y = w. It follows

that v 6= w. Consider the x-y path P = (x = v1, v2, . . . , vp = y). Since x and y are

cut vertices in different blocks and no block contains both x and y, we can select the

first cut vertex z of G on P except x, that is, z = vk for some k (2 ≤ k ≤ p − 1).

Then x and z belong to the same block, say Bs (s ∈ {1, 2, · · · , t}\{i, j}). Then any

x-z proper edge-cut of Bs is an x-y proper edge-cut of G. Hence, pd(G) ≤ k, and so

pd(G) = k. �

We next present a useful structural property.

Lemma 2.6 Let G be a nontrivial connected graph. If there exist two nonadjacent

vertices u and v sharing t (t ≥ 1) common neighbors in G, then pd(G) ≥ d t
2
e.

Furthermore, if uv ∈ E(G), then pd(G) ≥ d t
2
e+ 1.

Proof. Let c be a pd-coloring of G. Let u, v be two vertices of G and F (u, v) be a u-v

proper edge-cut in G. If uv /∈ E(G), let W = N(u)∩N(v) = {w1, w2, · · · , wt}. Then

there are t internally disjoint paths of length two. Let E1 = {uwi|1 ≤ i ≤ t} and E2 =

{vwi|1 ≤ i ≤ t}. Then |F (u, v) ∩E1| ≥ d t2e or |F (u, v) ∩E2| ≥ d t2e. Otherwise there

exists at least one u-v path of length two in G\F (u, v), which is a contradiction. Since

E1 ⊆ Eu and E2 ⊆ Ev, pd(G) ≥ d t
2
e. Moreover, if uv ∈ E(G), then uv ∈ F (u, v).
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So |F (u, v) ∩ Eu| ≥ |F (u, v) ∩ E1|+ 1 or |F (u, v) ∩ Ev| ≥ |F (u, v) ∩ E2|+ 1. Hence,

pd(G) ≥ d t
2
e+ 1. �

3 Main results

In this section, we give the exact values of the proper disconnection numbers

for the wheel graphs, the complete graphs, the complete bipartite graphs and the

outerplanar graphs. Furthermore, we obtain a sharp upper bound of pd(G), and

derive the minimum size of a graph G of order n with pd(G) = k, where 1 ≤ k ≤ dn
2
e.

3.1 Wheel graphs

Lemma 3.1 Let G = K4 − {e}. Then pd(G) = 2. Furthermore, the colors of

matching edges in G are the same for any pd-coloring.

Proof. Let V (G) = {v1, v2, v3, v4} and E(G) = {vivj}|1 ≤ i < j ≤ 4} \ {v2v4}. First,

we have pd(G) ≥ 2 sinceK3 is a subgraph ofG. Define an edge-coloring c: E(G)→ [2]

of G as follows. Let c(v1v2) = c(v1v3) = c(v3v4) = 1, c(v1v4) = c(v2v3) = 2. Let u

and v be two vertices of G. If d(u) = 2 or d(v) = 2, then Eu (or Ev) is a u-v proper

edge-cut. Otherwise, If d(u) = d(v) = 3, then the edge set {v1v4, v1v3, v2v3} is a

proper edge-cut of u, v. Thus, pd(G) ≤ 2.

For any pd-coloring c: E(G) → [2] of G, assume that c(v1v3) = 1. Since any

edge-cut of v1 and v3 has at least three edges, there exist two matching edges with

color 2 incident with v1, v3 respectively. We claim that the remaining two matching

edges must have the same color. Otherwise, there exists a vertex, say v2, such that

all edges of Ev2 have color 2. Then Ev1 or Ev3 has two edges with color 2. Therefore,

there is no v1-v2 or v2-v3 proper edge-cut. �

Theorem 3.2 If Wn = Cn ∨K1 is the wheel of order n+ 1 ≥ 4, then

pd(Wn) =

{
2, if n = 3k (k ∈ Z),

3, otherwise.

