Proper disconnection of graphs*

Xuqing Bai, You Chen, Meng Ji, Xueliang Li, Yindi Weng, Wenyan Wu
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
baixuqing0@163.com, chen_you@163.com, jimengecho@163.com
lx1@nankai.edu.cn, 1033174075@qq.com, wuwenyanhn@163.com

Abstract

For an edge-colored graph G, a set F of edges of G is called a proper edge-cut if F is an edge-cut of G and any pair of adjacent edges in F are assigned different colors. An edge-colored graph is proper disconnected if for each pair of distinct vertices of G there exists a proper edge-cut separating them. For a connected graph G, the proper disconnection number of G, denoted by $p d(G)$, is the minimum number of colors that are needed in order to make G proper disconnected. In this paper, we first give the exact values of the proper disconnection numbers for some special families of graphs. Next, we obtain a sharp upper bound of $p d(G)$ for a connected graph G of order n, i.e, $p d(G) \leq \min \left\{\chi^{\prime}(G)-1,\left\lceil\frac{n}{2}\right\rceil\right\}$. Finally, we show that for given integers k and n, the minimum size of a connected graph G of order n with $p d(G)=k$ is $n-1$ for $k=1$ and $n+2 k-4$ for $2 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$.

Keywords: edge-coloring; proper edge-cut; proper disconnection number; outerplanar graph
AMS subject classification 2010: 05C15, 05C40, 05C75.

1 Introduction

All graphs considered in this paper are simple, nontrivial, finite and undirected. Let $G=(V(G), E(G))$ be a connected graph with vertex set $V(G)$ and edge set

[^0]$E(G)$. For $v \in V(G)$, let $d(v)$ denote the degree of $v, N(v)$ denote the neighborhood of v, and $N[v]$ denote the closed neighborhood of v in G. For a subset S of $V(G)$, denote by $N(S)$ the set of neighbors of S in G. Denote the diameter of G by $D(G)$. For any notation or terminology not defined here, we follow those used in [2].

Throughout this paper, we use P_{n}, C_{n}, K_{n} to denote the path, the cycle and the complete graph of order n, respectively. Given two disjoint graphs G and H, the join of G and H, denoted by $G \vee H$, is obtained from the vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$.

For a graph G, let $c: E(G) \rightarrow[k]=\{1,2, \ldots, k\}, k \in \mathbb{N}$, be an edge-coloring of G. For an edge e of G, we denote the color of e by $c(e)$. When adjacent edges of G receive different colors by c, the edge-coloring c is called proper. The chromatic index of G, denoted by $\chi^{\prime}(G)$, is the minimum number of colors needed in a proper edge-coloring of G.

Chartrand et al. in [3] introduced the concept of rainbow disconnection of graphs. An edge-cut of a graph G is a set R of edges such that $G-R$ is disconnected. An edge-coloring is called a rainbow disconnection coloring of G if for every two vertices of G, there exists a rainbow cut in G separating them. For a connected graph G, the rainbow disconnection number of G, denoted by $r d(G)$, is the smallest number of colors required for a rainbow disconnection coloring of G. A rainbow disconnection coloring with $r d(G)$ colors is called an rd-coloring of G. In [1] the authors have obtained many results.

Inspired by the concept of rainbow disconnection, we naturally put forward a concept of proper disconnection. For an edge-colored graph G, a set F of edges of G is a proper edge-cut if F is an edge-cut of G and any pair of adjacent edges in F are assigned different colors. An edge-colored graph is called proper disconnected if for each pair of distinct vertices of G, there exists a proper edge-cut separating them. For a connected graph G, the proper disconnection number of G, denoted by $p d(G)$, is defined as the minimum number of colors that are needed in order to make G proper disconnected. A proper disconnection coloring with $p d(G)$ colors is called an pd-coloring of G. Clearly, for any pair of vertices of a graph, a rainbow cut is definitely a proper edge-cut. In [3], we know that if G is a nontrivial connected graph, then $\lambda(G) \leq \lambda^{+}(G) \leq r d(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$. Hence, we immediately have the following observation.

Observation 1.1 If G is a nontrivial connected graph, then $1 \leq p d(G) \leq r d(G) \leq$ $\chi^{\prime}(G) \leq \Delta(G)+1$.

Some complexity results on the proper disconnection of graphs are obtained in
our recent paper [4].
The concept of monochromatic disconnection of graphs is discussed in $[5,6]$.

2 Preliminaries

At the very beginning, we state some fundamental results on the proper disconnection numbers of graphs, which will be used in this paper. Let G be a connected graph. An edge-cut of G is a matching cut if the edge-cut is a matching of G. For vertices u and v of G, a matching cut F is called a u - v matching cut if F separates u and v in G. For a vertex $v \in V(G)$, let E_{v} be the set of all the edges incident with v in G.

Theorem 2.1 Let G be a nontrivial connected graph. Then $\operatorname{pd}(G)=1$ if and only if for any two vertices of G, there exists a matching cut separating them.

Proof. Let $p d(G)=1$ and c be a pd-coloring of G with one color. Assume, to the contrary, that there exist two vertices x and y which have no matching cut, i.e. each $x-y$ proper cut has two adjacent edges. Obviously, the two adjacent edges are colored differently. That is, $\operatorname{pd}(G) \geq 2$. This is a contradiction.

For the converse, define an edge-coloring c such that $c(e)=1$ for every $e \in E(G)$. For any two vertices x and y in G, there is a matching cut which is an $x-y$ proper edge-cut. Thus, c is a proper disconnection coloring of G and so $\operatorname{pd}(G)=1$.

For trees and cycles, we get the following results immediately by Theorem 2.1.

Proposition 2.2 If G is a tree, then $p d(G)=1$.

Proposition 2.3 If C_{n} is a cycle, then

$$
\operatorname{pd}\left(C_{n}\right)= \begin{cases}2, & \text { if } n=3, \\ 1, & \text { if } n \geq 4 .\end{cases}
$$

Lemma 2.4 If H is a connected subgraph of a connected graph G, then $p d(H) \leq$ $p d(G)$.

Proof. Let c be a pd-coloring of G and c_{H} be a coloring of H by restricting c to H. Let x and y be two vertices of H. Suppose that F is an $x-y$ proper edge-cut in G. Then $F \cap E(H)$ is an $x-y$ proper edge-cut in H. Hence, the coloring c restricted to H is a proper disconnection coloring of H. Thus, $p d(H) \leq p d(G)$.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Then the block is either a cut edge, say trivial block, or a maximal 2-connected subgraph. Let $\left\{B_{1}, B_{2}, \ldots, B_{t}\right\}$ be the block set of G.