Proof. Let V (Wn) = {v0, v1, . . . , vn} and E(Wn) = {v0vi, v0vn, vivi+1, v1vn|1 ≤
i ≤ n − 1}. For convenience, each subscript of vertices is expressed as an integer

0, 1, 2, · · · , n− 1 modular n. First, pd(Wn) ≥ 2, since K3 is a subgraph of Wn.

Case 1. n = 3k.
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Define an edge-coloring c: E(Wn) → [2] of Wn. Let c(v0v3i) = c(v1+3jv2+3j) =

2 where 1 ≤ i ≤ k and 0 ≤ j ≤ k − 1 and assign color 1 to the remaining

edges. Let vi be a vertex of Wn, where i = 3t (1 ≤ t ≤ k). Then the edge set

{vi−1vi, v0vi, v0vi+1, vi+1vi+2} is a proper edge-cut between {vi, vi+1} and V (Wn) \
{vi, vi+1} and the edge set {vivi+1, v0vi, v0vi−1, vi−2vi−1} is also a proper edge-cut

between {vi−1, vi} and V (Wn) \ {vi−1, vi}.
Let vk, vl be any two vertices of Wn where k, l are integers. If vk is nonadjacent

to vl, then there exists an edge vkvp such that p = 3t or k = 3t. By above argument,

we have a proper edge-cut between {vk, vp} and V (Wn) \ {vk, vp}, which is a vk-vl

proper edge-cut. Assume vk is adjacent to vl with k ≤ l. If k or l is a multiple of

3, without loss of generality, k = 3t, then there exists a proper cut between {vk, vp}
and V (Wn) \ {vk, vp} where vp ∈ N(vk) \ {v0, vl}, which is a vk-vl proper edge-cut. If

neither k nor l is a multiple of 3, then there exits a proper edge-cut between {vk, vs}
and V (Wn) \ {vk, vs} where vs ∈ N(vk) \ {v0, vl}, which is a vk-vl proper edge-cut.

Thus, pd(Wn) = 2.

Case 2. n 6= 3k.

Assume that pd(Wn) = 2. Let c(v0v1) = 1. Then for matching edges v0v1 and

v2v3 in induced graph G[{v0, v1, v2, v3}], we get c(v0v1) = c(v2v3) = 1 by Lemma 3.1.

Using Lemma 3.1 repeatedly, we get c(e) = 1 for any edge e of Wn (i.e. c(v0v1) =

c(v2v3) = c(v0v4) = · · · = 1). This is a contradiction with pd(Wn) ≥ 2. Thus,

pd(Wn) ≥ 3.

Now we define an edge-coloring c : E(Wn) → [3] of Wn. First, let c be a proper

edge-coloring of Cn using the colors 1, 2, 3. For each integer i with 1 ≤ i ≤ n, let

ai ∈ {1, 2, 3} \ {c(vi−1vi), c(vivi+1)}, and let c(v0vi) = ai. Thus, Evi is a proper set

for 1 ≤ i ≤ n. Let x, y be two distinct vertices of Wn. Then at least one of x and

y belongs to Cn, say x ∈ V (Cn). Since Ex separates x and y, it follows that c is a

proper disconnection coloring of Wn using three colors. Therefore, pd(Wn) = 3 for

n 6= 3k. �

3.2 Complete bipartite graphs and complete graphs

Now we introduce some notations. Let X and Y be sets of vertices of a graph G,

we denote by E[X, Y ] the set of all the edges of G with one end in X and the other

end in Y . We write G[X, Y ] for G[E[X, Y ]]. For an edge-coloring c of G[X, Y ], if c

is a proper coloring, then E[X, Y ] is called a proper set.

Theorem 3.3 Let Kn,n be a complete bipartite graph. Then pd(Kn,n) = dn
2
e.
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Proof. LetG = Kn,n and suppose thatX and Y are two partite vertex sets ofG, where

X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn}. For any two vertices xi, xj ∈ X, there

are n common neighbors in Y . Then pd(G) ≥ dn
2
e by Lemma 2.6.

Now, for the upper bound, we define an edge-coloring c : E(G)→ {0, 1, · · · , dn
2
e−

1} of G by assigning each edge xiyj with c(xiyj) ≡ i+j−1 (mod dn
2
e) for 1 ≤ i, j ≤ n.

Let X = X1 ∪X2, where X1 = {x1, x2, · · · , xdn
2
e} and X2 = {xdn

2
e+1, xdn

2
e+2, · · · , xn}.

Let Y = Y1 ∪ Y2, where Y1 = {y1, y2, · · · , ydn
2
e} and Y2 = {ydn

2
e+1, ydn

2
e+2, · · · , yn}.

Claim 3.4 For each pair of vertex sets Xk and Yl (k, l ∈ [2]), E[Xk, Yl] is a proper

set.

Proof. By symmetry, we only consider the vertex sets X1 and Y1. For each vertex xi

of X1, since c(xiyj) ≡ i + j − 1 (mod dn
2
e), it follows that c(xiy1) 6= c(xiy2) 6= · · · 6=

c(xiydn
2
e). Therefore, the edges of G[X1, Y1] incident with the same vertex are colored

by different colors. Thus, E[X1, Y1] is a proper set. �

We now show that for each pair of vertices u and w of G, there is a proper edge-cut

separating them. Two cases are needed to be discussed.

Case 1. u ∈ X, w ∈ Y .

Suppose that u = xi and w = yj. Let xi ∈ X1, yj ∈ Y1 or xi ∈ X2, yj ∈ Y2

and let F (xi, yj)= E[X1, Y1]∪E[X2, Y2]. Consider the subgraph H of G obtained by

deleting F (xi, yj) from G, then H has two components G[X1, Y2] and G[X2, Y1] (See

Figure 1). Since xi ∈ G[X1, Y2] and yj ∈ G[X2, Y1], we can know that F (xi, yj) is an

edge cut separating xi and yj. Moreover, E[X1, Y1] and E[X2, Y2] are proper sets by

the claim and E[X1, Y1] ∩ E[X2, Y2] = φ, so F (xi, yj) is an xi-yj proper edge-cut. If

xi ∈ X1, yj ∈ Y2 or xi ∈ X2, yj ∈ Y1, we can similarly show that E[X1, Y2]∪E[X2, Y1]

is an xi-yj proper edge-cut.

x1 xi x⌈n
2 ⌉

X1 X2

Y1 Y2

y1 yj y⌈n
2 ⌉

Figure 1: A graph H

.

Case 2. u,w ∈ X or u,w ∈ Y .
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By symmetry, suppose without loss of generality that u = xi and w = xj. If

xi, xj ∈ X1, where 1 ≤ i < j ≤ dn
2
e. Let X ′1 = X1 − xi + xi+dn

2
e and X ′2 =

X2 + xi − xi+dn
2
e. Then xi ∈ X ′2 and xj ∈ X ′1. For every vertex yt of Y, we know

that c(xiyt) = c(xi+dn
2
eyt) ≡ i + t − 1 (mod dn

2
e). By the same method used in

the claim, for vertex sets X ′k and Yl (k, l ∈ [2]), E[X ′k, Yl] is a proper set. Let

F ′(xi, xj) = E[X ′1, Y1]∪E[X ′2, Y2]. Let H ′ = G[X ′1, Y2]∪G[X ′2, Y1] be a graph obtained

by deleting F ′(xi, xj) from G (See Figure 2). According to Case 1, F ′(xi, xj) is an xi-

xj proper edge-cut. If xi ∈ X1 and xj ∈ X2, similarly, we can get E[X1, Y1]∪E[X2, Y2]

is an xi-xj proper edge-cut. �

x1 xi xj x⌈n
2 ⌉

X1 X2

Y1 Y2

x1+⌈n
2 ⌉ xi+⌈n

2 ⌉xn

Figure 2: A graph H ′

.

Theorem 3.5 Let Km,n be a complete bipartite graph with 2 ≤ m ≤ n. Then

pd(Km,n) = dn
2
e.

Proof. Let G = Km,n and V (G) = X ∪ Y , where X = {x1, · · · , xm} and Y =

{y1, · · · , yn}. For any two vertices xi, xj ∈ X, there are n common neighbors in Y .