Lemma 2.5 Let G be a nontrivial connected graph with blocks $B_{1}, B_{2}, \cdots, B_{t}$. Then $p d(G)=\max \left\{p d\left(B_{i}\right) \mid i \in[t]\right\}$.

Proof. Let $k=\max \left\{p d\left(B_{i}\right) \mid 1 \leq i \leq t\right\}$. If G has no cut vertex, then $G=B_{1}$ and the result follows. Next, we assume that G has at least one cut vertex. Since each block is a subgraph of $G, \operatorname{pd}(G) \geq k$ by Lemma 2.4.

For each $i \in[t]$, let c_{i} be a pd-coloring of B_{i}. We define the edge-coloring c : $E(G) \rightarrow[k]$ of G by $c(e)=c_{i}(e)$ if $e \in E\left(B_{i}\right)$.

Let $x, y \in V(G)$. If there exists a block, say B_{i}, that contains both x and y, then any $x-y$ proper edge-cut in B_{i} is an $x-y$ proper edge-cut in G. Next, we consider that no block of G contains both x and y. Assume that $x \in B_{i}$ and $y \in B_{j}$, where $i \neq j$. Now every $x-y$ path contains a cut vertex, say v, of G in B_{i} and a cut vertex, say w, of G in B_{j}. Note that v could equal w. If $x \neq v$, then any $x-v$ proper cut of B_{i} is an $x-y$ proper edge-cut in G. Similarly, if $y \neq w$, then any y-w proper cut of B_{j} is an $x-y$ proper edge-cut in G. Thus, we may assume that $x=v$ and $y=w$. It follows that $v \neq w$. Consider the $x-y$ path $P=\left(x=v_{1}, v_{2}, \ldots, v_{p}=y\right)$. Since x and y are cut vertices in different blocks and no block contains both x and y, we can select the first cut vertex z of G on P except x, that is, $z=v_{k}$ for some $k(2 \leq k \leq p-1)$. Then x and z belong to the same block, say $B_{s}(s \in\{1,2, \cdots, t\} \backslash\{i, j\})$. Then any $x-z$ proper edge-cut of B_{s} is an $x-y$ proper edge-cut of G. Hence, $p d(G) \leq k$, and so $p d(G)=k$.

We next present a useful structural property.

Lemma 2.6 Let G be a nontrivial connected graph. If there exist two nonadjacent vertices u and v sharing $t(t \geq 1)$ common neighbors in G, then $p d(G) \geq\left\lceil\frac{t}{2}\right\rceil$. Furthermore, if $u v \in E(G)$, then $p d(G) \geq\left\lceil\frac{t}{2}\right\rceil+1$.

Proof. Let c be a pd-coloring of G. Let u, v be two vertices of G and $F(u, v)$ be a $u-v$ proper edge-cut in G. If $u v \notin E(G)$, let $W=N(u) \cap N(v)=\left\{w_{1}, w_{2}, \cdots, w_{t}\right\}$. Then there are t internally disjoint paths of length two. Let $E_{1}=\left\{u w_{i} \mid 1 \leq i \leq t\right\}$ and $E_{2}=$ $\left\{v w_{i} \mid 1 \leq i \leq t\right\}$. Then $\left|F(u, v) \cap E_{1}\right| \geq\left\lceil\frac{t}{2}\right\rceil$ or $\left|F(u, v) \cap E_{2}\right| \geq\left\lceil\frac{t}{2}\right\rceil$. Otherwise there exists at least one $u-v$ path of length two in $G \backslash F(u, v)$, which is a contradiction. Since $E_{1} \subseteq E_{u}$ and $E_{2} \subseteq E_{v}, p d(G) \geq\left\lceil\frac{t}{2}\right\rceil$. Moreover, if $u v \in E(G)$, then $u v \in F(u, v)$.

So $\left|F(u, v) \cap E_{u}\right| \geq\left|F(u, v) \cap E_{1}\right|+1$ or $\left|F(u, v) \cap E_{v}\right| \geq\left|F(u, v) \cap E_{2}\right|+1$. Hence, $p d(G) \geq\left\lceil\frac{t}{2}\right\rceil+1$.

3 Main results

In this section, we give the exact values of the proper disconnection numbers for the wheel graphs, the complete graphs, the complete bipartite graphs and the outerplanar graphs. Furthermore, we obtain a sharp upper bound of $p d(G)$, and derive the minimum size of a graph G of order n with $p d(G)=k$, where $1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$.

3.1 Wheel graphs

Lemma 3.1 Let $G=K_{4}-\{e\}$. Then $p d(G)=2$. Furthermore, the colors of matching edges in G are the same for any pd-coloring.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left.E(G)=\left\{v_{i} v_{j}\right\} \mid 1 \leq i<j \leq 4\right\} \backslash\left\{v_{2} v_{4}\right\}$. First, we have $p d(G) \geq 2$ since K_{3} is a subgraph of G. Define an edge-coloring $c: E(G) \rightarrow[2]$ of G as follows. Let $c\left(v_{1} v_{2}\right)=c\left(v_{1} v_{3}\right)=c\left(v_{3} v_{4}\right)=1, c\left(v_{1} v_{4}\right)=c\left(v_{2} v_{3}\right)=2$. Let u and v be two vertices of G. If $d(u)=2$ or $d(v)=2$, then E_{u} (or E_{v}) is a u - v proper edge-cut. Otherwise, If $d(u)=d(v)=3$, then the edge set $\left\{v_{1} v_{4}, v_{1} v_{3}, v_{2} v_{3}\right\}$ is a proper edge-cut of u, v. Thus, $p d(G) \leq 2$.

For any pd-coloring $c: E(G) \rightarrow[2]$ of G, assume that $c\left(v_{1} v_{3}\right)=1$. Since any edge-cut of v_{1} and v_{3} has at least three edges, there exist two matching edges with color 2 incident with v_{1}, v_{3} respectively. We claim that the remaining two matching edges must have the same color. Otherwise, there exists a vertex, say v_{2}, such that all edges of $E_{v_{2}}$ have color 2. Then $E_{v_{1}}$ or $E_{v_{3}}$ has two edges with color 2. Therefore, there is no $v_{1}-v_{2}$ or $v_{2}-v_{3}$ proper edge-cut.

Theorem 3.2 If $W_{n}=C_{n} \vee K_{1}$ is the wheel of order $n+1 \geq 4$, then

$$
\operatorname{pd}\left(W_{n}\right)=\left\{\begin{array}{cc}
2, & \text { if } n=3 k(k \in \mathbb{Z}) \\
3, & \text { otherwise }
\end{array}\right.
$$

Proof. Let $V\left(W_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $E\left(W_{n}\right)=\left\{v_{0} v_{i}, v_{0} v_{n}, v_{i} v_{i+1}, v_{1} v_{n} \mid 1 \leq\right.$ $i \leq n-1\}$. For convenience, each subscript of vertices is expressed as an integer $0,1,2, \cdots, n-1$ modular n. First, $\operatorname{pd}\left(W_{n}\right) \geq 2$, since K_{3} is a subgraph of W_{n}.

Case 1. $n=3 k$.

Define an edge-coloring $c: E\left(W_{n}\right) \rightarrow[2]$ of W_{n}. Let $c\left(v_{0} v_{3 i}\right)=c\left(v_{1+3 j} v_{2+3 j}\right)=$ 2 where $1 \leq i \leq k$ and $0 \leq j \leq k-1$ and assign color 1 to the remaining edges. Let v_{i} be a vertex of W_{n}, where $i=3 t(1 \leq t \leq k)$. Then the edge set $\left\{v_{i-1} v_{i}, v_{0} v_{i}, v_{0} v_{i+1}, v_{i+1} v_{i+2}\right\}$ is a proper edge-cut between $\left\{v_{i}, v_{i+1}\right\}$ and $V\left(W_{n}\right) \backslash$ $\left\{v_{i}, v_{i+1}\right\}$ and the edge set $\left\{v_{i} v_{i+1}, v_{0} v_{i}, v_{0} v_{i-1}, v_{i-2} v_{i-1}\right\}$ is also a proper edge-cut between $\left\{v_{i-1}, v_{i}\right\}$ and $V\left(W_{n}\right) \backslash\left\{v_{i-1}, v_{i}\right\}$.

Let v_{k}, v_{l} be any two vertices of W_{n} where k, l are integers. If v_{k} is nonadjacent to v_{l}, then there exists an edge $v_{k} v_{p}$ such that $p=3 t$ or $k=3 t$. By above argument, we have a proper edge-cut between $\left\{v_{k}, v_{p}\right\}$ and $V\left(W_{n}\right) \backslash\left\{v_{k}, v_{p}\right\}$, which is a $v_{k}-v_{l}$ proper edge-cut. Assume v_{k} is adjacent to v_{l} with $k \leq l$. If k or l is a multiple of 3 , without loss of generality, $k=3 t$, then there exists a proper cut between $\left\{v_{k}, v_{p}\right\}$ and $V\left(W_{n}\right) \backslash\left\{v_{k}, v_{p}\right\}$ where $v_{p} \in N\left(v_{k}\right) \backslash\left\{v_{0}, v_{l}\right\}$, which is a $v_{k}-v_{l}$ proper edge-cut. If neither k nor l is a multiple of 3 , then there exits a proper edge-cut between $\left\{v_{k}, v_{s}\right\}$ and $V\left(W_{n}\right) \backslash\left\{v_{k}, v_{s}\right\}$ where $v_{s} \in N\left(v_{k}\right) \backslash\left\{v_{0}, v_{l}\right\}$, which is a v_{k} - v_{l} proper edge-cut. Thus, $\operatorname{pd}\left(W_{n}\right)=2$.

Case 2. $n \neq 3 k$.

Assume that $\operatorname{pd}\left(W_{n}\right)=2$. Let $c\left(v_{0} v_{1}\right)=1$. Then for matching edges $v_{0} v_{1}$ and $v_{2} v_{3}$ in induced graph $G\left[\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}\right]$, we get $c\left(v_{0} v_{1}\right)=c\left(v_{2} v_{3}\right)=1$ by Lemma 3.1. Using Lemma 3.1 repeatedly, we get $c(e)=1$ for any edge e of W_{n} (i.e. $c\left(v_{0} v_{1}\right)=$ $\left.c\left(v_{2} v_{3}\right)=c\left(v_{0} v_{4}\right)=\cdots=1\right)$. This is a contradiction with $\operatorname{pd}\left(W_{n}\right) \geq 2$. Thus, $\operatorname{pd}\left(W_{n}\right) \geq 3$.

Now we define an edge-coloring $c: E\left(W_{n}\right) \rightarrow[3]$ of W_{n}. First, let c be a proper edge-coloring of C_{n} using the colors 1,2,3. For each integer i with $1 \leq i \leq n$, let $a_{i} \in\{1,2,3\} \backslash\left\{c\left(v_{i-1} v_{i}\right), c\left(v_{i} v_{i+1}\right)\right\}$, and let $c\left(v_{0} v_{i}\right)=a_{i}$. Thus, $E_{v_{i}}$ is a proper set for $1 \leq i \leq n$. Let x, y be two distinct vertices of W_{n}. Then at least one of x and y belongs to C_{n}, say $x \in V\left(C_{n}\right)$. Since E_{x} separates x and y, it follows that c is a proper disconnection coloring of W_{n} using three colors. Therefore, $p d\left(W_{n}\right)=3$ for $n \neq 3 k$.

3.2 Complete bipartite graphs and complete graphs

Now we introduce some notations. Let X and Y be sets of vertices of a graph G, we denote by $E[X, Y]$ the set of all the edges of G with one end in X and the other end in Y. We write $G[X, Y]$ for $G[E[X, Y]]$. For an edge-coloring c of $G[X, Y]$, if c is a proper coloring, then $E[X, Y]$ is called a proper set.

Theorem 3.3 Let $K_{n, n}$ be a complete bipartite graph. Then $\operatorname{pd}\left(K_{n, n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Proof. Let $G=K_{n, n}$ and suppose that X and Y are two partite vertex sets of G, where $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$. For any two vertices $x_{i}, x_{j} \in X$, there are n common neighbors in Y. Then $p d(G) \geq\left\lceil\frac{n}{2}\right\rceil$ by Lemma 2.6.