From Lemma 2.6, it follows that pd(G) ≥ dn
2
e. Also, G is a subgraph of Kn,n. By

Theorem 3.3 and Lemma 2.4, we have that pd(G) ≤ pd(Kn,n) = dn
2
e. Hence, it

follows that pd(G) = dn
2
e. �

Theorem 3.6 For each integer n ≥ 2, pd(Kn) = dn
2
e.

Proof. Let a = dn
2
e and V (Kn) = X ∪ Y , where X = {v1, v2, · · · , va} and Y =

{va+1, va+2, · · · , vn}. For any two vertices vi, vj ∈ V (Kn), there are n − 2 common

neighbors in Kn and vivj ∈ E(Kn). Then pd(Kn) ≥ dn
2
e by Lemma 2.6. Define an

edge-coloring c : E(G) → {0, 1, · · · , a − 1} such that c(vivj) ≡ i + j − 1 (mod a).

For any two vertices u, w ∈ V (G), assume u ∈ X and w ∈ Y . Since E[X, Y ]

separates u and w, and E[X, Y ] is a proper set in Kn by a similar proof method as
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Claim 3.4, E[X, Y ] is a u-w proper edge-cut. If u,w ∈ X, assume that u = vi and

w = vj, where i < j. Let i0 = i + a. Then vi0 ∈ Y . For vr ∈ V (Kn) (r 6= i, i0),

we have c(vivr) = c(vi0vr). Let X ′ = X \ {vi} and Y ′ = Y \ {vi0}. Similarly,

F (vi, vj) = E[X ′ ∪ {vi0}, Y ′ ∪ {vi}] is a proper set. Since F (vi, vj) separates u and

w, F (vi, vj) is a u-w proper edge-cut in Kn. If u,w ∈ Y , we can obtain a u-w proper

edge-cut in the similar way. Thus, c is a proper disconnection coloring of Kn and so

pd(Kn) ≤ dn
2
e. �

3.3 Outerplanar graphs

An outerplanar graph is a graph that can be drawn in the plane without crossings

in such a way that all of the vertices belong to the unbounded face of the drawing. A

minor of a graph G is any graph obtained from G by means of a sequence of vertex

and edge deletions and edge contractions. A chord of a cycle C in a graph G is an

edge in E(G) \ E(C) both of whose ends lie on C. There is a characterization of

outerplanar graphs as follows.

Theorem 3.7 [2] A graph is outerplanar if and only if it does not contain K4 or K2,3

as a minor.

Let Pn be a path of order n. We denote K1 ∨ Pn by F1,n, which is called a fan

graph. We first show that the proper disconnection number of fan graph is 2, which

will be used to characterize the outerplanar graphs with diameter 2.

Lemma 3.8 Let F1,n = K1 ∨ Pn be a fan graph, where n ≥ 2. Then pd(F1,n) = 2.

Proof. Firstly, we have that pd(F1,n) ≥ pd(K3) = 2 by Lemma 2.4. Clearly, F1,n is a

subgraph of Wn. If n = 3k (k ≥ 1), then pd(F1,n) ≤ pd(Wn) = 2 by Lemma 2.4 and

Theorem 3.2. Thus, F1,3k = 2. If n = 3k − 2 or 3k − 1 (k ≥ 1), then pd(F1,3k−2) ≤
pd(F1,3k−1) ≤ pd(F1,3k) = 2 since both F1,3k−2 and F1,3k−1 are subgraphs of F1,3k.

Hence, pd(F1,n) = 2. �

Theorem 3.9 Let G be an outerplanar graph. Then pd(G) = 1 if and only if G is a

triangle-free graph.

Proof. Let pd(G) = 1. Assume, to the contrary, that G contains a copy of K3.

Then pd(G) ≥ pd(K3) = 2 by Theorem 2.4, which is a contradiction. Then G is a

triangle-free outerplanar graph.
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For the converse, let B be a block of G with t vertices such that pd(B) is maximum

among all proper disconnection numbers of the other blocks. Then B is a triangle-free

outerplanar graph. By Lemma 2.5, it suffices to show that pd(B) = 1. If B is trivial,

then pd(B) = 1. If B is not trivial, then t ≥ 4. Suppose that B is a cycle. Then

pd(B) = 1 by Proposition 2.3.