Now, for the upper bound, we define an edge-coloring $c: E(G) \rightarrow\left\{0,1, \cdots,\left\lceil\frac{n}{2}\right\rceil-\right.$ $1\}$ of G by assigning each edge $x_{i} y_{j}$ with $c\left(x_{i} y_{j}\right) \equiv i+j-1\left(\bmod \left\lceil\frac{n}{2}\right\rceil\right)$ for $1 \leq i, j \leq n$. Let $X=X_{1} \cup X_{2}$, where $X_{1}=\left\{x_{1}, x_{2}, \cdots, x_{\left\lceil\frac{n}{2}\right\rceil}\right\}$ and $X_{2}=\left\{x_{\left\lceil\frac{n}{2}\right\rceil+1}, x_{\left\lceil\frac{n}{2}\right\rceil+2}, \cdots, x_{n}\right\}$. Let $Y=Y_{1} \cup Y_{2}$, where $Y_{1}=\left\{y_{1}, y_{2}, \cdots, y_{\left\lceil\frac{n}{2}\right\rceil}\right\}$ and $Y_{2}=\left\{y_{\left\lceil\frac{n}{2}\right\rceil+1}, y_{\left\lceil\frac{n}{2}\right\rceil+2}, \cdots, y_{n}\right\}$.

Claim 3.4 For each pair of vertex sets X_{k} and $Y_{l}(k, l \in[2]), E\left[X_{k}, Y_{l}\right]$ is a proper set.

Proof. By symmetry, we only consider the vertex sets X_{1} and Y_{1}. For each vertex x_{i} of X_{1}, since $c\left(x_{i} y_{j}\right) \equiv i+j-1\left(\bmod \left\lceil\frac{n}{2}\right\rceil\right)$, it follows that $c\left(x_{i} y_{1}\right) \neq c\left(x_{i} y_{2}\right) \neq \cdots \neq$ $c\left(x_{i} y_{\left[\frac{n}{2}\right\rceil}\right)$. Therefore, the edges of $G\left[X_{1}, Y_{1}\right]$ incident with the same vertex are colored by different colors. Thus, $E\left[X_{1}, Y_{1}\right]$ is a proper set.

We now show that for each pair of vertices u and w of G, there is a proper edge-cut separating them. Two cases are needed to be discussed.

Case 1. $u \in X, w \in Y$.
Suppose that $u=x_{i}$ and $w=y_{j}$. Let $x_{i} \in X_{1}, y_{j} \in Y_{1}$ or $x_{i} \in X_{2}, y_{j} \in Y_{2}$ and let $F\left(x_{i}, y_{j}\right)=E\left[X_{1}, Y_{1}\right] \cup E\left[X_{2}, Y_{2}\right]$. Consider the subgraph H of G obtained by deleting $F\left(x_{i}, y_{j}\right)$ from G, then H has two components $G\left[X_{1}, Y_{2}\right]$ and $G\left[X_{2}, Y_{1}\right]$ (See Figure 1). Since $x_{i} \in G\left[X_{1}, Y_{2}\right]$ and $y_{j} \in G\left[X_{2}, Y_{1}\right]$, we can know that $F\left(x_{i}, y_{j}\right)$ is an edge cut separating x_{i} and y_{j}. Moreover, $E\left[X_{1}, Y_{1}\right]$ and $E\left[X_{2}, Y_{2}\right]$ are proper sets by the claim and $E\left[X_{1}, Y_{1}\right] \cap E\left[X_{2}, Y_{2}\right]=\phi$, so $F\left(x_{i}, y_{j}\right)$ is an x_{i} - y_{j} proper edge-cut. If $x_{i} \in X_{1}, y_{j} \in Y_{2}$ or $x_{i} \in X_{2}, y_{j} \in Y_{1}$, we can similarly show that $E\left[X_{1}, Y_{2}\right] \cup E\left[X_{2}, Y_{1}\right]$ is an $x_{i}-y_{j}$ proper edge-cut.

Figure 1: A graph H

Case 2. $u, w \in X$ or $u, w \in Y$.

By symmetry, suppose without loss of generality that $u=x_{i}$ and $w=x_{j}$. If $x_{i}, x_{j} \in X_{1}$, where $1 \leq i<j \leq\left\lceil\frac{n}{2}\right\rceil$. Let $X_{1}^{\prime}=X_{1}-x_{i}+x_{i+\left\lceil\frac{n}{2}\right\rceil}$ and $X_{2}^{\prime}=$ $X_{2}+x_{i}-x_{i+\left\lceil\frac{n}{2}\right\rceil}$. Then $x_{i} \in X_{2}^{\prime}$ and $x_{j} \in X_{1}^{\prime}$. For every vertex y_{t} of Y, we know that $c\left(x_{i} y_{t}\right)=c\left(x_{i+\left\lceil\frac{n}{2}\right\rceil} y_{t}\right) \equiv i+t-1\left(\bmod \left\lceil\frac{n}{2}\right\rceil\right)$. By the same method used in the claim, for vertex sets X_{k}^{\prime} and $Y_{l}(k, l \in[2]), E\left[X_{k}^{\prime}, Y_{l}\right]$ is a proper set. Let $F^{\prime}\left(x_{i}, x_{j}\right)=E\left[X_{1}^{\prime}, Y_{1}\right] \cup E\left[X_{2}^{\prime}, Y_{2}\right]$. Let $H^{\prime}=G\left[X_{1}^{\prime}, Y_{2}\right] \cup G\left[X_{2}^{\prime}, Y_{1}\right]$ be a graph obtained by deleting $F^{\prime}\left(x_{i}, x_{j}\right)$ from G (See Figure 2). According to Case $1, F^{\prime}\left(x_{i}, x_{j}\right)$ is an $x_{i^{-}}$ x_{j} proper edge-cut. If $x_{i} \in X_{1}$ and $x_{j} \in X_{2}$, similarly, we can get $E\left[X_{1}, Y_{1}\right] \cup E\left[X_{2}, Y_{2}\right]$ is an $x_{i}-x_{j}$ proper edge-cut.

Figure 2: A graph H^{\prime}

Theorem 3.5 Let $K_{m, n}$ be a complete bipartite graph with $2 \leq m \leq n$. Then $p d\left(K_{m, n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Proof. Let $G=K_{m, n}$ and $V(G)=X \cup Y$, where $X=\left\{x_{1}, \cdots, x_{m}\right\}$ and $Y=$ $\left\{y_{1}, \cdots, y_{n}\right\}$. For any two vertices $x_{i}, x_{j} \in X$, there are n common neighbors in Y. From Lemma 2.6, it follows that $p d(G) \geq\left\lceil\frac{n}{2}\right\rceil$. Also, G is a subgraph of $K_{n, n}$. By Theorem 3.3 and Lemma 2.4, we have that $p d(G) \leq p d\left(K_{n, n}\right)=\left\lceil\frac{n}{2}\right\rceil$. Hence, it follows that $p d(G)=\left\lceil\frac{n}{2}\right\rceil$.

Theorem 3.6 For each integer $n \geq 2, p d\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proof. Let $a=\left\lceil\frac{n}{2}\right\rceil$ and $V\left(K_{n}\right)=X \cup Y$, where $X=\left\{v_{1}, v_{2}, \cdots, v_{a}\right\}$ and $Y=$ $\left\{v_{a+1}, v_{a+2}, \cdots, v_{n}\right\}$. For any two vertices $v_{i}, v_{j} \in V\left(K_{n}\right)$, there are $n-2$ common neighbors in K_{n} and $v_{i} v_{j} \in E\left(K_{n}\right)$. Then $p d\left(K_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil$ by Lemma 2.6. Define an edge-coloring $c: E(G) \rightarrow\{0,1, \cdots, a-1\}$ such that $c\left(v_{i} v_{j}\right) \equiv i+j-1(\bmod a)$. For any two vertices $u, w \in V(G)$, assume $u \in X$ and $w \in Y$. Since $E[X, Y]$ separates u and w, and $E[X, Y]$ is a proper set in K_{n} by a similar proof method as

Claim 3.4, $E[X, Y]$ is a $u-w$ proper edge-cut. If $u, w \in X$, assume that $u=v_{i}$ and $w=v_{j}$, where $i<j$. Let $i_{0}=i+a$. Then $v_{i_{0}} \in Y$. For $v_{r} \in V\left(K_{n}\right)\left(r \neq i, i_{0}\right)$, we have $c\left(v_{i} v_{r}\right)=c\left(v_{i_{0}} v_{r}\right)$. Let $X^{\prime}=X \backslash\left\{v_{i}\right\}$ and $Y^{\prime}=Y \backslash\left\{v_{i_{0}}\right\}$. Similarly, $F\left(v_{i}, v_{j}\right)=E\left[X^{\prime} \cup\left\{v_{i_{0}}\right\}, Y^{\prime} \cup\left\{v_{i}\right\}\right]$ is a proper set. Since $F\left(v_{i}, v_{j}\right)$ separates u and $w, F\left(v_{i}, v_{j}\right)$ is a $u-w$ proper edge-cut in K_{n}. If $u, w \in Y$, we can obtain a u-w proper edge-cut in the similar way. Thus, c is a proper disconnection coloring of K_{n} and so $p d\left(K_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$.

3.3 Outerplanar graphs

An outerplanar graph is a graph that can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. A minor of a graph G is any graph obtained from G by means of a sequence of vertex and edge deletions and edge contractions. A chord of a cycle C in a graph G is an edge in $E(G) \backslash E(C)$ both of whose ends lie on C. There is a characterization of outerplanar graphs as follows.

Theorem 3.7 [2] A graph is outerplanar if and only if it does not contain K_{4} or $K_{2,3}$ as a minor.

Let P_{n} be a path of order n. We denote $K_{1} \vee P_{n}$ by $F_{1, n}$, which is called a fan graph. We first show that the proper disconnection number of fan graph is 2, which will be used to characterize the outerplanar graphs with diameter 2 .

Lemma 3.8 Let $F_{1, n}=K_{1} \vee P_{n}$ be a fan graph, where $n \geq 2$. Then $p d\left(F_{1, n}\right)=2$.

Proof. Firstly, we have that $p d\left(F_{1, n}\right) \geq p d\left(K_{3}\right)=2$ by Lemma 2.4. Clearly, $F_{1, n}$ is a subgraph of W_{n}. If $n=3 k(k \geq 1)$, then $p d\left(F_{1, n}\right) \leq p d\left(W_{n}\right)=2$ by Lemma 2.4 and Theorem 3.2. Thus, $F_{1,3 k}=2$. If $n=3 k-2$ or $3 k-1(k \geq 1)$, then $p d\left(F_{1,3 k-2}\right) \leq$ $p d\left(F_{1,3 k-1}\right) \leq p d\left(F_{1,3 k}\right)=2$ since both $F_{1,3 k-2}$ and $F_{1,3 k-1}$ are subgraphs of $F_{1,3 k}$. Hence, $p d\left(F_{1, n}\right)=2$.

Theorem 3.9 Let G be an outerplanar graph. Then $p d(G)=1$ if and only if G is a triangle-free graph.

Proof. Let $p d(G)=1$. Assume, to the contrary, that G contains a copy of K_{3}. Then $p d(G) \geq p d\left(K_{3}\right)=2$ by Theorem 2.4 , which is a contradiction. Then G is a triangle-free outerplanar graph.

For the converse, let B be a block of G with t vertices such that $p d(B)$ is maximum among all proper disconnection numbers of the other blocks. Then B is a triangle-free outerplanar graph. By Lemma 2.5, it suffices to show that $p d(B)=1$. If B is trivial, then $\operatorname{pd}(B)=1$. If B is not trivial, then $t \geq 4$. Suppose that B is a cycle. Then $p d(B)=1$ by Proposition 2.3.

It remains to consider that B is not a cycle. Since B is a triangle-free and outerplanar graph, we only consider $t \geq 6$. We proceed by induction on t. When $t=6$, the block B has only one chord since B is a triangle-free and outerplanar graph. Clearly, $p d(B)=1$ and the result is true. When $t \geq 7$, let $C=v_{1} e_{1} v_{2} e_{2} \cdots e_{t-1} v_{t} e_{t} v_{1}$ be the boundary of the outer face in B. Choose a chord $v_{i} v_{j}$ such that the internal vertices of $P=v_{i} e_{i} v_{i+1} e_{i+1} \cdots e_{j-1} v_{j}(j \geq i+3)$ have degree 2 in B. Let B^{\prime} be a graph by removing internal vertices of P from B. Then $\operatorname{pd}\left(B^{\prime}\right)=1$ by induction hypothesis. By Theorem 2.1, for any two vertices x and y of B^{\prime} there is an $x-y$ matching cut, denoted by $F_{B^{\prime}}(x, y)$. For any two vertices u, v in B, if $u, v \in B^{\prime}$, then $F_{B^{\prime}}(u, v) \cup\left\{e_{i+1}\right\}$ is a $u-v$ matching cut in B. If $u, v \in B \backslash B^{\prime}$, then $F_{B^{\prime}}\left(v_{i}, v_{j}\right) \cup\{e\}$ is a $u-v$ matching cut in B, where e is an edge cut separating u and v in P. If $u \in B^{\prime}$ and $v \in B \backslash B^{\prime}$, then $\left\{e_{i}, e_{j-1}\right\}$ is a $u-v$ matching cut in B. Therefore, $p d(B)=1$.