It remains to consider that B is not a cycle. Since B is a triangle-free and

outerplanar graph, we only consider t ≥ 6. We proceed by induction on t. When

t = 6, the block B has only one chord since B is a triangle-free and outerplanar graph.

Clearly, pd(B) = 1 and the result is true. When t ≥ 7, let C = v1e1v2e2 · · · et−1vtetv1

be the boundary of the outer face in B. Choose a chord vivj such that the internal

vertices of P = vieivi+1ei+1 · · · ej−1vj(j ≥ i + 3) have degree 2 in B. Let B′ be a

graph by removing internal vertices of P from B. Then pd(B′) = 1 by induction

hypothesis. By Theorem 2.1, for any two vertices x and y of B′ there is an x-y

matching cut, denoted by FB′(x, y). For any two vertices u, v in B, if u, v ∈ B′, then

FB′(u, v) ∪ {ei+1} is a u-v matching cut in B. If u, v ∈ B \B′, then FB′(vi, vj) ∪ {e}
is a u-v matching cut in B, where e is an edge cut separating u and v in P . If u ∈ B′
and v ∈ B \B′, then {ei, ej−1} is a u-v matching cut in B. Therefore, pd(B) = 1. �

Now we characterize the outerplanar graphs G with D(G) = 2. We first construct

some graph classes. Let D be a family of graphs obtained from Wn = K1 ∨ Cn by

deleting t (1 ≤ t ≤ n−1) edges from Cn. Let z be an isolated vertex and v1v2v3v4v5 be

a path of length 4. Then join z with v1, v2, v4 and v5. We denote the resulting graph

by F−1,5. Let y be an isolated vertex and v1v2v3v4 be a path of length 3. Then join y

with v1, v3 and v4. We denote the resulting graph by F−1,4. Let C6 = v1v2v3v4v5v6v1

Then let F ′ = C6 ∪ {v1v3, v3v5, v1v5}.

Theorem 3.10 Let G be an outerplanar graph with D(G) = 2. Then pd(G) = 2 if

and only if G ∈ D or G ∼= F−1,5 or F−1,4 or F ′.

Proof. Sufficiency. Since there is at least one triangle K3 for every G ∈ D, it is clear

to see that pd(G) ≥ pd(K3) = 2 by Theorem 2.4 and Theorem 3.6. Meanwhile, G

is a subgraph of a fan graph, therefore, pd(G) ≤ 2 by Lemma 3.8 and Lemma 2.4.

Hence, pd(G) = 2 for G ∈ D. Similarly, pd(F−1 ,5 ) = pd(F−1 ,4 ) = 2. For the graph

F ′, pd(F ′) ≥ 2 by Lemma 2.4 and Theorem 3.6. We now assign a 2-edge-coloring c :

E(F ′)→ {1, 2} for F ′.

Let c(v1v5) = c(v3v4) = c(v2v3) = 2 and the remaining edges are colored by 1.

Thus, for every pair of vertices in F ′, there exists a proper edge-cut F [V1, V (F ′) \
V1], where V1 = {v1, v2, v3} and V (F ′) \ V1 = {v4, v5, v6} or V1 = {v1, v2, v6} and
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V (F ′) \ V1 = {v4, v5, v3} or V1 = {v1, v2, v3, v5, v6} and V (F ′) \ V1 = {v4} or V1 =

{v1, v3, v4, v5, v6} and V (F ′) \ V1 = {v2}. Hence, pd(F ′) = 2.

Necessity. Suppose that pd(G) = 2. Clearly, there is at most one cut vertex since

D(G) = 2. Otherwise D(G) ≥ 3. We now discuss it by two cases.

Case 1. Suppose that there exists exactly one cut vertex. Then the remaining

vertices are adjacent to the cut vertex. Since the star pd(K1,t) = 1, G is not a star.

And since the wheel graph is not the outerplanar graph, G is not the graph containing

the wheel graph. Thus, we get G ∈ D because G is a outerplanar graph.

Case 2. Suppose that there is not a cut vertex. Then δ(G) ≥ 2. Let r be a vertex

with maximum degree and N(r) = {x1, x2, · · · , x∆}.
Subcase 2.1. d(r) = n−1. Since there is no cut vertex in G, the induced subgraph

G[N(r)] is connected. We claim that G[N(r)] is a path. Otherwise, it is a tree with a

vertex v of degree at least three, or it contains a cycle. Thus, G contains a minor of

K2,3 or K4. By Theorem 3.7, we have a contradiction. Clearly, G is the graph from

D with t = 1.

Subcase 2.2. d(r) = n− 2. Let x be a vertex which is nonadjacent to r. Suppose

that |N(x)| ≥ 3. Then, there is a minor of K2,3 in G, which is a contradiction.

Thus, |N(x)| = 2. We now illustrate our claim that G ∼= F−1,5 or F−1,4 or G ∼= F ′.

Without loss of generality, let x1x, x2x be two edges of G. Suppose that n ≥ 7. Since

D(G) = 2, the vertices x3, x4, x5 are adjacent to x1 or x2. Then there are at least two

vertices adjacent to the same vertex x1 (or x2). Then we obtain a minor of K2,3 in

G. Suppose that n = 5. Since d(x3) ≥ 2, we have exactly one edge x2x3 ∈ E(G) or

x1x3 ∈ E(G). Otherwise, there is a minor of K4. So G ∼= F−1,4. Suppose that n = 6.

The vertices x3, x4 have no common neighbor other than r. Otherwise, there is a

minor of K2,3 in G, and it is the same for x1, x2. Since D(G) = 2, there exist edges

x2x3, x1x4 (or x1x3, x2x4). Hence, we have G ∼= F−1,5 if x1x2 /∈ E(G) and G ∼= F ′ if

x1x2 ∈ E(G).

Subcase 2.3. d(r) ≤ n−3. Let y1 and y2 be two vertices which are nonadjacent to r.

Assume that y1y2 ∈ E(G). If |N(r)∩N({y1, y2})| ≥ 3, then there is a minor of K2,3 in

G. Thus, |N(r)∩N({y1, y2})| ≤ 2. If N(r)∩N({y1, y2}) = ∅, then d(r, y1) ≥ 3, which

is a contradiction. If |N(r)∩N({y1, y2})| = 1, then when there is exactly one vertex of

{y1, y2} which is adjacent to one vertex of N(r), it contradicts with D(G) = 2. When

both y1 and y2 are adjacent to one common vertex of N(r)∩N({y1, y2}), without loss

of generality, let y1x1, y2x1 ∈ E(G). Then there exists xi (i 6= 1) which is nonadjacent

to x1 ∈ N(r) ∩ N({y1, y2}) since r is a vertex with maximum degree. Then there

exists two vertices y3, y4 ∈ V (G) \ (N [r]∪ {y1, y2}) such that, with loss of generality,
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xiy3, y3y1, xiy4, y4y2 ∈ E(G) since D(G) = 2, where y3 may be equal to y4. Then

|N(r)∩N({y1, y3})| = 2. Namely, there are always two vertices, with loss of generality,

y1, y2 ∈ V (G) \ N [r], which satisfy y1y2 ∈ E(G) and |N(r) ∩ N({y1, y2})| = 2.

Therefore, we only consider the case that |N(r) ∩N({y1, y2})| = 2. Without loss of

generality, let x1y1, x2y2 ∈ E(G).