Now we characterize the outerplanar graphs G with $D(G)=2$. We first construct some graph classes. Let \mathcal{D} be a family of graphs obtained from $W_{n}=K_{1} \vee C_{n}$ by deleting $t(1 \leq t \leq n-1)$ edges from C_{n}. Let z be an isolated vertex and $v_{1} v_{2} v_{3} v_{4} v_{5}$ be a path of length 4 . Then join z with v_{1}, v_{2}, v_{4} and v_{5}. We denote the resulting graph by $F_{1,5}^{-}$. Let y be an isolated vertex and $v_{1} v_{2} v_{3} v_{4}$ be a path of length 3 . Then join y with v_{1}, v_{3} and v_{4}. We denote the resulting graph by $F_{1,4}^{-}$. Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ Then let $F^{\prime}=C_{6} \cup\left\{v_{1} v_{3}, v_{3} v_{5}, v_{1} v_{5}\right\}$.

Theorem 3.10 Let G be an outerplanar graph with $D(G)=2$. Then $\operatorname{pd}(G)=2$ if and only if $G \in \mathcal{D}$ or $G \cong F_{1,5}^{-}$or $F_{1,4}^{-}$or F^{\prime}.

Proof. Sufficiency. Since there is at least one triangle K_{3} for every $G \in \mathcal{D}$, it is clear to see that $p d(G) \geq p d\left(K_{3}\right)=2$ by Theorem 2.4 and Theorem 3.6. Meanwhile, G is a subgraph of a fan graph, therefore, $p d(G) \leq 2$ by Lemma 3.8 and Lemma 2.4. Hence, $p d(G)=2$ for $G \in \mathcal{D}$. Similarly, $p d\left(F_{1,5}^{-}\right)=p d\left(F_{1,4}^{-}\right)=2$. For the graph $F^{\prime}, p d\left(F^{\prime}\right) \geq 2$ by Lemma 2.4 and Theorem 3.6. We now assign a 2-edge-coloring c : $E\left(F^{\prime}\right) \rightarrow\{1,2\}$ for F^{\prime}.

Let $c\left(v_{1} v_{5}\right)=c\left(v_{3} v_{4}\right)=c\left(v_{2} v_{3}\right)=2$ and the remaining edges are colored by 1. Thus, for every pair of vertices in F^{\prime}, there exists a proper edge-cut $F\left[V_{1}, V\left(F^{\prime}\right) \backslash\right.$ $\left.V_{1}\right]$, where $V_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V\left(F^{\prime}\right) \backslash V_{1}=\left\{v_{4}, v_{5}, v_{6}\right\}$ or $V_{1}=\left\{v_{1}, v_{2}, v_{6}\right\}$ and
$V\left(F^{\prime}\right) \backslash V_{1}=\left\{v_{4}, v_{5}, v_{3}\right\}$ or $V_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}\right\}$ and $V\left(F^{\prime}\right) \backslash V_{1}=\left\{v_{4}\right\}$ or $V_{1}=$ $\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $V\left(F^{\prime}\right) \backslash V_{1}=\left\{v_{2}\right\}$. Hence, $p d\left(F^{\prime}\right)=2$.

Necessity. Suppose that $p d(G)=2$. Clearly, there is at most one cut vertex since $D(G)=2$. Otherwise $D(G) \geq 3$. We now discuss it by two cases.

Case 1. Suppose that there exists exactly one cut vertex. Then the remaining vertices are adjacent to the cut vertex. Since the star $p d\left(K_{1, t}\right)=1, G$ is not a star. And since the wheel graph is not the outerplanar graph, G is not the graph containing the wheel graph. Thus, we get $G \in \mathcal{D}$ because G is a outerplanar graph.

Case 2. Suppose that there is not a cut vertex. Then $\delta(G) \geq 2$. Let r be a vertex with maximum degree and $N(r)=\left\{x_{1}, x_{2}, \cdots, x_{\Delta}\right\}$.

Subcase 2.1. $d(r)=n-1$. Since there is no cut vertex in G, the induced subgraph $G[N(r)]$ is connected. We claim that $G[N(r)]$ is a path. Otherwise, it is a tree with a vertex v of degree at least three, or it contains a cycle. Thus, G contains a minor of $K_{2,3}$ or K_{4}. By Theorem 3.7, we have a contradiction. Clearly, G is the graph from \mathcal{D} with $t=1$.

Subcase 2.2. $d(r)=n-2$. Let x be a vertex which is nonadjacent to r. Suppose that $|N(x)| \geq 3$. Then, there is a minor of $K_{2,3}$ in G, which is a contradiction. Thus, $|N(x)|=2$. We now illustrate our claim that $G \cong F_{1,5}^{-}$or $F_{1,4}^{-}$or $G \cong F^{\prime}$. Without loss of generality, let $x_{1} x, x_{2} x$ be two edges of G. Suppose that $n \geq 7$. Since $D(G)=2$, the vertices x_{3}, x_{4}, x_{5} are adjacent to x_{1} or x_{2}. Then there are at least two vertices adjacent to the same vertex x_{1} (or x_{2}). Then we obtain a minor of $K_{2,3}$ in G. Suppose that $n=5$. Since $d\left(x_{3}\right) \geq 2$, we have exactly one edge $x_{2} x_{3} \in E(G)$ or $x_{1} x_{3} \in E(G)$. Otherwise, there is a minor of K_{4}. So $G \cong F_{1,4}^{-}$. Suppose that $n=6$. The vertices x_{3}, x_{4} have no common neighbor other than r. Otherwise, there is a minor of $K_{2,3}$ in G, and it is the same for x_{1}, x_{2}. Since $D(G)=2$, there exist edges $x_{2} x_{3}, x_{1} x_{4}$ (or $x_{1} x_{3}, x_{2} x_{4}$). Hence, we have $G \cong F_{1,5}^{-}$if $x_{1} x_{2} \notin E(G)$ and $G \cong F^{\prime}$ if $x_{1} x_{2} \in E(G)$.