When |N(r)| = 2, clearly, G ∼= C5, contradicting that pd(G) = 2. If |N(r)| ≥ 5,

then x3, x4 and x5 belong to N(r) but not N({y1, y2}). So, there are at least two

vertices of x3, x4 and x5 adjacent to one vertex of x1 and x2, which induces a minor of

K2,3. Thus, |N(r)| = 3 or 4. If there exists a vertex y /∈ N(r) (y 6= y1, y2) such that

x3y, yy1 ∈ E(G) (or x3y, yy2 ∈ E(G)), then it contains a minor of K2,3. If |N(r)| = 3,

then N(x3) ∩N({y1, y2}) 6= ∅ since D(G) = 2. However, there is at most one vertex

in N(r)∩N({y1, y2}) adjacent to x3. Otherwise, there is a minor of K4 in G. Suppose

that x3 is adjacent to one vertex of {x1, x2}, say x1, then D(G) = 3 since r has the

maximum degree. This is a contradiction. If |N(r)| = 4, then x3 and x4 are not

adjacent to one common vertex of x1 and x2. Otherwise, it produces a minor of K2,3.

Then let x2x3, x1x4 ∈ E(G). In the sake of D(G) = 2, the pair of vertices x3 and

y1 has at least one common neighbor and so does the pair of x4 and y2. However, it

produces a minor of K4.

Assume that V (G) \N [r] is an independent set. Clearly, y1 and y2 have at most

two neighbors in {xi|1 ≤ i ≤ n − 3}, respectively. Since D(G) = 2, y1 and y2 have

at least one common neighbor in {xi|1 ≤ i ≤ n − 3}. If they have at least two

common neighbors, then G contains a minor of K2,3, which is a contradiction. Thus,

y1 and y2 have exactly one common neighbor in {xi|1 ≤ i ≤ n − 3}. Without loss

of generality, let x1, x2 ∈ N(y1) and x1 ∈ N(y2). Then y2 has a neighbor x where

x 6= x1, x2. Without loss of generality, let x = x3. Then there is an edge x1x3 or x2x3.

Otherwise, it is a contradiction to D(G) = 2. If x2x3 ∈ E(G), then there is a minor

of K4. If x1x3 ∈ E(G), then x1x2 ∈ E(G) since D(G) = 2. Since d(r) ≥ d(x1) ≥ 4,

there exists another neighbor x4 of vertex r, which is nonadjacent to x1. Otherwise,

it produces a minor of K2,3. In view of D(G) = 2, then {x2x4, x3x4} ⊆ E(G). There

is a minor of K4, which is a contradiction. �

3.4 An upper bound and an extremal problem

We first consider the upper bound of the proper disconnection number for a graph

of order n and chromatic index χ′(G).

Theorem 3.11 If G is a nontrivial connected graph, then pd(G) ≤ χ′(G)− 1.
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Proof. Let c: E(G) → [χ′(G)] be a proper edge-coloring of G. Then we define

an edge-coloring c′ of G as follows: for any edge e of G, if c(e) = χ′(G), then

c′(e) = 1; otherwise, c′(e) = c(e). Let x, y be two vertices of G. Assume N(x) =

{v1, v2, · · · , vd(x)}. Obviously, at most two incident edges of x are assigned the color

1. If there exists at most one incident edge of x with color 1, then Ex is an x-y

proper edge-cut. If there exist two edges with color 1, then we may assume c′(xvi) =

c′(xvj) = 1 (1 ≤ i < j ≤ d(x)). If y ∈ {vi, vj}, then let t be the vertex in {vi, vj} that

is not y. Then (Ex∪Et)\{xt} is an x-y proper edge-cut. Otherwise, (Ex∪Evi)\{xvi}
(i ∈ [d(x)]) is an x-y proper edge-cut. Thus, c′ is a proper disconnection coloring of

G and so pd(G) ≤ χ′(G)− 1. �

According to Theorem 3.6 and Theorem 3.11, we get the following result.

Theorem 3.12 Let G be a nontrivial connected graph of order n. Then pd(G) ≤
min{χ′(G)− 1,

⌈
n
2

⌉
}, and the bound is sharp.

Proof. By Theorem 3.11, pd(G) ≤ χ′(G)−1. Since G is a connected subgraph of Kn,

pd(G) ≤
⌈
n
2

⌉
by Theorem 3.6. For the sharpness,

⌈
n
2

⌉
can be reached by complete

graphs, and χ′(G)−1 can be reached by even cycles and paths with at least 3 vertices.

�

Now we investigate the following extremal problem: For given positive integers k

and n with 1 ≤ k ≤ dn
2
e, what is the minimum possible size of a connected graph G

of order n such that the proper disconnection number of G is k?

Lemma 3.13 Let G be a connected graph of order n. Let M be a matching of G.

Then pd(G) ≤ max{pd(Gi)|1 ≤ i ≤ t} + 1, where Gi is a connected component of

G−M and t is the number of components of G−M .

Proof. Denote the components of G−M by G1, G2, . . . , Gt. Let ` = max{pd(Gi)|1 ≤
i ≤ t}. Let ci be a pd-coloring of Gi and FGi

(u, v) be a u-v proper edge-cut in Gi

for i ∈ [t]. We define an edge-coloring c: E(G) → [` + 1] of G by c(e) = ci(e) if

e ∈ E(Gi) and c(e) = `+ 1 if e ∈M . Let x, y be any two vertices of G. If x, y ∈ Gi,

then FGi
(x, y)∪M is an x-y proper edge-cut in G. If x ∈ Gi and y ∈ Gj where i 6= j,

then M is an x-y proper edge-cut in G. Hence, pd(G) ≤ max{pd(Gi)|1 ≤ i ≤ t}+ 1.

�

Theorem 3.14 For integers k and n with 1 ≤ k ≤ dn
2
e, the minimum size of a
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connected graph G of order n with pd(G) = k is

|E(G)|min =

{
n− 1, if k = 1,

n+ 2k − 4, if k ≥ 2.

Proof. Since G is a connected graph, |E(G)|min = n− 1 for k = 1 by Proposition 2.2.

For k ≥ 2, we first show that if the size of a connected graph G of order n is at most

n + 2k − 5, then pd(G) ≤ k − 1. We proceed by induction on k. The result holds

for k = 2 by Proposition 2.2. Suppose that G is a graph with |E(G)| ≤ n + 2k − 5.

If G is a graph with at most one block which is a cycle and other blocks are trivial,

the result is true for G by Proposition 2.3 and Lemma 2.5. Otherwise, we claim that

there exist two matching edges, say e1, e2, of G such that G − {e1, e2} is connected

graph of order n. Now, there are two cases as follows:

(i) G has exactly one nontrivial block which is not a cycle, and the other blocks

are trivial;

(ii) G has at least two nontrivial blocks.

For (i), let B be a nontrivial block which is not a cycle. Then B contains two

vertices x and y such that they are connected by at least three internally disjoint x-y

paths. We can respectively pick one edge from two x-y paths as matching edges. For

(ii), we can respectively pick one edge from two nontrivial blocks as matching edges.

The edges from (i) and (ii) can insure that H = G − {e1, e2} is a connected graph

of order n. Since |E(H)| ≤ n + 2(k − 1) − 5, we have pd(H) ≤ k − 2 by induction

hypothesis. Then pd(G) = pd(H + {e1, e2}) ≤ pd(H) + 1 ≤ k − 1 by Lemma 3.13.

Hence, we obtain that if pd(G) = k, then |E(G)| ≥ n+ 2k − 4.

Next we show that for each pair integers k and n with 2 ≤ k ≤ dn
2
e, there is

a connected graph G of order n and size n + 2k − 4 such that pd(G) = k. Let

H = K2,2k−3 with partite vertex sets A = {a1, a2} and B = {b1, b2, . . . , b2k−3}. Let

G be the graph of order n and size n + 2k − 4 obtained from H by adding an edge

a1a2 and adding n − 2k + 1 pendent edges to a vertex of H. Now, define a coloring

c→ [k] for graph H + a1a2. Let cH be a pd-coloring using colors [k− 1] by Theorem

3.5 and c(a1a2) = k. We can verify that the coloring c is a pd-coloring using colors

[k], so pd(H + a1a2) ≤ k. Moreover, pd(H + a1a2) ≥ k by Lemma 2.6. Thus, We

obtain that pd(H + a1a2) = k. Furthermore, since H + a1a2 is a block of G, we get

pd(G) = pd(H + a1a2) = k by Lemma 2.5. �
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