Subcase 2.3. $d(r) \leq n-3$. Let y_{1} and y_{2} be two vertices which are nonadjacent to r. Assume that $y_{1} y_{2} \in E(G)$. If $\left|N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)\right| \geq 3$, then there is a minor of $K_{2,3}$ in G. Thus, $\left|N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)\right| \leq 2$. If $N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)=\emptyset$, then $d\left(r, y_{1}\right) \geq 3$, which is a contradiction. If $\left|N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)\right|=1$, then when there is exactly one vertex of $\left\{y_{1}, y_{2}\right\}$ which is adjacent to one vertex of $N(r)$, it contradicts with $D(G)=2$. When both y_{1} and y_{2} are adjacent to one common vertex of $N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)$, without loss of generality, let $y_{1} x_{1}, y_{2} x_{1} \in E(G)$. Then there exists $x_{i}(i \neq 1)$ which is nonadjacent to $x_{1} \in N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)$ since r is a vertex with maximum degree. Then there exists two vertices $y_{3}, y_{4} \in V(G) \backslash\left(N[r] \cup\left\{y_{1}, y_{2}\right\}\right)$ such that, with loss of generality,
$x_{i} y_{3}, y_{3} y_{1}, x_{i} y_{4}, y_{4} y_{2} \in E(G)$ since $D(G)=2$, where y_{3} may be equal to y_{4}. Then $\left|N(r) \cap N\left(\left\{y_{1}, y_{3}\right\}\right)\right|=2$. Namely, there are always two vertices, with loss of generality, $y_{1}, y_{2} \in V(G) \backslash N[r]$, which satisfy $y_{1} y_{2} \in E(G)$ and $\left|N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)\right|=2$. Therefore, we only consider the case that $\left|N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)\right|=2$. Without loss of generality, let $x_{1} y_{1}, x_{2} y_{2} \in E(G)$.

When $|N(r)|=2$, clearly, $G \cong C_{5}$, contradicting that $p d(G)=2$. If $|N(r)| \geq 5$, then x_{3}, x_{4} and x_{5} belong to $N(r)$ but not $N\left(\left\{y_{1}, y_{2}\right\}\right)$. So, there are at least two vertices of x_{3}, x_{4} and x_{5} adjacent to one vertex of x_{1} and x_{2}, which induces a minor of $K_{2,3}$. Thus, $|N(r)|=3$ or 4. If there exists a vertex $y \notin N(r)\left(y \neq y_{1}, y_{2}\right)$ such that $x_{3} y, y y_{1} \in E(G)\left(\right.$ or $\left.x_{3} y, y y_{2} \in E(G)\right)$, then it contains a minor of $K_{2,3}$. If $|N(r)|=3$, then $N\left(x_{3}\right) \cap N\left(\left\{y_{1}, y_{2}\right\}\right) \neq \emptyset$ since $D(G)=2$. However, there is at most one vertex in $N(r) \cap N\left(\left\{y_{1}, y_{2}\right\}\right)$ adjacent to x_{3}. Otherwise, there is a minor of K_{4} in G. Suppose that x_{3} is adjacent to one vertex of $\left\{x_{1}, x_{2}\right\}$, say x_{1}, then $D(G)=3$ since r has the maximum degree. This is a contradiction. If $|N(r)|=4$, then x_{3} and x_{4} are not adjacent to one common vertex of x_{1} and x_{2}. Otherwise, it produces a minor of $K_{2,3}$. Then let $x_{2} x_{3}, x_{1} x_{4} \in E(G)$. In the sake of $D(G)=2$, the pair of vertices x_{3} and y_{1} has at least one common neighbor and so does the pair of x_{4} and y_{2}. However, it produces a minor of K_{4}.

Assume that $V(G) \backslash N[r]$ is an independent set. Clearly, y_{1} and y_{2} have at most two neighbors in $\left\{x_{i} \mid 1 \leq i \leq n-3\right\}$, respectively. Since $D(G)=2, y_{1}$ and y_{2} have at least one common neighbor in $\left\{x_{i} \mid 1 \leq i \leq n-3\right\}$. If they have at least two common neighbors, then G contains a minor of $K_{2,3}$, which is a contradiction. Thus, y_{1} and y_{2} have exactly one common neighbor in $\left\{x_{i} \mid 1 \leq i \leq n-3\right\}$. Without loss of generality, let $x_{1}, x_{2} \in N\left(y_{1}\right)$ and $x_{1} \in N\left(y_{2}\right)$. Then y_{2} has a neighbor x where $x \neq x_{1}, x_{2}$. Without loss of generality, let $x=x_{3}$. Then there is an edge $x_{1} x_{3}$ or $x_{2} x_{3}$. Otherwise, it is a contradiction to $D(G)=2$. If $x_{2} x_{3} \in E(G)$, then there is a minor of K_{4}. If $x_{1} x_{3} \in E(G)$, then $x_{1} x_{2} \in E(G)$ since $D(G)=2$. Since $d(r) \geq d\left(x_{1}\right) \geq 4$, there exists another neighbor x_{4} of vertex r, which is nonadjacent to x_{1}. Otherwise, it produces a minor of $K_{2,3}$. In view of $D(G)=2$, then $\left\{x_{2} x_{4}, x_{3} x_{4}\right\} \subseteq E(G)$. There is a minor of K_{4}, which is a contradiction.

3.4 An upper bound and an extremal problem

We first consider the upper bound of the proper disconnection number for a graph of order n and chromatic index $\chi^{\prime}(G)$.

Theorem 3.11 If G is a nontrivial connected graph, then $p d(G) \leq \chi^{\prime}(G)-1$.

Proof. Let $c: E(G) \rightarrow\left[\chi^{\prime}(G)\right]$ be a proper edge-coloring of G. Then we define an edge-coloring c^{\prime} of G as follows: for any edge e of G, if $c(e)=\chi^{\prime}(G)$, then $c^{\prime}(e)=1$; otherwise, $c^{\prime}(e)=c(e)$. Let x, y be two vertices of G. Assume $N(x)=$ $\left\{v_{1}, v_{2}, \cdots, v_{d(x)}\right\}$. Obviously, at most two incident edges of x are assigned the color 1. If there exists at most one incident edge of x with color 1 , then E_{x} is an $x-y$ proper edge-cut. If there exist two edges with color 1 , then we may assume $c^{\prime}\left(x v_{i}\right)=$ $c^{\prime}\left(x v_{j}\right)=1(1 \leq i<j \leq d(x))$. If $y \in\left\{v_{i}, v_{j}\right\}$, then let t be the vertex in $\left\{v_{i}, v_{j}\right\}$ that is not y. Then $\left(E_{x} \cup E_{t}\right) \backslash\{x t\}$ is an x - y proper edge-cut. Otherwise, $\left(E_{x} \cup E_{v_{i}}\right) \backslash\left\{x v_{i}\right\}$ $(i \in[d(x)])$ is an $x-y$ proper edge-cut. Thus, c^{\prime} is a proper disconnection coloring of G and so $p d(G) \leq \chi^{\prime}(G)-1$.

According to Theorem 3.6 and Theorem 3.11, we get the following result.

Theorem 3.12 Let G be a nontrivial connected graph of order n. Then $p d(G) \leq$ $\min \left\{\chi^{\prime}(G)-1,\left\lceil\frac{n}{2}\right\rceil\right\}$, and the bound is sharp.

Proof. By Theorem 3.11, $p d(G) \leq \chi^{\prime}(G)-1$. Since G is a connected subgraph of K_{n}, $p d(G) \leq\left\lceil\frac{n}{2}\right\rceil$ by Theorem 3.6. For the sharpness, $\left\lceil\frac{n}{2}\right\rceil$ can be reached by complete graphs, and $\chi^{\prime}(G)-1$ can be reached by even cycles and paths with at least 3 vertices.

Now we investigate the following extremal problem: For given positive integers k and n with $1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, what is the minimum possible size of a connected graph G of order n such that the proper disconnection number of G is k ?

Lemma 3.13 Let G be a connected graph of order n. Let M be a matching of G. Then $p d(G) \leq \max \left\{p d\left(G_{i}\right) \mid 1 \leq i \leq t\right\}+1$, where G_{i} is a connected component of $G-M$ and t is the number of components of $G-M$.

Proof. Denote the components of $G-M$ by $G_{1}, G_{2}, \ldots, G_{t}$. Let $\ell=\max \left\{\operatorname{pd}\left(G_{i}\right) \mid 1 \leq\right.$ $i \leq t\}$. Let c_{i} be a pd-coloring of G_{i} and $F_{G_{i}}(u, v)$ be a u-v proper edge-cut in G_{i} for $i \in[t]$. We define an edge-coloring $c: E(G) \rightarrow[\ell+1]$ of G by $c(e)=c_{i}(e)$ if $e \in E\left(G_{i}\right)$ and $c(e)=\ell+1$ if $e \in M$. Let x, y be any two vertices of G. If $x, y \in G_{i}$, then $F_{G_{i}}(x, y) \cup M$ is an $x-y$ proper edge-cut in G. If $x \in G_{i}$ and $y \in G_{j}$ where $i \neq j$, then M is an $x-y$ proper edge-cut in G. Hence, $p d(G) \leq \max \left\{p d\left(G_{i}\right) \mid 1 \leq i \leq t\right\}+1$.

Theorem 3.14 For integers k and n with $1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, the minimum size of a
connected graph G of order n with $\operatorname{pd}(G)=k$ is

$$
|E(G)|_{\min }= \begin{cases}n-1, & \text { if } k=1, \\ n+2 k-4, & \text { if } k \geq 2 .\end{cases}
$$

Proof. Since G is a connected graph, $|E(G)|_{\text {min }}=n-1$ for $k=1$ by Proposition 2.2. For $k \geq 2$, we first show that if the size of a connected graph G of order n is at most $n+2 k-5$, then $\operatorname{pd}(G) \leq k-1$. We proceed by induction on k. The result holds for $k=2$ by Proposition 2.2. Suppose that G is a graph with $|E(G)| \leq n+2 k-5$. If G is a graph with at most one block which is a cycle and other blocks are trivial, the result is true for G by Proposition 2.3 and Lemma 2.5. Otherwise, we claim that there exist two matching edges, say e_{1}, e_{2}, of G such that $G-\left\{e_{1}, e_{2}\right\}$ is connected graph of order n. Now, there are two cases as follows:
(i) G has exactly one nontrivial block which is not a cycle, and the other blocks are trivial;
(ii) G has at least two nontrivial blocks.

For (i), let B be a nontrivial block which is not a cycle. Then B contains two vertices x and y such that they are connected by at least three internally disjoint $x-y$ paths. We can respectively pick one edge from two $x-y$ paths as matching edges. For (ii), we can respectively pick one edge from two nontrivial blocks as matching edges. The edges from (i) and (ii) can insure that $H=G-\left\{e_{1}, e_{2}\right\}$ is a connected graph of order n. Since $|E(H)| \leq n+2(k-1)-5$, we have $p d(H) \leq k-2$ by induction hypothesis. Then $p d(G)=p d\left(H+\left\{e_{1}, e_{2}\right\}\right) \leq p d(H)+1 \leq k-1$ by Lemma 3.13. Hence, we obtain that if $\operatorname{pd}(G)=k$, then $|E(G)| \geq n+2 k-4$.

Next we show that for each pair integers k and n with $2 \leq k \leq\left\lceil\frac{n}{2}\right\rceil$, there is a connected graph G of order n and size $n+2 k-4$ such that $\operatorname{pd}(G)=k$. Let $H=K_{2,2 k-3}$ with partite vertex sets $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{2 k-3}\right\}$. Let G be the graph of order n and size $n+2 k-4$ obtained from H by adding an edge $a_{1} a_{2}$ and adding $n-2 k+1$ pendent edges to a vertex of H. Now, define a coloring $c \rightarrow[k]$ for graph $H+a_{1} a_{2}$. Let c_{H} be a pd-coloring using colors $[k-1]$ by Theorem 3.5 and $c\left(a_{1} a_{2}\right)=k$. We can verify that the coloring c is a pd-coloring using colors [k], so $p d\left(H+a_{1} a_{2}\right) \leq k$. Moreover, $\operatorname{pd}\left(H+a_{1} a_{2}\right) \geq k$ by Lemma 2.6. Thus, We obtain that $p d\left(H+a_{1} a_{2}\right)=k$. Furthermore, since $H+a_{1} a_{2}$ is a block of G, we get $p d(G)=p d\left(H+a_{1} a_{2}\right)=k$ by Lemma 2.5.

Acknowledgement. The authors are very grateful to the reviewers for their useful suggestions and comments, which helped to improve the presentation of the paper.

References

[1] X. Bai, R. Chang, Z. Huang, X. Li, More on rainbow disconnection in graphs, accepted for publication in Discuss. Math. Graph Theory.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[3] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38(2018), 1007-1021.
[4] Y. Chen, P. Li, X. Li, Y. Weng, Complexity results for the proper disconnection of graphs, Proceedings of 14th International Frontiers of Algorithmics Workshop (FAW 2020), Haikou, Hainan, 29-31 May, 2020.
[5] P. Li, X. Li, Monochromatic disconnection of graphs, arXiv:1901.01372 [math.CO].
[6] P. Li, X. Li, Monochromatic disconnection: Erdös-Gallai-type problems and product graphs, arXiv:1904.08583 [math.CO].

[^0]: *Supported by NSFC No. 11871034 and 11531011, and NSFQH No.2017-ZJ-790.

